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ABSTRACT

Rules over a knowledge graph (KG) capture interpretable patterns in data and can
be used for KG cleaning and completion. Inspired by the TensorLog differ-
entiable logic framework, which compiles rule inference into a sequence of dif-
ferentiable operations, recently a method called Neural LP has been proposed for
learning the parameters as well as the structure of rules. However, it is limited with
respect to the treatment of numerical features like age, weight or scientific mea-
surements. We address this limitation by extending Neural LP to learn rules with
numerical values, e.g., “People younger than 18 typically live with their parents”.
We demonstrate how dynamic programming and cumulative sum operations can
be exploited to ensure efficiency of such extension. Our novel approach allows us
to extract more expressive rules with aggregates, which are of higher quality and
yield more accurate predictions compared to rules learned by the state-of-the-art
methods, as shown by our experiments on synthetic and real-world datasets.

1 INTRODUCTION

Due to the availability of vast amounts of knowledge on the web, advances in information extraction
have led to large graph-structured knowledge bases, also known as knowledge graphs (KGs), which
are widely used in web search, question answering, and data analytics. Such KGs represent data
as a graph of entities (e.g., john, article1 ) connected via relations (e.g., citedIn), or more formally
as a set of binary grounded atoms (e.g., citedIn(john, article1 )). A common task in such settings
is that of link prediction, determining whether a relation exists between two entities in the graph
even if the relation is not included explicitly in the graph. Although most work on this topic has
focused on statistical rule-extraction techniques (Meilicke et al. (2019); Galarraga et al. (2015);
Ortona et al. (2018a)), recent methods have shown the benefit of using deep learning approaches for
this link prediction task (see Wang et al. (2017) for overview). And while most deep approaches
(for example, those based upon graph embedding methods) are inherently difficult to interpret, the
Neural LP method of Yang et al. (2017) is particularly appealing in that it allows for interpretable
resulting rules for the link prediction task while still preserving the flexibility of a learning approach.
Unfortunately, Neural LP is also quite limited in the types of rules it is capable of representing, and
notably no rules that depend on numerical features can be efficiently learned within this framework.

In this paper, we propose an extension to Neural LP that allows for fast learning of numerical rules.
Specifically, although numerical rules would result in dense matrix operations in the generic Neural
LP framework, we show that using dynamic programming and cumulative sum operations, we can
efficiently express the operators for numerical comparators within the Neural LP framework. By
defining the relevant operators implicitly in this manner, we show that we can extend Neural LP
to efficiently learn rules that make use of numerical features, while retaining the interpretability of
the Neural LP framework. More generally, this is an instance of integrating so-called “aggregates”
(i.e. external oracle queries, in this case binary queries that reflect numerical comparison) within a
rule-learning framework. Learning such rules with aggregates is very much an open problem in the
KG community (Galárraga & Suchanek (2014)), and our approach is the first work to learn rules
with these numerical aggregates.

We apply our approach to several knowledge graph datasets, and show that we are able to answer
queries more accurately than the previous Neural LP approach, as well as more accurately that a
state-of-the-art rule extraction method, the AnyBurl package proposed by Meilicke et al. (2019).

1



Under review as a conference paper at ICLR 2020

Specifically, we show on two synthetic and two real-world datasets that our extension to Neural
LP is able to more accurately recover rules that depend on numerical information, and thus make
much more accurate link predictions in the knowledge graph. Further, the extracted rules are still
interpretable as in the original Neural LP framework, and unlike the pure graph embedding strategies
(Bordes et al. (2013)).

2 RELATED WORK

Relational Data Mining. The problem of learning rules from the data has been traditionally
addressed in the area of relational data mining (Raedt (2017)) and inductive logic programming
(ILP) (Muggleton (1995)). Works most related to ours concern learning non-monotonic rules (Law
et al. (2018); Inoue & Kudoh (1997)) and decision trees with aggregates (Vens et al. (2006)) from
relational data.

In the context of KGs, the problem of rule learning has recently gained a lot of attention. In Ortona
et al. (2018b) rules with negation and simple numerical comparison have been considered. Contrary
to our approach, in Ortona et al. (2018b) aggregates are not supported and their method is designed to
find a small set of rules that cover the majority of positive and as few negative examples as possible,
which differs from our objective of learning rules in an unsupervised fashion.

