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ABSTRACT

A promising approach for teaching artificial agents to use natural language involves
using human-in-the-loop training. However, recent work suggests that current
machine learning methods are too data inefficient to be trained in this way from
scratch. In this paper, we investigate the relationship between two categories of
learning signals with the ultimate goal of improving sample efficiency: imitating
human language data via supervised learning, and maximizing reward in a simu-
lated multi-agent environment via self-play (as done in emergent communication),
and introduce the term supervised self-play (S2P) for algorithms using both of
these signals. We find that first training agents via supervised learning on human
data followed by self-play outperforms the converse, suggesting that it is not bene-
ficial to emerge languages from scratch. We then empirically investigate various
S2P schedules that begin with supervised learning in two environments: a Lewis
signaling game with symbolic inputs, and an image-based referential game with
natural language descriptions. Lastly, we introduce population based approaches to
S2P, which further improves the performance over single-agent methods.

1 INTRODUCTION

Language is one of the most important aspects of human intelligence; it allows humans to coordinate
and share knowledge with each other. It is also crucial for human-machine interaction, as human
language is a natural means by which to exchange information, give feedback, and specify goals.

A promising approach for training agents to solve problems with natural language is to have a “human
in the loop”, meaning we collect problem-specific data from humans interacting directly with our
agents for learning. However, human-in-the-loop data is expensive and time-consuming to obtain as it
requires continuously collecting human data as the agent’s policy improves, and recent work suggests
that current machine learning methods (e.g. from deep reinforcement learning) are too data-inefficient
to be trained in this way from scratch (Chevalier-Boisvert et al., 2018). Thus, an important open
problem is: how can we make human-in-the-loop training as data efficient as possible?

To maximize data efficiency, it is important to fully leverage all available training signals. In this paper,
we study two categories of such training methods: imitating human data via supervised learning,
and self-play to maximize reward in a multi-agent environment, both of which provide rich signals
for endowing agents with language-using capabilities. However, these are potentially competing
objectives, as maximizing environmental reward can lead to the resulting communication protocol
drifting from natural language (Lewis et al., 2017a; Lee et al., 2019). The crucial question, then, is
how do we best combine self-play and supervised updates? This question has received surprisingly
little attention from the emergent communication literature, where the question of how to bridge
the gap from emergent protocols to natural language is generally left for future work (Mordatch &
Abbeel, 2017; Cao et al., 2018).

Our goal in this paper is to investigate algorithms for combining supervised learning with self-play —
which we call supervised self-play (S2P) algorithms — using two classic emergent communication
tasks: a Lewis signaling game with symbolic inputs, and a more complicated image-based referential
game with natural language descriptions. Our first finding is that supervised learning followed by
self-play outperforms emergent communication with supervised fine-tuning in these environments,
and we provide three reasons for why this is the case. We then empirically investigate several
supervised-first S2P methods in our environments. Existing approaches in this area have used various
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ad-hoc schedules for alternating between the two kinds of updates (Lazaridou et al., 2016), but to
our knowledge there has been no systematic study that has compared these approaches. Lastly, we
propose the use of population-based methods for S2P, and find that it leads to improved performance
in the more challenging image-based referential game. Our findings highlight the need for further
work in combining supervised learning and self-play to develop more sample-efficient language
learners.

2 RELATED WORK

In the past few years, there has been a renewed interest in the field of emergent communication
(Sukhbaatar et al., 2016; Foerster et al., 2016; Lazaridou et al., 2016; Havrylov & Titov, 2017)
culminating in 3 NeurIPS workshops. Empirical studies have showed that agents can autonomously
evolve a communication protocol using discrete symbols when deployed in a multi-agent environment
which helps them to play a cooperative or competitive game (Singh et al., 2019; Cao et al., 2018;
Choi et al., 2018; Evtimova et al.).

