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ABSTRACT

We prove bounds on the generalization error of convolutional networks. The
bounds are in terms of the training loss, the number of parameters, the Lipschitz
constant of the loss and the distance from the weights to the initial weights. They
are independent of the number of pixels in the input, and the height and width of
hidden feature maps. We present experiments with CIFAR-10, along with varying
hyperparameters of a deep convolutional network, comparing our bounds with
practical generalization gaps.

1 INTRODUCTION

Recently, substantial progress has been made regarding theoretical analysis of the generalization of
deep learning models (see Zhang et al., 2016; Dziugaite & Roy, 2017; Bartlett et al., 2017; Neyshabur
et al., 2017; 2018; Arora et al., 2018; Neyshabur et al., 2019; Wei & Ma, 2019). One interesting point
that has been explored, with roots in (Bartlett, 1998), is that even if there are many parameters, the set
of models computable using weights with small magnitude is limited enough to provide leverage for
induction (Bartlett et al., 2017; Neyshabur et al., 2018). Intuitively, if the weights start small, since
the most popular training algorithms make small, incremental updates that get smaller as the training
accuracy improves, there is a tendency for these algorithms to produce small weights. (For some
deeper theoretical exploration of implicit bias in deep learning and related settings, see (Gunasekar
et al., 2017; 2018a;b; Ma et al., 2018).) Even more recently, authors have proved generalization
bounds in terms of the distance from the initial setting of the weights instead of the size of the weights
(Bartlett et al., 2017; Neyshabur et al., 2019). This is important because small initial weights may
promote vanishing gradients; it is advisable instead to choose initial weights that maintain a strong
but non-exploding signal as computation flows through the network (see LeCun et al., 2012; Glorot
& Bengio, 2010; Saxe et al., 2013; He et al., 2015). A number of recent theoretical analyses have
shown that, for a large network initialized in this way, a large variety of well-behaved functions can
be found through training by traveling a short distance in parameter space (see Du et al., 2019b;a;
Allen-Zhu et al., 2019; Zou et al., 2018). Thus, the distance from initialization may be expected to be
significantly smaller than the magnitude of the weights. Furthermore, there is theoretical reason to
expect that, as the number of parameters increases, the distance from initialization decreases.

Convolutional layers are used in all competitive deep neural network architectures applied to image
processing tasks. The most influential generalization analyses in terms of distance from initialization
have thus far concentrated on networks with fully connected layers. Since a convolutional layer has an
alternative representation as a fully connected layer, these analyses apply in the case of convolutional
networks, but, intuitively, the weight-tying employed in the convolutional layer constrains the set of
functions computed by the layer. This additional restriction should be expected to aid generalization.

In this paper, we prove new generalization bounds for convolutional networks that take account of
this effect. As in earlier analyses for the fully connected case, our bounds are in terms of the distance
from the initial weights, and the number of parameters. Additionally, our bounds are “size-free”, in
the sense that they are independent of the number of pixels in the input, or the height and width of the
hidden feature maps.

Our most general bounds apply to networks including both convolutional and fully connected layers,
and, as such, they also apply for purely fully connected networks. In contrast with earlier bounds for
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settings like the one considered here, our bounds are in terms of a sum over layers of the distance
from initialization of the layer. Earlier bounds were in terms of product of these distances which led
to an exponential dependency on depth. Our bounds have linear dependency on depth which is more
aligned with practical observations.

As is often the case for generalization analyses, the central technical lemmas are bounds on covering
numbers. Borrowing a technique due to Barron et al. (1999), these are proved by bounding the
Lipschitz constant of the mapping from the parameters to the loss of the functions computed by the
networks. (Our proof also borrows ideas from the analysis of the fully connected case, especially
(Bartlett et al., 2017; Neyshabur et al., 2018).) Covering bounds may be applied to obtain a huge
variety of generalization bounds. We present two examples for each covering bound. One is a
standard bound on the difference between training and test error. Perhaps the more relevant bound
has the flavor of “relative error”; it is especially strong when the training loss is small, as is often the
case in modern practice. Our covering bounds are polynomial in the inverse of the granularity of the
cover. Such bounds seem to be especially useful for bounding the relative error.