Neural-based Rule Learning. Several works utilize embedding models and neural architectures
for rule learning (Yang et al. (2017); Manhaeve et al. (2018); Rocktäschel & Riedel (2017); Evans &
Grefenstette (2018); Zhang et al. (2019); Ho et al. (2018)). The closest to ours is the work of Yang
et al. (2017), which reduces the rule learning problem to algebraic operations on neural-embedding-
based representations of a given KG. However, in Yang et al. (2017) negations and aggregates are
not supported in contrast to our work.

Embedding Models with Numerical Attributes. The problem of KG incompleteness has been
tackled by methods that predict missing relational edges between existing entities. Several ap-
proaches rely on statistics and include tensor factorization (Nickel et al. (2011)). Other models
are based on neural-embedding (Bordes et al. (2013)). For overview see Wang et al. (2017).

The most relevant for us is the work of Garcı́a-Durán & Niepert (2018), which presents a novel
approach to combine relational, latent (learned) and numerical features, i.e. features taking large or
infinite number of real values for the KG completion task. While this work operates on KGs with
numerical values, in contrast to ours its goal is primarily fact prediction rather than rule learning.

3 PRELIMINARIES

Knowledge Graphs. We assume countable sets C of constants, N ⊂ R of numerical values and
R of binary relations. A KG G is defined by a finite set of ground atoms, a.k.a. facts, of the form
p(x, y), where p ∈ R, x ∈ C and y ∈ C∪N (e.g., citedIn(john, article1 )). The setRn ⊆ R stores
all numerical predicates p, such that p(x, y) ∈ G, where x ∈ C and y ∈ N . The set of numerical
facts, i.e. facts over numerical predicates, is denoted by Gn ⊆ G. We use lower-case letters for
constants and upper-case letters for variables.

As KGs are incomplete, one can assume that missing facts, i.e. facts that are not in G, are either
unknown or false. Typically the open world assumption (OWA) is employed, which means that
missing facts are considered to be unknown rather than false. Alternatively, the local closed world
assumption (LCWA) can be considered to generate negative facts by assuming that the KG is locally
complete as data is usually added to KGs in batches. More precisely, it means that for any x ∈ C we
can conclude that p(x, y) is false if ∃z ∈ C ∪ N such that p(x, z) ∈ G and p(x, y) /∈ G.

Numerical rules. A rule is an expression of the form

p(Y,X)← qn(Y,Zn) ∧ . . . ∧ q1(Z1, X). (1)

where p, q1, . . . , qn ∈ R, left-hand side of the rule is referred to as the rule head and right-hand
side as the rule body, and every conjunct in the rule head or body is referred to as an atom. The
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Figure 1: An exemplar KG about publications, their authors and relations among them. Relations
are presented in italics, entities in bold black and numerical values in circes, true facts as solid black
lines and the missing ones as dashed in red.

rule influences(Y ,X )← colleagueOf (Y ,Z ) ∧ supervisorOf (Z ,X ) intuitively states that typi-
cally students are influenced by colleagues of their supervisors. Aside from conventional rules, we
can also have numerical rules, i.e. rules that contain numerical comparison among variables (e.g.,
number of citations of two people), or a variable and a numerical constant.

To simplify presentation, numerical values inN linked to an entity from C are sometimes treated as
its “features”, and numerical relations inRn as functions that depend on those features. In this case,
for p(X,Y ) we also use a shortcut notation X.p = Y . For instance, john.hasCitation = 124
stands for hasCitation(john, 124), and for compactness, r◦pq(X,Y ) stands for X.p ◦ Y.q, where
◦ ∈ {≤, >}. The second subscript in r◦pq is omitted if it is clear from the context that p = q.
Example 1. For example, consider a KG in Fig 1 and the rule influences(X,Y ) ←
colleagueOf (Y, Z) ∧ supervisorOf (Z,X) ∧ r>hasCitation(Y,Z) states that students are influenced
by colleagues of their supervisors with a higher number of citations1.

We can also define a classification relation mapping the feature to the probability of a logistic clas-
sification, σ(wTX.features + b), where w and b are parameters and σ is the sigmoid function. As
we demonstrate later such rules can be integrated and learnt naturally in the Neural LP framework.

Rule Learning. Given a KG G the goal of rule learning is to extract rules from G, such that their
application to G results in an approximation of the ideal KG, which stores all correct facts.