While the idea of promoting coordination among agents through communication sounds promising,
recent experiments (Lowe et al., 2019; Chaabouni et al., 2019; Lazaridou et al., 2018; Kottur
et al., 2017; Jaques et al., 2018) have emphasized the difficulty in learning meaningful emergent
communication protocols even with centralized training. Apart from the above advances in emergent
communication, there has been a long outstanding goal of learning intelligent conversational agents
to be able to interact with humans. This involves training the artificial agents in a way so that they
achieve high scores while solving the task and their language is interpretable by humans or close to
natural language. Recent works also add another axis orthogonal to communication where the agent
also takes a discrete action in an interactive environment (de Vries et al., 2018; Mul et al., 2019).
Lewis et al. (2017b) introduced a negotiation task which involves learning linguistic and reasoning
skills. They train models imitating human utterances using supervised learning and found that the
model generated human-like captions but were poor negotiators. So they perform self-play with
these pretrained agents in an interleaved manner and found that the performance improved drastically
while avoiding language drift. Lee et al. (2019) also propose using an auxiliary task for grounding
the communication to counter language drift. They use visual grounding to learn the semantics of the
language while still generating messages that are close to English.

A recent trend on using population based training for multi-agent communication is a promising
avenue for research using inspirations from language evolution literature (Smith et al., 2004; Kirby,
2014; Raviv & Arnon, 2018). Cultural transmission is one such technique which focuses on the
structure and compression of languages, since a language must be used and learned by all individuals
of the culture in which it resides and at the same time be suitable for a variety of tasks. Graesser
et al. (2019) shows the emergence of linguistic phenomena when a pool of agents contact each other
giving rise to novel creole languages. Li & Bowling (2019); Cogswell et al. (2019); Tieleman et al.
(2018) have also tried different ways of imposing cultural pressures on agents, by simulating a large
population of them and pairing agents to solve a cooperative game with communication. They train
the agent against a sampled generation of agents where the generation correspond to the different
languages of the same agent at different times in the history.

Our work is inspired from these works where we aim to formalize the recent advancements in using
self-play in dialog modeling, through the lens of emergent communication.

3 METHODS

3.1 PROBLEM DEFINITION

Our agents are embedded in a multi-agent environment withN agents where they receive observations
o ∈ O (which are functions of a hidden state S) and perform actions a ∈ A . Some actions AL ⊂ A
involve sending a message m ∈ AL over a discrete, costless communication channel (i.e. a cheap talk
channel (Farrell & Rabin, 1996)). The agents are rewarded with a reward r ∈ R for their performance
in the environment. We assume throughout that the environment is cooperative and thus the agents
are trained to maximize the sum of rewards R =

∑
t=1:T

∑
i=1:N ri,t across both agents. This can

be thought of as a cooperative partially-observable Markov game (Littman (1994)).
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Figure 1: (a) Diagram of the supervised self-play (S2P) procedure (phases 1-3) and the testing
procedure considered in this work (phase 4). (b) The environments considered in this paper (Sec. 4).

We define a target language L∗ ∈ L, usually corresponding to natural language, that we want our
agents to learn (we further assume L∗ can be used to achieve high task reward). In this paper,
we consider a language L ∈ L to be simply a set of valid messages AL and a mapping between
observations and messages in the environment, L : O × AL 7→ [0, 1]. For example, in an English
image-based referential game (Section 4) this corresponds to the mapping between images and
image descriptions in English. We are given a dataset D consisting of |D| (observation, action) pairs,
corresponding to Ne ‘experts’ (for us, Ne = 2 playing the game using the target language L∗. Our
goal is to train agents to achieve a high reward in the game while speaking language L∗ with an
‘expert’. Specifically, we want our agents to generalize and to perform well on examples that are not
contained in D.

To summarize, we want agents that can perform well on a collaborative task with English-speaking
humans, and we can train them using a supervised dataset D and via self-play.

3.2 SUPERVISED SELF-PLAY (S2P)

In recent years, there have been several approaches to language learning that have combined su-
pervised or imitation learning with self-play. In this paper, we propose an umbrella term for these
algorithms called supervised self-play (S2P). S2P requires two things: (1) a multi-agent environment
where at least one agent can send messages over a dedicated communication channel, along with
a reward function that measures how well the agents are doing at some task; and (2) a supervised
dataset D of experts acting and speaking language L∗ in the environment (such that they perform
well on the task). Given these ingredients, we define S2P below (see Figure 2).
Definition 3.1. Supervised self-play (S2P). Supervised self-play is a class of language learning
algorithms that combines: (1) self-play updates in a multi-agent language environment, and (2)
supervised updates on an expert dataset D.

