
THE BREAK-EVEN POINT ON THE OPTIMIZATION TRA-
JECTORIES OF DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the optimization trajectory is critical to understand training of deep
neural networks. We show how the hyperparameters of stochastic gradient descent
influence the covariance of the gradients (K) and the Hessian of the training loss
(H) along this trajectory. Based on a theoretical model, we predict that using a
high learning rate or a small batch size in the early phase of training leads SGD
to regions of the parameter space with (1) reduced spectral norm of K, and (2)
improved conditioning of K and H. We show that the point on the trajectory after
which these effects hold, which we refer to as the break-even point, is reached
typically early during training. We demonstrate these effects empirically for a
range of deep neural networks applied to multiple different tasks. Finally, we
apply our analysis to networks with batch normalization (BN) layers and find
that it is necessary to use a high learning rate to achieve loss smoothing effects
attributed previously to BN alone.

1 INTRODUCTION

The choice of the optimization method implicitly regularizes deep neural networks (DNNs) by in-
fluencing the optimization trajectory in the loss surface (Neyshabur, 2017; Arora, 2019). In this
work, we theoretically and empirically investigate how the learning rate and the batch size used at
the beginning of training determine properties of the entire optimization trajectory.

0.0 0.5 1.0 1.5 2.0
1
K(1)

0

5

10

15

20

||f
(

1)
f(

2)
||

Figure 1: Left: Early part of the training trajectory on CIFAR-10 (before reaching 65% training
accuracy) of a simple CNN model optimized using SGD with learning rate η = 0.1 (red) and
η = 0.01 (blue). Each point (model) on the trajectory is represented by its test predictions embedded
into a two-dimensional space using UMAP. The background color indicates the spectral norm of K
(brighter is higher). Depending on η, after reaching what we call the break-even point, trajectories
are steered towards regions characterized by different K. Right: The spectral norm of K along the
trajectory for η = 0.01 against the distances to the closest point from the trajectory for η = 0.1 (y
axis). Vertical line marks the highest spectral norm of K achieved along the trajectory for η = 0.1.

1

We focus our analysis on two objects that quantify different properties of the optimization trajectory:
the Hessian of the training loss (H), and the covariance of gradients (K).1 The matrix K quantifies
noise induced by noisy estimate of the full-batch gradient and has been also linked to generalization
error (Roux et al., 2008; Fort et al., 2019). The matrix H describes the curvature of the loss surface
and is often connected to optimization speed. Further, better conditioning of H and K has been at-
tributed as the main reason behind the efficacy of batch normalization (Bjorck et al., 2018; Ghorbani
et al., 2019).

Our first and main contribution is predicting and empirically demonstrating two effects induced
in the early phase of training by the choice of the hyperparameters in stochastic gradient descent
(SGD): (1) reduced spectral norms of K and H and (2) improved conditioning of K and H. These
effects manifest themselves after a certain point on the optimization trajectory, to which we refer to
as the break-even point. See Fig. 1 for an illustration of this phenomenon. We make our predictions
based on a theoretical model of the initial phase of training, which incorporates recent observations
on the instability and oscillations in the parameter space that characterize the learning dynamics of
neural networks (Masters & Luschi, 2018; Xing et al., 2018; Lan et al., 2019).

As our second contribution, we apply our analysis to a network with batch normalization (BN)
layers and find that our predictions are valid in this case too. Delving deeper in this direction of
investigation, we show that using a large learning rate is necessary to reach well-conditioned regions
of the loss surface, which was previously attributed to BN alone (Bjorck et al., 2018; Ghorbani et al.,
2019; Page, 2019).

2 RELATED WORK

Learning dynamics and the early phase of training. Our theoretical model is motivated by re-
cent work on the learning dynamics of neural networks (Goodfellow et al., 2014; Masters & Luschi,
2018; Wu et al., 2018; Yao et al., 2018; Xing et al., 2018; Jastrzebski et al., 2018; Lan et al., 2019).
We are most directly inspired by Xing et al. (2018); Jastrzebski et al. (2018); Lan et al. (2019) who
show that training oscillates in the parameter space, and by Wu et al. (2018) who proposes a linear
stability approach to studying how SGD selects a minimum.

In our work we argue that the initial phase of training has important implications for the rest of
the trajectory. This is directly related to Erhan et al. (2010); Achille et al. (2017) who propose the
existence of the critical period of learning. Erhan et al. (2010) argue that initial training, unless
pre-training is used, is sensitive to shuffling of examples in the first epochs of training. Achille
et al. (2017); Golatkar et al. (2019); Sagun et al. (2017); Keskar et al. (2017) demonstrate that
adding regularizers in the beginning of training affects the final generalization disproportionately
more compared to doing so later.

The covariance of the gradients and the Hessian. The covariance of the gradients, which we
denote by K, encapsulates the geometry and magnitude of variation in gradients across different
samples (Thomas et al., 2019). The matrix K was related to the generalization error in Roux et al.
(2008). A similar quantity, cosine alignment between gradients computed on individual examples,
was recently shown to explain some aspects of deep networks generalization (Fort et al., 2019).

The second object that we study is the Hessian that quantifies the loss surface shape (LeCun et al.,
2012). Recent work has shown that the largest eigenvalues of H grow quickly initially, and then
stabilize at a value dependent on the learning rate and the batch size (Keskar et al., 2017; Sagun
et al., 2017; Fort & Scherlis, 2019; Jastrzebski et al., 2018). The Hessian can be decomposed into
a sum of two terms, where the dominant term (at least at the end of training) is the uncentered
covariance of gradients G (Sagun et al., 2017; Papyan, 2019). While we study K, the centered
version of G, K and G are typically similar due to the dominance of noise in training (Zhu et al.,
2018; Thomas et al., 2019).

Implicit regularization induced by optimization method. Multiple prior work study the regu-
larization effects that are attributed only to the optimization method (Neyshabur, 2017). A popular

1We define it as K = 1
N

∑N
i=1(gi − g)

T (gi − g), where gi = g(xi, yi; θ) is the gradient of L with respect
to θ calculated on i-th example, N is the number of training examples, and g is the full-batch gradient.