The Neural LP method (Yang et al. (2017))is among rule learning proposals, which learns a dis-
tribution over rules of the form in Eq. (1) without comparison operators in an end-to-end fashion
by making use of gradient-based optimization. This approach relies on the TensorLog frame-
work (Cohen et al. (2017)), which connects rule application with sparse matrix multiplications. In
TensorLog all entities are mapped to integers, and each entity i is associated with a one-hot en-
coded vector vi ∈ {0, 1}|C| such that only its i-th entry is 1.

For example, every KG entity c ∈ C in Fig. 1 is encoded as a 0/1 vector of length 5, since |C| = 5.
For every relation p ∈ R \ Rn and every pair of entities x, y ∈ C a matrix Mp ∈ {0, 1}|C|×|C|
is defined such that its (x, y) entry, denoted by (Mp)xy , is 1 iff p(x, y) ∈ G. For example, by
considering the KG in Fig. 1, for the relation p = citedIn we have

Mp =

john pete bob article1 article2


0 0 0 1 1 john
0 0 0 1 0 pete
0 0 0 0 0 bob
0 0 0 0 0 article1
0 0 0 0 0 article2

The idea of TensorLog is to imitate application of rules for any entity X = x by perform-
ing matrix multiplications Mq1Mq2 . . .Mqnvx = s, where vx is the indicator of entity x. Non-
zero entries in the vector s point to the entities y for which p(x, y) is derived by applying

1I.e. influences(Y,X)← colleague(Y, Z)∧supervisorOf (Z,X)∧hasCitation(Z,U)∧hasCitation(Y, V )∧U > V .
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the above rule on G. For example, the inference for the following rule influences(Y,X) ←
colleagueOf (Y,Z), supervisorOf (Z,X) can be translated to

MsupervisorOf McolleagueOf vx = s .

By setting vx = [1, 0, 0, 0, 0]> as indicator of john and applying the matrix multiplications, we
obtain s = [0, 0, 1, 0, 0]>, the indicator of bob. As Mq1 , . . . ,Mqn are sparse, the matrix-vector
multiplication can be done efficiently, and the inference process is parallelizable on GPUs.

In Neural LP (Yang et al. (2017)) above operators are used to learn for every head the formula

f(α) =
∑
i

αi
∏
j∈βi

Mqj (2)

where i indexes over all possible rules, αi is the confidence associated with the rule ri and βi is an
ordered list of all relations appearing in these rules. The rules are read off from the solution of the
following optimization problem

max
{αi,βi}

log

( ∑
{x,y}

v>y

(∑
i

αi

( ∏
j∈βj

Mqj

)
vx

))
.

4 LEARNING RULES WITH NUMERICAL FEATURES AND NEGATIONS

As the main contribution of the paper we extend the Neural LP framework to allow us to use com-
parison operators with numerical values in the rule bodies, and also to handle negations of atoms.
These extensions are non-trivial as the Neural LP framework does not handle facts over numerical
values: naively treating numerical constants as entities in C is intractable due to the explosion of
the number of non-zero elements in the respective matrices. Similarly, naive treatment of negated
clauses would introduce dense matrices that would not be practical to operate on. Intuitively, the
main idea of our approach is to represent the necessary matrix operations implicitly, either using
dynamic programming, cumulative sums and permutations (for numerical comparison features) and
low rank factorizations (for negated atoms). Exploiting this structure lets us formulate the associated
TensorLog operators efficiently, and effectively integrate them into the Neural LP framework for
rule extraction.

4.1 COMPARISON OPERATORS

Pair-wise comparison. We start by implicitly representing the operators associated with numerical
comparators. Let p, q ∈ (R ∪ {NaN})|C| be the vector of two specific features, where NaN means
missing values. The comparison operator M

r
≤
pq

is defined as

(M
r
≤
pq

)ij =

{
1 if pi ≤ qj and pi, qj is not NaN,
0 otherwise.

Intuitively, this matrix including the binary indicator of the comparison, over all pairs of entities in
the knowledge graph that contain p and q. Unlike conventional sparse relations, the matrix M

r
≤
pq

is usually dense (i.e. it has O(n2/2) non-zero elements), thus a naive materialization would exceed
the typical GPU memory limit. However, in reality there is no need to explicitly materialize the
TensorLog relation matrix. Note that in the Neural LP inference chain we described above, all that
is needed is to efficiently compute the matrix-vector product between a relation matrix and some
vector representing the current probabilities in the inference chain.