S2P algorithms can differ in how they combine self-play and supervised learning updates onD. When
supervised learning is performed before self-play, we refer to the dataset D as the seed data.

Why might we want to train our agents via self-play? Won’t their language diverge from L∗? One
way to intuitively understand why S2P is beneficial is to think in terms of constraints. In our set-up,
there are two known constraints on the target language L∗: (1) it is consistent with the samples
from the supervised dataset D, and (2) L∗ can be used to obtain a high reward in the environment.
Thus, finding L∗ can be loosely viewed as a constrained optimization problem, and enforcing both
constraints should clearly lead to better performance.

3.3 ALGORITHMS FOR S2P

Here we describe several methods for S2P training. Our goal is not to exhaustively enumerate all
possible optimization strategies, but rather provide a categorization of some well-known ways to
combine self-play and supervised learning. To help describe these methods, we further split the seed
dataset D into Dtrain, which is used for training, and Dval which is used for early-stopping. We also
visualize the schedules in Figure 2.
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Emergent communication with supervised fine-tuning
(sp2sup): We first perform self-play updates until the learning
converges on the task performance. It is then followed by supervised
updates on Dtrain until the listener performance converges on the
dataset Dval.

Supervised learning with self-play (sup2sp): This is the comple-
ment of the above method which involves doing supervised updates
until convergence on Dval followed by self-play updates until con-
vergence on the task performance.

Random updates (rand): This is the method used in (Lazaridou
et al., 2016). At each time step, we sample a bernoulli random
variable z ∼ Bernoulli(q) where q is fixed. If z = 1, we perform
one supervised update, else we do one self-play update, and repeat
until convergence on Dval.

Scheduled updates (sched): We first pretrain the listener and the speaker until convergence on
Dval. Then we create a schedule, where we perform l self-play updates followed by m supervised
updates, and repeat until convergence on the dataset.

Scheduled updates with speaker freezing (sched_frz): This method is based on the findings
of Lewis et al. (2017b), who do sched S2P while freezing the parameters of the speaker during
self-play to reduce the amount of language drift. In our case, we freeze the parameters of the speaker
after the initial supervised learning.

Scheduled updates with random speaker freezing (sched_rand_frz): Experimentally, we
noticed that sched_frz didn’t perform well in self-play. Thus, we introduce a variation, we sample
a bernoulli random variable z ∼ Bernoulli(r) where r is fixed. If z = 1, we freeze the parameters
of the speaker during both self-play and supervised learning, else we allow updates to the speaker as
well.

3.4 POPULATION-BASED S2P (POP-S2P)

(a) (b)

Figure 3: Results from training 50 S2P
agents on the IBR game with |D| =
10000. (a) The agents have a range of
predictions on many images. (b) When
playing with each other, the agents ex-
hibit uneven performance, indicating pol-
icy variability.

As explained above, the goal of S2P is to produce agents
that follow datasetD while maximizing reward in the envi-
ronment. However, there are many such policies satisfying
these criteria. This results in a large space of possible
solutions, that increases as the environment grows more
complex (but decreases with increasing |D|). Experimen-
tally, we find that this can result in diverse agent policies.
We show this in Figure 3 by training 50 randomly initial-
ized agents on the image-based referential game (defined
in Sec. 4) the agents can often make diverse predictions
for a given image (3a) and achieve variable performance
when playing with other populations with a slight prefer-
ence towards their own partner (the diagonal in 3b).

Inspired by these findings, we propose to augment S2P
by training a population of N agents, and subsequently
aggregating them back into a single agent (the ‘student’).
We call this population-based S2P (Pop-S2P). While there
are many feasible ways of doing this, in this paper we train the populations by simply randomizing
the initial seed, and we aggregate the populations using a simple form of policy distillation (Rusu
et al., 2015). Another simple technique to boost performance is via ensembling where we simply
take the majority prediction at each time step.