2

research direction is to bound the generalization error based on the properties of the final minimum
such as the norm of the parameter vector or the Hessian (Bartlett et al., 2017; Keskar et al., 2017).
Perhaps the most related work to ours is (Arora et al., 2019; Arora, 2019). They suggest it is nec-
essary to study the trajectory to understand generalization of deep networks. In this vein, but in
contrast to most of the previous work, we focus (1) on the implicit regularization effects that can be
attributed to the GD dynamics at the beginning of training, and (2) on the covariance of gradients.

3 TWO CONJECTURES ABOUT SGD TRAJECTORY

In this section we make two conjectures about the optimization trajectory induced by SGD based on
a theoretical model of the learning dynamics in the early stage of training.

Definitions. Let us denote loss on an example (x, y) by L(x, y; θ), where θ is a D-dimensional
parameter vector. A key object we study is the Hessian H of the training loss. The second key object
we study is the covariance of the gradients K = 1

N

∑N
i=1(gi−g)T (gi−g), where gi = g(xi, yi; θ) is

the gradient of Lwith respect to θ calculated on i-th example,N is the number of training examples,
and g is the full-batch gradient. We denote the i-th normalized eigenvector and eigenvalue of a
matrix A by eiA and λiA. Both H and K are computed at a given θ, but we omit this dependence in
the notation. Let t index steps of optimization, and θ(t) the parameter vector at optimization step t.

Inspired by Wu et al. (2018) we study stability of optimization, in our case restricted to e1H . Let
us call the projection of parameters θ onto e1H by ψ = 〈θ, e1H〉. With a slight abuse of notation
let g(ψ) = 〈g(θ), e1H〉. Similarly to Wu et al. (2018), we say SGD is unstable along e1H at θ(t) if
the norm of elements of sequence ψ(τ + 1) = ψ(τ) − ηg(ψ(τ)) diverges when τ → ∞, where
ψ(0) = θ(t). The sequence ψ(τ) represents optimization trajectory restricted from θ(t) only to the
direction of e1H .

Assumptions. We make the following assumptions to build our model:

1. The loss surface for each example projected onto e1H is a quadratic function. This as-
sumption is also used by Wu et al. (2018). It was shown to hold for the loss averaged
over examples by Alain et al. (2019). It is also well known that the spectral norm of H is
positive (Sagun et al., 2017).

2. The eigenvectors e1H and e1K are co-linear, i.e. e1H = ±e1K , and furthermore λ1K = αλ1H
for some α ∈ R. This is inspired by Papyan (2019) who show that H can be approximated
by G (uncentered K).

3. When in a region that is not stable along e1H , training trajectory steers towards more stable
regions by decreasing λ1H . This is inspired by recent work showing training can escape
region with too large curvature compared to the learning rate (Zhu et al., 2018; Wu et al.,
2018; Jastrzebski et al., 2018).

4. The spectral norm of H, λH1 , increases during training, unless increasing λH1 would lead to
entering a region where training is not stable along e1H . This is inspired by (Keskar et al.,
2017; Sagun et al., 2017; Jastrzebski et al., 2018; Fort & Scherlis, 2019) who show that in
many settings λH1 increases in the beginning of training.

These assumptions are only used to build a theoretical model for the early phase of training. Its main
purpose is to make predictions about the training procedure that we verify empirically.

Reaching the break-even point earlier for a larger learning rate or a smaller batch size. Let
us restrict to the case when training is initialized at θ(0) at which SGD is stable along e1H(0).2 We
aim to show that the learning rate (η) and the batch size (S) determine H and K in our model, and
conjecture that the same holds in real neural networks.

Consider two optimization trajectories for η1 and η2, where η1 > η2, that are initialized at the same
θ0, where optimization is stable along e1H(t) and λ1H(t) > 0. Under Assumption 1 the loss surface

2We include in App. A a similar argument for the opposite case.

3

along e1H(t) can be expressed as f(ψ) =
∑N
i=1(ψ − ψ∗)2Hi(t), where Hi(t) ∈ R. It can be shown

that at any iteration t the necessary and sufficient condition for SGD to be stable along e1H(t) is:

(1− ηλH1 (t))2 + s(t)2
η2(N − S)
S(N − 1)

≤ 1, (1)

where N is the training set size and s(t)2 = Var[Hi(t)] over the training examples. A proof can be
found in (Wu et al., 2018). We call this point on the trajectory on which the LHS of Eq. 1 becomes
equal to 1 for the first time the break-even point.

Under the Assumption 3, λH1 (t) and λK1 (t) increase over time. If s = N , the break-even point is
reached at λH1 (t) = 2

η . More generally, it can be shown that for η1, the break-even point is reached
for a lower magnitude of λH1 (t) than for η2. The same reasoning can be carried out for S. We state
this formally and prove in App. A.

From this point on the trajectory, under Assumption 4, SGD does not enter regions where either
λH1 (t′) or λK1 (t′) is larger than at the break-even point, as otherwise it would lead to increasing one
of the terms in LHS of Eq. 1, and hence losing stability along e1H(t′).

The two conjectures about real DNNs. Assuming that real DNNs reach the break-even point, we
make the following two conjectures, arising from our theoretical model above, about their optimiza-
tion trajectory. The most direct implication of reaching the break-even point is that λ1K and λ1H at
the break-even point depend on η and S, which we formalize as:
Conjecture 1 (Variance reduction effect of SGD). Along the SGD trajectory, the maximum attained
values of λ1H and λ1K are smaller for a larger learning rate or a smaller batch size.

We refer to Con. 1 as variance reduction effect of SGD, because reducing λ1K can be shown to reduce
the L2 distance between the full-batch gradient, and the mini-batch gradient.