Consider the special case that both p and q are sorted in an ascending order as p̃ and q̃ with operator
(≤)2, and call the corresponding comparison matrix M̃

r
≥
pq

. Because q̃i ≤ q̃i+1 and p̃j ≤ p̃j+1, we
have the following property (P1)

(M̃
r
≤
pq

)i,j = 1 =⇒ (M̃
r
≤
pq

)i+1,j = 1

(M̃
r
≤
pq

)i,j = 0 =⇒ (M̃
r
≤
pq

)i,j+1 = 0,

2This way, the comparison involving NaN always yields false and they will be stacked at the end.
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i.e., the resulting matrix M̃
r
≤
pq

is always effectively lower triangular in form (or more precisely, the
transition from 1 to 0 is always monotonic in the matrix, even if the non-zero pattern is not precisely
lower triangular in the usual sense).

Now define γi = arg maxj such that (M̃
r
≤
pq

)ij = 1, i.e., γi is the index of the last element equal to
one. The main observation is that we can compute the required matrix-vector product using just this
γ vector, i.e. for any vector v,

(M̃
r
≤
pq
v)i =

∑
1≤j≤γi

vj = cumsum(v)γi .

The respective values of γ for M̃
r
≤
pq
v can be precomputed on a CPU with linear complexity by

dynamic programming since its value is monotonically increasing because of the property (P1).
Also, the cumsum operator can be calculated in O(|C|) time, with an efficient GPU parallelization
that in practice is even faster for large vectors.

For the general case when p and q are not sorted, we can first permute the input v to the sorted order,
perform the matrix-vector multiplication, then permute the result back to the original order. Since
permutation (aka, index slicing) is a simple linear time operation, this does not affect the complexity
of the overall approach. Specifically, let Pp and Pq be the permutation matrix corresponding to
the argsort of p and q, respectively. Then the matrix-vector multiplication corresponding to the
comparison operator can be written as

M
r
≤
pq
v = P>q cumsum(Ppv)γ ,

which can be computed in O(|C|) in parallel given β, which are precomputed once in O(|C| log |C|).
Thus, the comparison operator needed for inference can be computed efficiently on a GPU.

Efficient use of numerical comparisons via multi-atom symbol matching. Although the above
numerical comparison operator provides an efficient means for implementing such comparisons
within the Neural LP framework, it has significant drawbacks as well. Specifically, because the
comparison operator is dense, when using it to match potential entities in the graph, it has the
potential to create a huge number of candidate matches. For example, the operator (X.p ≤ Y.p) will
link the entity with smallest p to all other entities with attribute p and will decrease the probability
of finding the correct target. To make the comparison operator more useful, it is natural to use it
jointly with other sparse operator.

colleagueOf(X,Y ) ∧ (X.p > Y.q)

which would search only over neighbors of X in the graph that also obeyed this numerical relation.
Let the two parallel rules above corresponds to operatorMcolleagueOf andM

r
≤
pq

. The above relation
can be implemented in TensorLog via

(McolleagueOf v)� (M
r
≤
pq
v) = diag(McolleagueOf v)(M

r
≤
pq
v),

where the symbol � denotes the element-wise multiplication. Unfortunately, the above relation is
not learnable in the standard Neural LP framework which only operators a single chain of matrix-
vector operations Mq1Mq2 . . .Mqmvx, which doesn’t allow easy computation of this Hadamard
product, as it includes two “copies” of the vector v. However, we note that it is trivial to simply cache
intermediate values of v in the multiplication chain, which allows us to compute such Hadamard
products; in the knowledge graph setting, this exactly corresponds to the ability to integrating symbol
matching at multiple points in the inference chain.

Classification Operators. We may also consider rules more general rules, where the comparison
is performed not necessarily among two numerical attributes of a certain entity but rather functions
over such attributes. Note that such rulesM for all entities can readily be expressed by TensorLog
operators, that is, the corresponding matrix for a given numerical value Z is a diagonal matrix. We
model the numerical value Z by making use a logistic model. Namely, for each entity we collect the
feature vector ϕ, which consists of all the numerical values fromN that is in relation with the given
entity. The ith element of the diagonal in M is defined as sigmoid(w>ϕ + b), where the weight
vector w and the bias vector b assumed to be learned. These parameters can easily be learnt in the
Neural LP framework via backpropagation.
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Dataset #Entities #Relations Feature dim #Features #Facts #Testset
FB15K-237Num 12493 237 116 27899 82992 10359
DBP15K 12867 278 251 48105 79345 9789
Numerical1 1000 2 1 1000 5785 98
Numerical2 1000 2 2 2000 5800 100

Table 1: Dataset statistics.