4 ENVIRONMENTS & IMPLEMENTATION DETAILS

We consider environments based on classical problems in emergent communication. These environ-
ments are cooperative and involve the interaction between a speaker, who makes an observation and
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sends a message, and a listener, who observes the message and makes a prediction (see Figure 1b).
Our goal is to train a listener such that it achieves high reward when playing with an expert speaking
the target language L∗ on inputs unseen during training.1

Environment 1: Object Reconstruction (OR) Our first game is a Lewis signaling game (Lewis,
1969) and a simpler version of the Task & Talk game from Kottur et al. (2017), with a single turn
and a much larger input space. The speaker agent observes an object with a certain set of properties,
and must describe the object to the listener using a sequence of words. The listener then attempts to
reconstruct the object. More specifically, the input space consists of p properties (e.g. shape, color)
of t types each (e.g. triangle, square). The speaker observes a symbolic representation of the input,
consisting of the concatenation of p = 6 one-hot vectors, each of length t = 10. The number of
possible inputs scales as tp. We define the vocabulary size (length of each one-hot vector sent from
the speaker) as |V | = 60, and the number of words (fixed length message) sent to be T .

For our target language L∗ for this task, we programatically generate a perfectly compositional
language, by assigning each object a unique word. In other words, to describe a blue shaded triangle,
we create a language where the output description would be “blue, triangle, shaded”, in some arbitrary
order and without prepositions. By ‘unique symbol’, we mean that no two concepts are assigned the
same word. The speaker and listener policies are parameterized using a 2-layer linear network (results
were similar with added non-linearity and significantly worse with 1-layer linear networks) with 200
hidden units. During both supervised learning and self-play, the listener is trained to minimize the
cross-entropy loss over property predictions.

Environment 2: Image-Based Referential game with natural language (IBR) Our second game
is the communication task introduced in the Lee et al. (2017). The speaker observes a target image
d∗, and must describe the image using a set of words. The listener observes the target image along
with D distractor images (for us, D = 9), and the message yd∗ from the speaker, and is rewarded for
correctly selecting the target image. For this game, the target language L∗ is English — we obtain
English image descriptions using caption data from MS COCO and Flickr30k. We set the vocabulary
size |V | = 100, and filter out any descriptions that contain more than 30% unknown tokens while
keeping the maximum message length T to 15.

Implementation details Similarly to (Mordatch & Abbeel, 2017; Sukhbaatar et al., 2016), we
train our agents end-to-end with backpropagation. Since the speaker sends discrete messages, we
use the Straight-Through version of Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016)
to allow gradient flow to the speaker during self-play. Both the agents are trained end-to-end via
backpropogation. The speaker’s predictions are trained on the ground truth English captions m∗
using the cross entropy loss. The listener is trained using the cross-entropy loss where the logits are
the reciprocal of the mean squared error which was found to perform better in Lee et al. (2017). The
mean squared error is taken over the listener’s image representation blsn of the distractor (or target)
image and the message representation given as input.

Jspk-supervised(d∗) = −
T∑

t=1

log pspk(mt|m<t, d
∗)

Jlsn-supervised(m∗, d∗, D) = −
D+1∑
d=1

log(softmax(1/plsn(m∗)− blsn(d))2)

Jself-play(d∗, D) = −
D+1∑
d=1

log(softmax(1/plsn(yd∗)− blsn(d))2)

where yd∗ is the concatenation of T one-hot vectors ytd∗ = ST-GumbelSoftmax(ptspk).

We use the same architecture as described in Lee et al. (2017). The speaker and listener are
parameterized by recurrent policies, both using an embedding layer of size 256 followed by an GRU
(Cho et al., 2014) of size 512. We provide further hyperparameter details in the Appendix.

1Our approach could equally be used to train a speaker of language L∗; we leave this to future work.
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Figure 4: (a) Left: In the OR game, best performance (number of total samples required to achieve
95% generalization accuracy, lower is better) for S2P is achieved when all of the samples are in
the seed. 0 on the x-axis corresponds to the emergent communication + fine-tuning baseline (see
Appendix for derivation of optimal performance). Right: This is also the case in the IBR game, where
performance is measured by the generalization accuracy using 10k total training samples (higher is
better). (c) Adding more samples to initial supervised learning in the IBR game improves agents’
generalization to L∗. (d) Even when we learn the perfect distribution with emergent communication
in the OR game, it still performs worse than S2P.