Next, we make another, stronger, conjecture. It is plausible to assume that reaching the break-even
point does not affect the λiH and λiK for i 6= 1, because increasing their values does not impact
stability along e1H in our theoretical model. It is also well known that a large number of eigenvalues
of H increase initially (Fort & Scherlis, 2019; Sagun et al., 2017). Based on these remarks we
conjecture that:
Conjecture 2 (Pre-conditioning effect of SGD). Along the SGD trajectory, the maximum attained
values of λ

∗
K

λ1
K

and λ∗
H

λ1
H

are larger for a larger learning rate or a smaller batch size, where λ∗K and λ∗H
are the smallest nonzero eigenvalues of H and K, respectively. Furthermore, the maximum attained
values of Tr(K), Tr(H) are smaller for a larger learning rate or a smaller batch size.

We consider non-zero eigenvalues in the conjecture, because K has N − D non-zero eigenvalues,
where N is the number of training points. In practice we will measure Tr(K)/λ1K , which is an
upper-bound on λ∗K/λ

1
K .

4 EXPERIMENTS

In this section we first analyse learning dynamics in the early phase of training. Next, we empirically
validate the two conjectures. In the final part we extend our analysis to a neural network with batch
normalization layers.

Due to the space constraint we take the following approach to reporting results. In the main body of
the paper, we focus on the CIFAR-10 dataset (Krizhevsky, 2009) and the IMDB dataset (Maas
et al., 2011), to which we apply three architectures: a vanilla CNN (SimpleCNN) following
Keras example (Chollet et al., 2015), ResNet-32 (He et al., 2015a), and LSTM (Hochreiter &
Schmidhuber, 1997). We also validate the two conjectures for DenseNet (Huang et al., 2016) on
the ImageNet (Deng et al., 2009) dataset, BERT (Devlin et al., 2018b) fine-tuned on the MNLI
dataset (Williams et al., 2017), and a multi-layer perceptron on the FashionMNIST dataset (Xiao
et al., 2017). These results are in the Appendix. We include all experimental details in App. C.

Following Dauphin et al. (2014); Alain et al. (2019), we estimate the top eigenvalues and eigenvec-
tors of H using the Lanczos algorithm on a random subset of 5% of the training set on CIFAR-10.

4

10 1 100 101
1
K

101

102

1 H

= 0.002
= 0.020

10 1 100 101
1
K

101

2 × 100

3 × 100

4 × 100

6 × 100

*

= 0.002
= 0.020

Figure 2: The evolution of λ1K (spectral norm of K), λ1H (spectral norm of H), and α∗ (width of
the loss surface, see text for details) in the early phase of training. Consistently with our theoretical
model, λ1K is correlated initially with λ1H (left) and α1 (right). The training reaches a smaller
maximum value of λ1K and λ1H for a higher learning rate.

We estimate the top eigenvalues and eigenvectors of K using (in most cases) batch size of 128 and
approximately 5% of the training set on CIFAR-10. We describe the procedure in more details, as
well as compare to using batch size of 1, in App. B.

4.1 A CLOSER LOOK AT THE EARLY PHASE OF TRAINING

In this section we examine the learning dynamics in the early phase of training. Our goal is to verify
some of the assumptions made in Sec. 3. We analyse the evolution of λ1H and λ1K for η = 0.02 and
η = 0.2 using the SimpleCNN on the CIFAR-10 dataset.

Are λ1K and λ1H correlated in the beginning of training? The key assumption behind our theo-
retical model is that λ1K and λ1H are correlated, at least prior to reaching the break-even point. We
confirm this in Fig. 2. The highest achieved λ1K and λ1H are larger for the smaller η. Additionally,
we observe that after achieving the highest value of λ1H , further growth of λ1K does not translate
into an increase of λ1K . This is expected: λ1H decays to 0 when the mean loss decays to 0 for cross
entropy loss (Martens, 2016).

Does training become increasingly unstable in the early phase of training? A key aspect of our
model is that an increase of λ1K and λ1H translates into a decrease in stability, which we formalized
as stability along e1H . Computing stability directly along e1H is computationally expensive. Instead,
we measure a more tractable proxy. Let us define α∗ to be the minimal increment of the SGD step
length such that the training loss increases by at least 20%. More precisely, let θ(t) and θ(t + 1)
denote the two consecutive steps on the optimization trajectory. We define α∗ as the minimum α
such that L(θ(t)−α∗(θ(t)−θ(t+1))) ≥ 1.2L(θ(t)). In Fig. 2 we observe that α∗ is anti-correlated
with λ1K , which is consistent with our theoretical model. We also observe that α∗ reaches a value
close to 2 for both tested η, which suggests reaching the break-even point.

Visualizing the break-even point. Finally, to understand the break-even point phenomenon bet-
ter, we visualize the learning dynamics leading to reaching the break-even point in our model in
Fig. 1 (left). Following Erhan et al. (2010), we embed the test set predictions at each step of training
of SimpleCNN, in our case using UMAP (McInnes et al., 2018). In the Figure we observe that the
trajectory corresponding to η = 0.01 diverges from the trajectory corresponding to η = 0.1 when
entering a region of the loss surface characterized by a high λ1K . Because a low dimensional embed-
ding can mischaracterize the true distances (Wattenberg et al., 2016), we confirm our interpretation
by plotting the L2 distance to the closest iteration of η = 0.1 trajectory in the right panel of Fig. 1.

Summary. We have shown that the dynamics of the early phase of training is consistent with
the assumptions made in our model. That is, λ1K and λ1H increase approximately proportionally to
each other, which is also correlated with a decrease of a proxy of stability. Finally, we have shown
qualitatively reaching the break-even point.

5

4.2 VARIANCE REDUCTION AND PRE-CONDITIONING EFFECT OF SGD

In this section we validate empirically Con. 1 and Con. 2 in three settings. For each model we pick
manually a suitable range of learning rates and batch sizes to ensure that the properties of K and
H that we examine have converged in a reasonable computational budget; we use 200 epochs on
CIFAR-10 and 50 epochs on IMDB.