Negated Operators. The negation of a relation p ∈ R̄ obtained by naively flipping all zeros to
ones and vice versa in the corresponding (sparse) matrix Mp results in a dense matrix, which are
not supported directly in TensorLog. To compute the negated operator M̄p ∈ {0, 1}|C|×|C| we
employ the local closed-world assumption. For a given Mp only the elements, that are in such rows
that contain at least one non-zero element, should be flipped. The matrix-vector multiplication for
the negated operator M̄p can be written as

M̄pv := 1p1
>
p v −Mpv , (3)

where 1p ∈ {0, 1}|C| is the indicator vector for p such that (1p)i = 0 iff pi = NaN. Note that for any
TensorLog operator Mp the products Mpv and 1p(1

>
p v) can be computed efficiently, therefore

the negated operator M̄p can be computed efficiently as well.

The trick in Eq. (3) generalizes to the comparison operators Mr◦pq
, namely,

M̄r◦pq
v = 1p1

>
q v −Mr◦pq

v .

For example, M̄r<pq
v = 1p1

>
q v −Mr

≥
pq
v. This way we can learn rules with negated atoms in the

body.

Once the rules have been learned by our approach, we rely on the same procedure as in Yang et al.
(2017) to decode them back to the form Eq. 1.

Connection to aggregates in knowledge graphs Note that, importantly, the rules that we extract
using the described procedure fall into the language of logic rules with external computations in the
spirit of Eiter et al. (2012), a concept known as aggregates in knowledge bases. Indeed, much of the
formulation we have presented here can be viewed as an instance of learning rules for knowledge
with aggregates. This is an active area of current research, and our work here is significant in
connection to this area in that we present one of the first methods for learning rules using (a limited
form of) aggregates. However, the discussion requires substantial additional notation in order to be
concrete, and so we defer this discussion to Appendix A

5 EXPERIMENTAL RESULTS

In this section we report the results of our experimental evaluation, which focuses on the effective-
ness of our method against the state-of-art rule learning systems with respect to the predictive quality
of the learned rules. Specifically, we conduct experiments on a canonical knowledge graph comple-
tion task as described in Yang et al. (2017). In the task, the query and tail are given to the algorithm,
and the goal is to retrieve the related head. For example, if supervisorOf (turing , church) is not
present in the knowledge graph, then when presented with the relation supervisorOf and the entity
church , the goal is to exploit the existing triples in the KG to retrieve turing . In order to represent
the query as a continuous input to the neural controller, for each query we learn the embedding of the
lookup table. As in Yang et al. (2017), the embedding has dimension 118 and is randomly initialized
to unit norm vectors. The only difference between the parameters of the Neural-LP and our system
is that set the learning rate 10−2, while in Yang et al. (2017) it is set to 10−3, but both systems are
run to convergence, and this learning rate does not affect the final performance materially except for
making it converge faster. In all cases, we extracted rules with a maximum length of 5.

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate and compare the developed approach for learning numerical rules, we
considered the following datasets containing knowledge graphs:
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Dataset FB15K-237-num DBP15K-num Numerical1 Numerical2
Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR

AnyBurl 0.4262 0.2438 0.5217 0.3711 0.0306 0.0085 0.6850 0.5087
Neural-LP 0.362* 0.240* 0.4363 - 0.2398 - 0.2950 -
Neural-LP-N 0.415 0.259 0.682 0.451 1.000 0.941 1.000 0.837

Table 2: Comparing our approach against current state-of-the-art rule learning methods. * annotated
entries obtained from Yang et al. (2017).

• FB15K-237-num is a variant of Freebase knowledge base with numerical values, where the
reverse relations have been removed (Garcı́a-Durán & Niepert (2018)).

• DBPedia15K is extracted from the DBPedia knowledge graph Lehmann et al. (2015),
a standard KG over encyclopedia facts, and restricted to consider numerical quantities
Garcı́a-Durán & Niepert (2018).