5 EXPERIMENT 1: DO SUPERVISED LEARNING BEFORE SELF-PLAY

A central question in our work is how to combine supervised and self-play updates for effective
pre-training of conversational agents. In this section, we study this question by conducting experi-
ments with two schedules: training with emergent communication followed by supervised learning
(ec2supervised), and training with supervised learning followed by self-play (sched). We also
interpolate between these two regimes by performing the sched on 0 < n < |D| samples, followed
by supervised fine-tuning on the remaining |D| − n samples.

Our first finding is that it is best to use all of your samples for supervised learning before doing
self-play. This can be seen in Figure 4: when all of the samples are used first for supervised learning,
the number of total samples required to solve the OR game drastically, and in the IBR game the
accuracy for a fixed number of samples is maximized (Figure4a). While this may seem to be common
sense, it in fact runs counter to the prevailing wisdom in much of the emergent communication
literature, where languages are emerged from scratch with the ultimate goal of translating them to
natural language.

To better understand why it is best to do supervised learning first, we now conduct a set of targeted
experiments using the environments from Section 4. Results of our experiments suggest three main
explanations:

(1) Emerging a language is hard. For many environments, with emergent communication it’s
often hard to find an equilibrium where the agents meaningfully communicate. The difficulty of
‘emergent language discovery’ has been well-known in emergent communication Lowe et al. (2017),
so we will only briefly discuss it here. In short, to discover a useful communication protocol agents
have to coordinate repeatedly over time, which is difficult when agents are randomly initialized,
particularly in environments with sparse reward. Compounding the difficulty is that, if neither agent
communicates and both agents act optimally given their lack of knowledge, they converge to a
Nash equilibrium called babbling equilibrium. This equilibrium must be overcome to learn a useful
communication protocol. In S2P, the initial language supervision can help overcome the discovery
problem, as it provides an initial policy for how agents could usefully communicate (Lewis et al.,
2017b).

(2) Emergent languages are different than natural language. Even if one does find an equilib-
rium where agents communicate and perform well on the task, the distribution of languages they
find will usually be very different from natural language. This is a problem because, if the languages
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Figure 5: Results from the OR game with 1 property and 10 types. When the supervised updates are
performed first (supervised data available for words 0-3), then the self-play updates make sensible
predictions for the unknown words (words 4-7). When the self-play updates are done first, the
subsequent supervised updates merely correct the predictions for words 1-4, without enforcing the
constraint that each word should result in a separate type to solve the task.

obtained through self-play are sufficiently different from L∗, they will not be helpful for learning.
This is seen for the OR game in Figure 4a, where 17 samples are required in the seed before S2P
outperforms the supervised learning baseline. We speculate that this is due to the different pressures
exerted during the emergence of artificial languages and human languages.

Thankfully, we can learn languages closer to L∗ by simply adding more samples to our initial
supervised learning phase. We show this in Figure r4b, where we train populations of 50 agents on
the IBR game and use Pop-S2P to produce a single distilled agent. With both 1K and 10K initial
supervised samples, the distill agent generalizes to agents in the validation set of their population.
However, the distilled agent trained with 10000 samples performs significantly better when playing
with an expert agent speaking L∗, indicating that the training agents from that population speak
languages closer to L∗.

(3) Starting with self-play violates constraints. Even if you have ‘perfect emergent communica-
tion’ that learns a distribution over languages under which L∗ has high probability, current methods
of supervised fine-tuning do not properly learn from this distribution. What if we had all the correct
learning pressures, such that we emerged a distribution over languages L with structure identical to
L∗? Surprisingly, we find that S2P with all of the samples in the seed performs better than even this
optimistic case. We conduct an experiment in the OR game where we programmatically define a
distribution over compositional languages Lc, of which our target language L∗ is a sample. Each
language L ∈ Lc has the same structure, the only difference being the mapping between the word
IDs and the corresponding type IDs, along with the order of properties in an utterance. As seen in
Figure 4c, when we train a Pop-S2P agent on 50 of these compositional populations, we still need 3x
more samples than S2P.