We summarize the results in Fig. 3, Fig. 4 for SimpleCNN, ResNet-32, and LSTM. Curves are
smoothed with a moving average. The training curves, as well as experiments for other architectures
and datasets (including a DenseNet on ImageNet and BERT on MNLI) can be found in App. D.

0 50 100 150 200
Epoch

100

101

1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1
1 K

S = 30
S = 300

0 50 100 150 200
Epoch

5

10

Tr
(K

)/
1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

7.5

10.0

12.5

Tr
(K

)/
1 K

S = 30
S = 300

(a) SimpleCNN on the CIFAR-10 dataset

0 50 100 150 200
Epoch

10 1

101

1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

1 K

S = 10
S = 100

0 50 100 150 200
Epoch

5

10

Tr
(K

)/
1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

5

10

Tr
(K

)/
1 K

S = 10
S = 100

(b) ResNet-32 on the CIFAR-10 dataset

0 5 10 15
Epoch

10 2

1 K

= 0.333
= 1.000
= 3.000

0 20 40
Epoch

10 2

10 1

100

1 K

S = 10
S = 100

0 5 10 15
Epoch

2.5

5.0

7.5

10.0

Tr
(K

)/
1 K

= 0.333
= 1.000
= 3.000

0 20 40
Epoch

2

4

6

Tr
(K

)/
1 K

S = 10
S = 100

(c) LSTM on the IMDB dataset

Figure 3: The variance reduction and the pre-conditioning effect of SGD in various settings. Trajec-
tories corresponding to higher learning rates (η) or lower batch sizes (S) are characterized by lower
maximum λ1K (variance reduction) and larger maximum Tr(K)/λ1K (better conditioning). These
effects occur early in training. Vertical lines mark the first epoch at which training accuracy is above
60% for CIFAR-10, and above for 75% for IMDB.

Null hypothesis. A natural assumption is that the choice of η or S does not influence K and H
along the optimization trajectory. In particular, it is not self-evident that using a high η, or a small
S, would steer optimization towards better conditioned regions of the loss surface.

Conjecture 1. To validate Conjecture 1 we examine the highest value of λ1K observed along the
optimization trajectory. As visible in Fig. 3 using a higher η results in λ1K achieving a lower maxi-
mum. For instance max(λ1K) = 0.87 and max(λ1K) = 3.01 for η = 0.1 and η = 0.01, respectively.
Similarly, we can conclude that using a higher S in SGD leads to reaching a higher value of λ1K .

Recall that we compute λ1K using a constant batch size of 128. While we say that low S leads
to variance reduction (lower maximum λ1K), this is not contradictory to the fact that increasing S
generally decreases variance of mini-batch gradients.

Conjecture 2. To test Conjecture 2 we compute the maximum value of Tr(K)/λ1K along the
optimization trajectory. It is visible in Fig. 3 that using a higher η results in a lower minimum value
of Tr(K)/λ1K . For instance, max(Tr(K)/λ1K) = 14.29 and max(Tr(K)/λ1K) = 10.69 for η = 0.1
and η = 0.01, respectively. Similarly, we can conclude from these plots that using a higher S leads
to lower max(Tr(K)/λ1K).

6

Due to space constraints we move Figures showing the effect of η and S on Tr(K) to App. 3. We
observe that the maximum of Tr(K) depends on η and S in the same way as λ1K .

How early in training is the break-even point reached? How λ1H and λ1K depend on η and S at
the end of training was already studied by Jastrzebski et al. (2017); Keskar et al. (2017); Wu et al.
(2018). Importantly, we find that λ1K and λ1H reach the highest value early in training: close to
reaching 60% training accuracy on CIFAR-10, and 75% training accuracy on IMDB. See also the
vertical lines in Fig. 3.

Other experiments. We report how λ1H depend on η and S for ResNet-32 and SimpleCNN in
Fig. 4. We observe that the conclusions carry over to λ1H , which is consistent with experiments in
Jastrzebski et al. (2018). We found the effect on Tr(H)/λ1H of η and S to be weaker. This might
be because, in contrast to Tr(K), we approximate Tr(H) using only the top five eigenvalues (see
App. B for details).

Summary In this section we have demonstrated the variance reduction (Conjecture 1) and the pre-
conditioning effect (Conjecture 2) of SGD. Furthermore, we have shown these effects occur early in
training. We also found that conclusions carry over to other settings including BERT on MNLI and
DenseNet on ImageNet (see App. D).

0 50 100 150 200
Epoch

101

103

1 H

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

101

6 × 100

2 × 101

1 H

S = 30
S = 300

(a) ResNet-32

0 50 100 150 200
Epoch

101

102

103

1 H

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

101

6 × 100

2 × 101

1 H

S = 30
S = 300

(b) SimpleCNN

Figure 4: The variance reduction of SGD, for ResNet-32 (left) and SimpleCNN (right). Trajectories
corresponding to higher learning rates (η) or smaller batch size (S) are characterized by a lower
maximum λ1H . Vertical lines mark the first epoch at which training accuracy is above 60%.

4.3 IMPORTANCE OF η FOR CONDITIONING IN BATCH NORMALIZED NETWORKS

0 50 100 150 200
Epoch

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100
2.6 × 100

||g
||

/ |
|g

5||

= 0.001
= 0.010
= 0.100
= 1.000

0 50 100 150 200
Epoch

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

||g
||

/ |
|g

5||

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

100

101

102

1 H

= 0.001
= 0.010
= 0.100
= 1.000

0 50 100 150 200
Epoch

10 1

100

1 K

= 0.001
= 0.010
= 0.100
= 1.000

(a) Left: ‖g‖
‖g5‖

for SimpleCNN-BN and SimpleCNN. Right: λ1
H and λ1

K for SimpleCNN-BN

0 5 10 15
Epoch

10

12

||
||

= 0.001
= 0.010
= 0.100
= 1.000

0.0 0.5 1.0 1.5 2.0
Epoch

10 1

100

1 K

= 0.001
= 0.010
= 0.100
= 1.000

0 50 100 150 200
Epoch

10

15

Tr
(K

)/
1 K

= 0.001
= 0.010
= 0.100
= 1.000

(b) Left: ‖γ‖ of the last BN layer. Middle: λK . Right: Tr(K)

λ1
K

for SimpleCNN-BN

Figure 5: Evolution of various metrics that quantify conditioning of the loss surface for SimpleCNN
with and without batch normalization layers (SimpleCNN and SimpleCNN-BN), and for different
learning rates.