• Numerical1 is a synthetic dataset with 1000 entities, each containing a single numerical
value (generated uniformly from 1 to 1000). Each entity has 50 randomly-chosen neigh-
bors, and the goal is to find neighbors with the closest value to the current entity, with the
constraint that the neighbor’s value must be higher.

• Numerical2 is a variant on the Numerical1 task, where each entity and two numerical val-
ues, “balance” and “debt”; under the same generation process as previously, the goal of this
task is to find the neighbor of each node with the largest delta between balance and debt.

The statistics of the knowledge graphs used in our experiments is presented in Table 1, where apart
from the number of KG entities, facts and the size of the test set, we also report the number of
numerical relations (Feature dim) and numerical facts (#Features). We use 80% of the KG as the
training set, and 10% for test set and the same for validation. The KG is split randomly with the
constraint that only non-numerical facts appear in the test set, since we do not learn rules capable of
predicting missing numerical entities.

Baselines. We compared our proposed approach, which we refer to as Neural-LP-N against the
following two baselines:

• AnyBURL3 (Meilicke et al. (2019)) is an anytime bottom-up method for learning Horn
rules, i.e. rules with only positive atoms and no comparison operators. To tune the system
we use the default parameters as described on the system webpage and set the timeout to
5000 seconds.

• Neural-LP4 (Yang et al. (2017)) is a differential rule learning system described in Section 3.
As in Yang et al. (2017) for Neural-LP we set the learning rate to 10−2.

Following the common practice Meilicke et al. (2019); Yang et al. (2017) we compute the standard
evaluation metrics used for the link prediction task Bordes et al. (2013): Hit@10, the number of
correct head terms predicted out of the top 10 predictions; and mean reciprocal rank (MRR), the
mean of one over the rank of the correct answer in the predictions. We have implemented our
approach for learning numerical rules from knowledge graphs in python using the PyTorch library,
and conduct all experiments on a machine GTX 1080 TO GPU with 11 GB RAM.

5.2 RESULTS

In Table 2 we report the quality of predictions obtained by our method and the baselines. Since the
Neural LP framework Yang et al. (2017) cannot handle the Freebase with numerical information,
we present the results for FB15K-237 without numerical facts instead, which are taken from Yang
et al. (2017). The MRR values are missing for Neural LP in several places, as the implementation
provided by the authors does not have the respective function implemented.

3http://web.informatik.uni-mannheim.de/AnyBURL/
4https://github.com/fanyangxyz/Neural-LP

7



Under review as a conference paper at ICLR 2020

As expected, on the synthetic datasets Numerical1 and Numerical2, our method significantly out-
performs the baselines. This is natural, since these datasets are constructed so that reasoning about
numerical attributes is required for almost any prediction task presented to the algorithms. And
notably, the proposed approach is able to achieve 100% Hit@10 rates, as it is able to correctly iden-
tify these relevant numerical properties. This contrasts to the baseline Neural LP approach, which is
unable to incorporate such information, and thus predicts the heads of each relation more or less ran-
domly. The datasets are also particularly challenging for AnyBURL, because AnyBURL treats each
numerical value as an independent entity, and thus cannot perform efficient comparative reasoning.

Most compellingly, however, similar observations can be made about the real-world datasets as
well. Indeed, since all entities in the KG including numerical ones are treated equally by the avail-
able systems, intuitively both AnyBurl and Neural LP try to find frequent patterns in KGs and use
these to predict the missing facts. The numerical rules mined by our system are much more ex-
pressive and substantially improve the performance of the approach in some cases. Specifically, our
method outperforms the Neural LP approach in terms of all metrics on both the FB15K-237-num
and DBPedia15K datasets. The AnyBURL dataset is still competitive with our approach on the
FB15K-237-num dataset (better in terms of Hit@10 but worse in terms of MRR), but our approach
substantially outperforms it on the DBPedia15K, where our numerical comparison reasoning is able
to substantially improve upon the existing methods.