To understand why this happens, we conduct a case study in an even simpler setting: single-agent
S2P in the OR game with p = 1, t = 10, |V | = 10. We find that agents trained via emergent com-
munication consistently learn to solve this task. However, as shown in Figure 5, when subsequently
trained via supervised learning on D to learn L∗, the learned language is no longer coherent (it maps
different words to the same type) and doesn’t solve the task. On the other hand, agents trained first
with supervised learning are able to learn a language that both solves the task and is consistent with
D.

Intuitively, what’s happening is that the samples in D are also valid for solving the task, since we
assume agents speaking L∗ can solve the task. Thus, self-play after supervised learning simply
‘fills in the gaps’ for examples not in D.2 Emergent languages that start with self-play, on the other
hand, contain input-output mappings that are inconsistent with L∗, which must be un-learned during
subsequent supervised learning.

2In practice, we find that self-play updates can undo some of the learning of D, which is why we apply an
alternating schedule.
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Figure 7: (a) Comparing test performances of different S2P methods on the IBR game. For each
method, we picked the model that gave the best performance on Dval. (b) Left: 2D visualization of
S2P (sched) performance over the course of training, in terms of performance on L∗ (vertical axis)
and performance in self-play (horizontal axis). The zig-zag patterns indicates that most self-play
updates result in a short-term decrease in target language performance. Right: visualization of the
role of the supervised and self-play updates.

In theory, the above issue could be resolved using Pop-S2P; if the distilled agent could use the
population of emergent languages to discover structural rules (e.g. discovering that the languages in
the OR game in Figure 4c are compositional), it could use the samples from D to refine a posterior
distribution over target languages that is consistent with these rules (e.g. learning the distribution
of compositional languages consistent with D). Current approaches to supervised fine-tuning in
language, though, do not do this (Lazaridou et al., 2016; Lewis et al., 2017b). An interesting direction
for future work is examining how to apply Bayesian techniques to S2P.

6 EXPERIMENT 2: POPULATION-BASED APPROACHES IMPROVE S2P

Figure 6: S2P (sched) out-
performs the supervised base-
line in the IBR game, and is
in turn outperformed by Pop-
S2P.

In this section, we aim to show that (1) S2P outperforms the su-
pervised learning baseline, and (2) Pop-S2P outperforms S2P. We
conduct our experiments in the more complex IBR game, since the
agents must communicate in English, and measure performance by
calculating the accuracy at different (fixed) numbers of samples. Our
baseline is then the performance of a supervised learner on a fixed
number of samples.

We show the results in Figure 6. We first note that, when both 1k
and 10k samples are used for supervised learning, S2P (sched) out-
performs the supervised learning baseline. We can also see that the
population-based approach outperforms single agent S2P (sched)
by a significant margin. We also compare our distillation method
to an ensembling method that keeps all 50 populations at test time,
and find that ensembling performs significantly better, although it is
much less efficient. This suggests that there is room to push distilled
Pop-S2P to even better performance.

7 EXPERIMENT 3: EXAMINING S2P SCHEDULES

In this section, we aim to: (1) evaluate several S2P schedules empirically on the IBR game; and (2)
attain a better understanding of S2P through quantitative experiments.

Parameter freezing improves S2P We show the results comparing different S2P schedules in
Figure 7a. Interestingly, we find that in this more complex game, the supervised2sp method of S2P
performs much worse than the other options. We also see that adding freezing slightly improves the
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performance on the target language (in the Appendix, we also show that it converges more quickly).
We hypothesize that this is because it reduces the language drift that is experienced at each round of
self-play updates (Lee et al., 2019).

Self-play acts as a regularizer What is the role of self-play in S2P? We can start to decipher this
by taking a closer look at the sched S2P method. We plot the training performance of this method
in Figure 7b. Interestingly, we notice from the zig-zag pattern that the validation performance usually
goes down after every set of self-play updates. However, the overall validation performance goes
up after the next round of supervised updates. This is also reflected in the poor performance of the
sup2sp method in Figure 6.