The loss surface of deep networks has been widely reported to be ill-conditioned, which is the
key motivation behind using second order methods in deep learning (LeCun et al., 2012; Martens &

7

Grosse, 2015). Recently, Ghorbani et al. (2019); Page (2019) have argued that the key reason behind
the efficacy of batch normalization (Ioffe & Szegedy, 2015) is improving conditioning of the loss
surface. Our Conjecture 2 is that using a high η or a low S results as well in improved conditioning.
A natural question that we investigate in this section is how the two phenomena are related.

Are the two conjectures valid in batch normalized networks? First, to investigate whether our
conjectures hold in batch normalized network, we run similar experiments as in Sec. 4.2 on a Sim-
pleCNN model with batch normalization layers inserted after each convolutional layer (SimpleCNN-
BN), using the CIFAR-10 dataset. We test η ∈ {0.001, 0.01, 0.1, 1.0}; η = 1.0 leads to divergence
of SimpleCNN without BN. We summarize the results in Fig. 5. The evolution of Tr(K)/λ1K and
λ1K show that both Conjecture 1 and Conjecture 2 hold in this setting.

A closer look at the early phase of training. To further corroborate that our analysis applies to
BN networks, we study the early phase of training of a network with batch normalization layers,
complementing the results in Sec. 4.1.

We observe in Fig. 5 (bottom) that training of SimpleCNN-BN starts in a region characterized by
relatively high λ1K . This is consistent with prior work showing that batch normalized networks lead
to gradient explosion in the first iteration (Yang et al., 2019). λ1K then decays for all but the lowest η.
This behavior is consistent with our theoretical model. We also track the norm of the scaling factor
in BN, ‖γ‖, in the last layer of the network in Fig. 5 (bottom). It is visible that η = 1.0 and η = 0.1
initially decrease the value of ‖γ‖, which we hypothesize to be one of the mechanisms by which
high η steers optimization towards better conditioned regions of the loss surface in BN networks.

BN requires using a high learning rate. As our conjectures hold for BN network, a natural
question is if learning can be ill-conditioned with a low learning rate even when BN is used. Ghor-
bani et al. (2019) show that without BN, mini-batch gradients are largely contained in the subspace
spanned by the top eigenvectors of noncentered K. To answer this question we track ‖g‖/‖g5‖,
where g denotes the mini-batch gradient, and g5 denotes the mini-batch gradient projected onto the
top 5 eigenvectors of K. A value of ‖g‖/‖g5‖ close to 1 implies that the mini-batch gradient is
mostly contained in the subspace spanned by the top 5 eigenvectors of K.

We compare two settings: (1) SimpleCNN-BN optimized with η = 0.001, and (2) SimpleCNN
optimized with η = 0.01. We make three observations. First, the maximum (minimum) value of
‖g‖/‖g5‖ is 1.90 (1.37) and 1.88 (1.12), respectively. Second, the maximum value of λ1K is 10.3
and 16, respectively. Finally, Tr(K)/λ1K reaches 12.14 in the first setting, and 11.55 in the second
setting. Comparing these differences to differences that are induced by using the highest η = 1.0 in
SimpleCNN-BN, we can conclude that using a large learning rate is necessary to observe the effect
of loss smoothing which was previously attributed to BN alone (Ghorbani et al., 2019; Page, 2019;
Bjorck et al., 2018). This might be directly related to the result that a high learning rate is necessary
to achieve good generalization when using BN (Bjorck et al., 2018).

Summary. We have shown that our analysis applies to a network with batch normalization layers,
and that using a high learning rate is necessary in a batch normalized network to improve condi-
tioning of the loss surface relatively to the same network without batch normalization.

5 CONCLUSION

Based on a theoretical model, we conjectured and empirically argued for the existence of the break-
even point on the optimization trajectory induced by SGD. Next, we demonstrated that using a high
learning rate or a small batch size in SGD has two effects on K and H along the trajectory that we
referred to as (1) variance reduction and (2) pre-conditioning.

There are many potential implications of the existence of the break-even point. We investigated
one in particular, and demonstrated that using a high learning rate is necessary to achieve the loss
smoothing effects previously attributed to batch normalization alone.

Additionally, the break-even occurs typically early during training, which might be related to the
recently discovered phenomenon of the critical learning period in training of deep networks (Achille
et al., 2017; Golatkar et al., 2019). We plan to investigate this connection in the future.

8

REFERENCES

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. CoRR, abs/1711.08856, 2017.

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. CoRR, abs/1902.02366, 2019.

Sanjeev Arora. Is optimization a sufficient language for understanding deep learning? 2019.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient de-
scent for deep linear neural networks. In International Conference on Learning Representations,
2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 30. Curran Associates,
Inc., 2017.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 31. Curran Associates, Inc., 2018.

François Chollet et al. Keras, 2015.

Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. CoRR, abs/1406.2572, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018a.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018b.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11,
March 2010. ISSN 1532-4435.

Stanislav Fort and Adam Scherlis. The goldilocks zone: Towards better understanding of neural
network loss landscapes. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 2019.

Stanislav Fort, Pawe Krzysztof Nowak, and Srini Narayanan. Stiffness: A new perspective on
generalization in neural networks, 2019.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Time Matters in Regularizing Deep Net-
works: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little
Near Convergence. arXiv e-prints, art. arXiv:1905.13277, May 2019.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural network
optimization problems. arXiv e-prints, art. arXiv:1412.6544, Dec 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015a.