6 CONCLUSION

In this paper we have addressed the problem of learning numerical rules from large knowledge
graphs. Especially we have considered rules with aggregates (i.e. external oracle queries) that enable
us to use numerical comparison operators in the rule body. The Neural LP method is a recent
appealing learning approach based on TensorLog, however it does not support numerical rules,
as they would result in dense matrix operations. We have introduced an extension to the Neural LP
framework that allows for learning such rules from KGs by efficiently expressing comparison and
classification operators, negation and multi-atom symbol matching as well. We have shown that our
proposed extension outperforms previous techniques that do not support numerical information with
respect to the quality of predictions that they produce. The future research might focus on a further
extension of our current approach by allowing for more general rule forms with complex external
computations as well as rules with existential variables in the head.
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A INTERPRETATION AS RULES WITH EXTERNAL COMPUTATIONS

We have presented our approach for learning rules that support numerical comparison among enti-
ties, and have also highlighted the algorithmic and numerical approaches to handling such rules. In
the general case such features are inlined with logic rules that allow for external computations, i.e.
“oracle programs” that might appear in the body of the rules as part of a generic black-box compu-
tation. In the case of simplest numerical comparisons, for example, the corresponding oracle may
check, e.g., whether one quantity is larger than another or aggregate the numerical attributes for
an entity, e.g., count the number of citations a person has and compare to the number of citations
that another person has. The challenge of learning rules with aggregates is a central one in much
work on KGs, and our proposed procedure is the first approach that is capable of learning such rules
(even though we of course do not allow for arbitrary aggregates, the fact that we incorporate such
learning at all is a substantial contribution to the KG literature). Because this is a key capability of
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our approach, in this section we further highlight the perspective of our approach as a method for
learning such aggregate rules. The notation and definitions here are not crucial for understanding
the remainder of the paper, but will provide context and clarify the contribution of the current work
from the perspective of the KG and knowledge base communities.

A.1 RULES WITH AGGREGATES

We consider aggregates of the form f{Y : p(X,Y )} ◦ Z, where f is an aggregate function sym-
bol, {Y : p(X,Y )} is called an aggregate element, ◦ ∈ {<,>,=,≤,≥} and Z is either a vari-
able or a numerical value. For any aggregate in the above form we assume that if p /∈ Rn,
then f = count, otherwise f ∈ A = {count,sum,max,min,avg}. For example the ag-
gregate element {Y : citedIn(X,Y )} denotes the set of all Y in which X is cited, and the aggregate
count{Y : citedIn(X,Y )} > 5 checks whether the number of X’s citations exceeds 5.

A rule is an expression of the following form

h← b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ · · · ∧ not bm , (4)

where every h, bk+1, . . . , bm is an atom (e.g., b(X,Y )), and every b1, . . . , bk is either an atom or an
aggregation conjunction of the form b◦pq(Y,Z):

b◦pq(Y,Z)← p(Y, V ) ∧ f{V ′ : p(Y, V ′)} = N ∧ q(Z,U) ∧ f{U ′ : q(Z,U ′)} = M ∧N ◦M .

The right-hand side of the rule (4) is the conjunction of atoms bodyr called the rule body; body+
r =

{b1, . . . , bk} and body−r = {bk+1, . . . , bm}. A rule r is called Horn rule, if body−r r = ∅, and
body+

r contains only standard atoms. We focus on rules, in which every variable must appear in two
different atoms, one of which is in body+

r .

The following example of a rule with an aggregate presented below states that a patent is relevant
for a person if it has a higher average rating than another relevant patent having common keywords
with the former. Such rule contains an aggregate computing the average rating of a patent, and it is
formally represented as follows:

relevant(X,Z)←hasRating(Y, V ) ∧ avg{V ′ : hasRating(Y, V ′)} = N∧
hasRating(Z,U) ∧ avg{U ′ : hasRating(Z,U ′)} = M ∧N ≤M
relevant(X,Y ) ∧ hasCommonKeywordsWith(Y, Z) .

The execution of rules with default negation and aggregates (Faber et al. (2011)) over KGs is defined
in the standard way. More precisely, let G be a KG, r a rule over G, and a be an atom from G. Then,
r |=G a holds if there is a variable assignment that maps atoms in body+r in G such that it does
not map any of the atoms in body−r in G. Gr = G ∪ {a | r |=G a} extends G with predicates
derived from G by applying r. Note that to avoid propagating uncertain predictions, given a set
of rules R we execute every rule in R on G independently, i.e. GR =

⋃
r∈R Gr. Given additional

syntactic restrictions on rules inR, which disallow cycles through negation and recursive aggregates,
consistency is ensured.

10


	Introduction
	Related Work
	Preliminaries
	Learning Rules with Numerical Features and Negations
	Comparison Operators

	Experimental Results
	Experimental Setup
	Results

	Conclusion
	Interpretation as Rules with External Computations
	Rules with Aggregates