This phenomenon can be explained by framing self-play as a form of regularization: alternating
between supervised and self-play updates is a way to satisfy the parallel constraints of ‘is consistent
with the dataset D’ and ‘performs well in self-play’. We visualize this pictorially in Figure 7b: while
a set of self-play updates results in poor performance on D, eventually the learned language moves
closer to satisfying both constraints.

8 DISCUSSION

In this work, we investigated the research question of how to combine supervised and self-play
updates, with a focus on training agents to learn language. However, this research question is not
only important for language learning; it is also a important in equilibrium selection and learning
social conventions (Lerer & Peysakhovich, 2019) in general games. For example, in robotics there
may be a trade-off between performing a task well (moving an object to a certain place) and having
your policy be interpretable by humans (so that they will not stumble over you). Examining how to
combine supervised and self-play updates in these settings is an exciting direction for future work.

There are several axes of complexity not addressed in our environments and problem set-up. First,
we consider only single-state environments, and agents don’t have to make temporally extended
decisions. Second, we do not consider pre-training on large text corpora that are separate from the
desired task (Radford et al., 2019; Devlin et al., 2018). Third, we limit our exploration of self-play to
the multi-agent setting, which is not the case in works such as instruction following Andreas & Klein
(2015). Introducing these elements may result in additional practical considerations for S2P learning,
which we leave for future work. Our goal in this paper is not to determine the best method of S2P in
all of these settings, but rather to inspire others to use the framing of ‘supervised self-play algorithms’
to make progress on sample efficient human-in-the-loop language learning.
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Hyperparameter Values
Learning rate 1e-2, 1e-3, 2e-3, 6e-3, 1e-4, 5e-4, 6e-4
Model architecture Linear, 2xLinear, MLP, LSTM
Meta-learning algorithm FOMAML, Reptile, SGD
w2 parameter freezing True, False
Number of inner loop steps (FOMAML, Reptile) 2, 3, 10, 20, 50, 100
Number of encoders (perfect emcom) 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000
Number of encoders (S2P) 20, 40, 50, 60, 80, 100

In initial experiments
Inner loop batch size 1000
Outer loop batch size 1, 5, 1000
Hidden layer size 200, 500, 1000
Number of hidden layers 1
Bias transform size (FOMAML) 0, 3, 6, 36
Gradient clipping value None, 10
Max test-time updates 50, 100, 1000

Table 1: Hyperparameters considered in S2P training.

A EXPERIMENTAL DETAILS

In the OR game, the message produced by the speaker is a sequence of p categorical random variables,
which are discretized using Gumbel-Softmax with an initial temperature τ = 1. We set the vocabulary
size to be equal to the total number of concepts p · t. We train our agents using Cross Entropy which
is summed over each property p. We use the Adam optimizer Kingma & Ba (2015) with a learning
rate of 6e-4.

The hyperparameters we sweeped over are shown in Table 1.

We also experimented with: using a binary representation for the words with emergent language
(which resulted in more compositional-like structure, but was non-trivial to convert back to a cat-
egorical representation to test with CompBots), training on CompBots and testing on emergent
languages (didn’t work), a smaller game size with 3 properties and 5 types per property, using the
straight-through Gumbel-Softmax estimator, and permuting the order of the words in each batch
during testing (which improved performance when meta-learning on emergent languages and testing
on CompBots, as it adds a bias towards making the meta-learniner word order invariant).

We reserve 10% of inputs for the training and test set, respectively.

At test time, we run a certain number of inner-loop steps (max test-time updates in Table 1). We find
the iteration with the lowest validation error, and then report the accuracy on a held-out test set.

B ADDITIONAL RESULTS

We provide two additional figures showing training curves in Figures 8 and 9.
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Generalization gap △g

Figure 8: Performance of a FOMAML model on S2P populations with different numbers of samples
in the seed. When using fewer samples in the seed, the S2P populations are more disjoint from the
target language, as shown by the larger generalization gap (∆g) of the FOMAML model. Results
using the image-based referential game.
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Figure 9: Training curves for various S2P methods.
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