9

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8), Novem-
ber 1997. ISSN 0899-7667.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32Nd International Conference on Inter-
national Conference on Machine Learning - Volume 37, ICML’15. JMLR.org, 2015.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
gio, and Amos J. Storkey. Three factors influencing minima in SGD. CoRR, abs/1711.04623,
2017.

Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step
Length. arXiv e-prints, art. arXiv:1807.05031, Jul 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosinski. LCA: Loss Change Allocation for Neural
Network Training. arXiv e-prints, art. arXiv:1909.01440, Sep 2019.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient Back-
Prop, pp. 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
642-35289-8. doi: 10.1007/978-3-642-35289-8 3. URL https://doi.org/10.1007/
978-3-642-35289-8_3.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, Portland,
Oregon, USA, June 2011. Association for Computational Linguistics.

James Martens. Second-order optimization for neural networks. University of Toronto (Canada),
2016.

James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. CoRR, abs/1503.05671, 2015.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. CoRR,
abs/1804.07612, 2018.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold
approximation and projection. The Journal of Open Source Software, 3(29), 2018.

Behnam Neyshabur. Implicit regularization in deep learning. CoRR, abs/1709.01953, 2017.

David Page. How to train your resnet 7: Batch norm. 2019.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of
deepnet hessians. CoRR, abs/1901.08244, 2019.

Nicolas L. Roux, Pierre antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gra-
dient algorithm. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (eds.), Advances in Neural
Information Processing Systems 20. Curran Associates, Inc., 2008.

10

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3), 2015.

Levent Sagun, Utku Evci, V. Ugur Güney, Yann Dauphin, and Léon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. CoRR, abs/1706.04454, 2017.

Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Ben-
gio, and Nicolas Le Roux. Information matrices and generalization. CoRR, abs/1906.07774,
2019.

Martin Wattenberg, Fernanda Vigas, and Ian Johnson. How to use t-sne effectively. Distill, 2016.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR, abs/1704.05426, 2017.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, 2018.

Lei Wu, Chao Ma, and Weinan E. How sgd selects the global minima in over-parameterized learn-
ing: A dynamical stability perspective. In Proceedings of the 32Nd International Conference on
Neural Information Processing Systems, NIPS’18, USA, 2018. Curran Associates Inc.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017.

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A Walk with SGD. arXiv
e-prints, art. arXiv:1802.08770, Feb 2018.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. CoRR, abs/1902.08129, 2019.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. CoRR, abs/1802.08241, 2018.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The Anisotropic Noise in Stochastic
Gradient Descent: Its Behavior of Escaping from Minima and Regularization Effects. arXiv e-
prints, art. arXiv:1803.00195, Feb 2018.

11

A PROOFS

In this section we will formally state and prove the theorem used informally in Sec. 3. With the
definitions introduced in Sec. 3 in mind, we propose the following:

Theorem 1. Assuming that training is stable along e1H(t) at t = 0, then λH1 (t) and λ1K(t) at which
SGD becomes unstable along e1H(t) are smaller for a larger η or a smaller S.

Proof. This theorem is almost a direct implication of Theorem 1 from Wu et al. (2018) adapted to
our context.

First, let us consider two experiments that follow the same trajectory with η1 and η2 (η1 > η2).
More precisely, treating ψ as a function of λ1H , we assume ψ(λ1H) are the same up to λ1H(t∗) when
training for one of them becomes unstable along e1H(t∗). We also assume that λ1K(t) = αλ1H(t) for
some α ∈ R.

Consider iteration t. Theorem 1 of Wu et al. (2018) states that SGD is stable at this iteration if the
following is true:

(1− ηλH1 (t))2 + s2(t)
η2(n− S)
S(n− 1)

≤ 1, (2)

where s(t) = Var[Hi(t)].

Recall that we consider a single dimensional quadratic loss surfaceL(ψ) = 1
2N

∑N
i=1(ψi−ψ∗)2Hi,

where Hi, ψ
∗ ∈ R. Without loss of generality we assume ψ∗ = 0.

Using the assumption that the loss is quadratic for each example we get Var[gi(ψ)] = Var[ψHi] =
ψ2s(t)2. Hence, SGD is stable at given t along e1H(t) if and only if:

(1− ηλH1 (t))2 +
λ1K(t)

ψ(t)2
η2(n− S)
S(n− 1)

≤ 1. (3)

First, let us assume without loss of generality that ψ(t) = 1 for all t. In this case, we can easily
solve Eq. 3 for λ1H(t∗). A simple algebraic manipulation leads to:

λ1H(t∗) =
2− α (n−S)

(n−1)
η
S

η
. (4)

Note that if n = S the right hand side degenerates to 2
η . We can conclude that for a larger S or

smaller η, λ1H(t∗) is lower.

It is also straightforward to extend the argument to the case when training is initialized at an unstable
region along e1H(0):

Theorem 2. If training is unstable along e1H(t) at t = 0, then λH1 (t) and λ1K(t) at which SGD
becomes first stable along e1H(t) are smaller for a larger η or a smaller S.

Proof. In this case, by Assumption 4, training steers to a region where training is stable along e0H ,
which must result in reducing λ1H and λ1K .

The value λ1H at which training becomes stable is again λ1H(t∗) =
2−α (n−S)

(n−1)
η
S

η . Based on this we
conclude, that the value λ1H and λ1K at which training becomes stable depends on η and S.

12

B APPROXIMATING THE EIGENSPACE OF K AND H

Due to the ill-conditioning of H a small subset of the training set approximates well the largest
eigenvalues of the true Hessian on the CIFAR-10 dataset by (Alain et al., 2019), in their case 5% of
the dataset. We use the same fraction in CIFAR-10 experiments. Following Alain et al. (2019) we
use SCIPY Python package.

Evaluating the eigenspace of K is perhaps less common in deep learning. We sample L mini-batch
gradient of size M . Then following Papyan (2019) we compute the corresponding Gram matrix K̂

that has entries K̂ij = 〈gi−g, gj−g〉, where g is the full batch gradient. Note that K̂ij is only L×L
dimensional. It can be shown that in expectation of mini-batches K̂ has the same eigenspectrum as
K. It can be shown that Tr(K̂) = Tr(K). We compute the full spectrum using SVD procedure
from SCIPY Python package.

In all experiments we fixL = 25. When comparing different batch sizes we useM = 128, otherwise
we use the same batch size as the one used to train the model. For instance on the CIFAR-10 dataset
this amounts to using approximately 5% of the training set.

To compute Tr(K) we compute the trace of K̂. Due to large computational cost of estimating top
eigenvalues using the Lanczos algorithm, we approximate the Tr(H using the top 5 eigenvalues of
H

A natural question is whether using M = 128 approximates well the underlying K. To investigate
this we compare λ1K evaluated using either M = 128 or M = 1. We adapt L to keep the same
number of N = LM of used training examples in the computation. We test this on SimpleCNN
model with η = 0.01. We show that the two are strongly correlated in Fig. 6, which we conclude to
be enough for our analysis.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1
K, S = 128

0

50

100

150

200

250

1 K
, S

=
1

= 0.58, p = 4.91 10 9

Figure 6: Correlation between values of K obtained using different mini-batch sizes (SimpleCNN
model on CIFAR-10).

C EXPERIMENTAL DETAILS

In this section we describe all the details for experiments in the main text and in the Appendix.

ResNet-32 on CIFAR The model trained is the ResNet-32 (He et al., 2015b). The network is
trained for 200 epochs with a batch size equal to 128. The dataset used is CIFAR-10. Standard data
augmentation and preprocessing is applied. The default learning rate is 0.05, and the default batch
size is 128. Weight decay 0.0001 is applied to all convolutional layers.

13

SimpleCNN on CIFAR The network used is a simple convolutional network based on example
from Keras repository (Chollet et al., 2015). First, the data is passed through two convolutional
layers with 32 filters, both using same padding, ReLU activations, and the kernel size of 3x3. Next,
the second pair of layers is used with 64 filters (the rest of parameters are the same). Each pair
ends with a max-pooling layer with a window of size 2. Before the classification layer, a densely
connected layer with 128 units is used. The data follows the same scheme as in the ResNet-32
experiment. The default learning rate is 0.05, and the default batch size is 128.

BERT on MNLI The model used in this experiment is BERT-base (Devlin et al., 2018a), pre-
trained on multilingual data3. The model is trained on MultiNLI dataset (Williams et al., 2018) with
the maximum sentence length equal to 40. The network is trained for 20 epochs with a batch size of
32.

MLP on FMNIST This experiment is using a Multi Layer Perceptron network with two hidden
layers of size 300 and 100, both with ReLU activations. The data is normalized to the [0, 1] range
and no augmentation is being used. The network is trained with a batch size of 64 for 200 epochs.

LSTM on IMDB The network used in this experiment consists of an embedding layer followed
by an LSTM with 100 hidden units. We use vocabulary size of 20000 words and the maximum
length of the sequence equal to 80. The model is trained for 100 epochs with a batch size of 128.

DenseNet on ImageNet The network used is the DenseNet-121 (Huang et al., 2016). The dataset
used is the ILSVRC 2012 (Russakovsky et al., 2015). The images are centered, but no augmentation
is being used. Due to large computational cost, the network is trained for 10 epochs with a batch
size of 32. Neither dropout nor weight decay is used for training.

D ADDITIONAL EXPERIMENTS FOR SEC. 4.2

In this section we repeat experiments from Sec. 4.2 in various other settings, as well as include
additional data from settings already included in the main text.

ResNet-32 on CIFAR-10. In Fig. 7 and Fig. 8 we report accuracy on the training set and the
validation set, λ1H , and Tr(K) for all runs on the ResNet-32 model and the CIFAR-10 dataset .

0 50 100 150 200
Epoch

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

0.25

0.50

0.75

Va
l.

ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

101

103

1 H

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

10 1

100

101

Tr
(K

)

= 0.001
= 0.010
= 0.100

Figure 7: Additional figures for the experiments on ResNet-32 on CIFAR-10 dataset with different
learning rates. From left to right: the evolution of accuracy, validation accuracy, λ1H and Tr(K).

0 50 100 150 200
Epoch

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

S = 10
S = 100

0 50 100 150 200
Epoch

0.4

0.6

0.8

Va
l.

ac
cu

ra
cy

S = 10
S = 100

0 50 100 150 200
Epoch

101

1 H

S = 10
S = 100

0 50 100 150 200
Epoch

100

101

Tr
(K

)

S = 10
S = 100

Figure 8: Additional figures for the experiments on ResNet-32 on CIFAR-10 dataset with different
batch sizes. From left to right: the evolution of accuracy, validation accuracy, λ1H and Tr(K).

3The model weights used can be found here: https://tfhub.dev/google/bert_multi_
cased_L-12_H-768_A-12/1

14

https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1
https://tfhub.dev/google/bert_multi_cased_L-12_H-768_A-12/1

SimpleCNN on CIFAR-10. In Fig. 7 and Fig. 8 we report accuracy on the training set and the
validation set, λ1H , and Tr(K) for all runs on the SimpleCNN model and the CIFAR-10 dataset .

0 50 100 150 200
Epoch

0.4

0.6

0.8

Ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

0.4

0.6

0.8

Va
l.

ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

101

102

103

1 H

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

100

101

Tr
(K

)

= 0.001
= 0.010
= 0.100

Figure 9: Additional figures for the experiments on SimpleCNN on CIFAR-10 dataset with different
learning rates. From left to right: the evolution of accuracy, validation accuracy, λ1H and Tr(K).

0 50 100 150 200
Epoch

0.6

0.8

Ac
cu

ra
cy

S = 30
S = 300

0 50 100 150 200
Epoch

0.6

0.8

Va
l.

ac
cu

ra
cy

S = 30
S = 300

0 50 100 150 200
Epoch

101

6 × 100

2 × 101

1 H

S = 30
S = 300

0 50 100 150 200
Epoch

100

101

Tr
(K

)

S = 30
S = 300

Figure 10: Additional figures for the experiments on SimpleCNN on CIFAR-10 dataset with differ-
ent batch sizes. From left to right: the evolution of accuracy, validation accuracy, λ1H and Tr(K).

LSTM on IMDB. In Fig. 11 and Fig. 12 we report accuracy on the training set and the validation
set, λ1H , and Tr(K) for all runs on the LSTM model and the IMDB dataset.

5 10 15
Epoch

0.6

0.8

1.0

Ac
cu

ra
cy

= 0.333
= 1.000
= 3.000

5 10 15
Epoch

0.6

0.7

0.8

Va
l.

ac
cu

ra
cy

= 0.333
= 1.000
= 3.000

0 5 10 15
Epoch

10 2

10 1

Tr
(K

)

= 0.333
= 1.000
= 3.000

Figure 11: Additional figures for the experiments on LSTM on IMDB dataset with different learning
rates. From left to right: the evolution of accuracy, validation accuracy, and Tr(K).

0 10 20 30 40
Epoch

0.6

0.8

1.0

Ac
cu

ra
cy

S = 10
S = 100

0 10 20 30 40
Epoch

0.6

0.7

0.8

Va
l.

ac
cu

ra
cy

S = 10
S = 100

0 20 40
Epoch

10 2

10 1

100

Tr
(K

)

S = 10
S = 100

Figure 12: Additional figures for the experiments on LSTM on IMDB dataset with different batch
sizes. From left to right: the evolution of accuracy, validation accuracy, λ1H and Tr(K).

BERT on MNLI. In Fig. 13 and Fig. 14 we report results for the BERT model on the MNLI
dataset.

0 5 10 15 20
Epoch

101

4 × 100

6 × 100

1 K

= 0.001
= 0.003
= 0.010

0 5 10 15 20
Epoch

5

10

15

Tr
(K

)/
1 K

= 0.001
= 0.003
= 0.010

0 5 10 15 20
Epoch

102

3 × 101

4 × 101

6 × 101

Tr
(K

)

= 0.001
= 0.003
= 0.010

Figure 13: Results of experiment on the BERT model and MNLI dataset for different learning rates.
From left to right: evolution of λ1K , Tr(K)/λ1K and Tr(K).

15

5 10 15
Epoch

0.7

0.8

0.9

Ac
cu

ra
cy

= 0.001
= 0.003
= 0.010

5 10 15
Epoch

0.72

0.74

0.76

Va
l.

ac
cu

ra
cy

= 0.001
= 0.003
= 0.010

60 80 100
Accuracy (%)

101

3 × 100

4 × 100

6 × 100

2 × 101

1 K

= 0.001
= 0.003
= 0.010

60 80 100
Accuracy (%)

5

10

15

Tr
(K

)/
1 K

= 0.001
= 0.003
= 0.010

Figure 14: Evolution of accuracy and validation accuracy for experiment in Fig. 13. Each of the dots
in the two rightmost plots represents a single iteration, on the horizontal axis we report the training
accuracy, and on the vertical axis λ1K or Tr(K)/λ1K .

MLP on FMNIST. In Fig. 15 and Fig. 16 we report results for the MLP model on the FMNIST
dataset.

0 50 100 150 200
Epoch

10 3

10 1

1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

2

4

6

8

Tr
(K

)/
1 K

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

100

101

102

1 H

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

10 2

100

Tr
(K

)

= 0.001
= 0.010
= 0.100

Figure 15: Results of experiment on the MLP model and FMNIST dataset for different learning
rates. From left to right: evolution of λ1K , Tr(K)/λ1K , λ1H and Tr(K).

0 50 100 150 200
Epoch

0.8

0.9

1.0

Ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

0 50 100 150 200
Epoch

0.75

0.80

0.85

0.90

Va
l.

ac
cu

ra
cy

= 0.001
= 0.010
= 0.100

40 60 80 100 120
Accuracy (%)

10 2

100

1 K

= 0.001
= 0.010
= 0.100

40 60 80 100 120
Accuracy (%)

2.5

5.0

7.5

Tr
(K

)/
1 K

= 0.001
= 0.010
= 0.100

Figure 16: Same as Fig. 14 for the MLP model on FMNIST dataset.

DenseNet on ImageNet. In Fig. 17 and Fig. 18 we report results for the DenseNet-121 model on
the ImageNet dataset.

0.0 2.5 5.0 7.5 10.0
Epoch

2 × 100

3 × 100

4 × 100

6 × 100

1 K

= 0.010
= 0.100

0.0 2.5 5.0 7.5 10.0
Epoch

10

15

Tr
(K

)/
1 K

= 0.010
= 0.100

0.0 2.5 5.0 7.5 10.0
Epoch

102

3 × 101

4 × 101

6 × 101

Tr
(K

)

= 0.010
= 0.100

Figure 17: Results of experiment on the DenseNet model and ImageNet dataset for different learning
rates. From left to right: evolution of λ1K , Tr(K)/λ1K and Tr(K).

0.0 2.5 5.0 7.5 10.0
Epoch

0.0

0.5

1.0

Ac
cu

ra
cy

= 0.010
= 0.100

0.0 2.5 5.0 7.5 10.0
Epoch

0.2

0.4

Va
l.

ac
cu

ra
cy

= 0.010
= 0.100

20 40 60 80
Accuracy (%)

2 × 100

3 × 100
4 × 100

6 × 100

1 K

= 0.010
= 0.100

20 40 60 80
Accuracy (%)

10

15

20

Tr
(K

)/
1 K

= 0.010
= 0.100

Figure 18: Same as Fig. 14 for the DenseNet model on ImageNet dataset.

16

	Introduction
	Related work
	Two conjectures about SGD trajectory
	Experiments
	A closer look at the early phase of training
	Variance reduction and pre-conditioning effect of SGD
	Importance of for conditioning in batch normalized networks

	Conclusion
	Proofs
	Approximating the eigenspace of K and H
	Experimental details
	Additional experiments for Sec. 4.2