In particular, our covering bounds are of the form (B/ε)W , where ε is the granularity of the cover,
B is proportional to the Lipschitz constant of a mapping from parameters to functions, and W is
the number of parameters in the model. We apply a bound from the empirical process literature in
terms of covering bounds of this form due to Giné & Guillou (2001), who paid particular attention
to the dependence of estimation error on B. This bound may be helpful for other analyses of the
generalization of deep learning in terms of different notions of distance from initialization. (Applying
bounds in terms of Dudley’s entropy integral in the standard way leads to an exponentially worse
dependence on B.)

Related work. Du et al. (2018) proved size-free bounds for CNNs in terms of the number of
parameters, for two-layer networks. Arora et al. (2018) analyzed the generalization of networks
output by a compression scheme applied to CNNs. Zhou & Feng (2018) provided a generalization
guarantee for CNNs satisfying a constraint on the rank of matrices formed from their kernels. Li
et al. (2018) analyzed the generalization of CNNs under other constraints on the parameters. Lee &
Raginsky (2018) provided a size-free bound for CNNs in a general unsupervised learning framework
that includes PCA and codebook learning.

Notation. If K(i) is the kernel of convolutional layer number i, then op(K(i)) refers to its operator
matrix 1 and vec(K(i)) denotes the vectorization of the kernel tensor K(i). For matrix M , ‖M‖2
denotes the operator norm of M . For vectors, || · || represents the Euclidian norm, and || · ||1
is the L1 norm. For a multiset S of elements of some set Z, and a function g from Z to R, let
ES [g] = 1

m

∑m
t=1 g(zt). We will denote the function parameterized by Θ by fΘ.

2 BOUNDS FOR A BASIC SETTING

In this section, we provide a bound for a clean and simple setting.

2.1 THE SETTING AND THE BOUNDS

In the basic setting, the input and all hidden layers have the same number c of channels. Each input
x ∈ Rd×d×c satisfies ‖ vec(x)‖ ≤ 1.

We consider a deep convolutional network, whose convolutional layers use zero-padding (see Good-
fellow et al., 2016). Each layer but the last consists of a convolution followed by an activation function
that is applied componentwise. The activations are 1-Lipschitz and nonexpansive (examples include
ReLU and tanh). The kernels of the convolutional layers are K(i) ∈ Rk×k×c×c for i ∈ {1, . . . , L}.
Let K = (K(1), ...,K(L)) be the L× k × k × c× c-tensor obtained by concatening the kernels for
the various layers. Vector w represents the last layer; the weights in the last layer are fixed with
||w|| = 1. Let W = Lk2c2 be the total number of trainable parameters in the network.

1Convolution is a linear operator and can thus be written as a matrix-vector product. The operator matrix of
kernel K, refers to the matrix that describes convolving the input with kernel K. For details, see (Sedghi et al.,
2018).
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We let K(1)
0 , . . . ,K

(L)
0 take arbitrary fixed values (interpreted as the initial values of the kernels)

subject to the constraint that, for all layers i, || op(K
(i)
0 )||2 = 1. (This is often the goal of initialization

schemes.) Let K0 be the corresponding L× k× k× c× c tensor. We provide a generalization bound
in terms of distance from initialization, along with other natural parameters of the problem. The
distance is measured with ||K −K0||σ

def
=
∑L
i=1 || op(K(i))− op(K

(i)
0 )||2.

For β > 0, define Kβ to be the set of kernel tensors within || · ||σ distance β of K0, and define Fβ to
be set of functions computed by CNNs with kernels in Kβ . That is, Fβ = {fK : ||K −K0||σ ≤ β}.
Let ` : R× R→ [0, 1] be a loss function such that `(·, y) is λ-Lipschitz for all y. An example is the
1/λ-margin loss.

For a function f from Rd×d×c to R, let `f (x, y) = `(f(x), y).

We will use S to denote a set {(x1, y1), . . . , (xm, ym)} = {z1, . . . zm} of random training examples
where each zt = (xt, yt).
Theorem 2.1 (Basic bounds). For any η > 0, there is a C > 0 such that for any β, δ > 0, λ ≥ 1,
for any joint probability distribution P over Rd×d×c × R, if a training set S of n examples is drawn
independently at random from P , then, with probability at least 1− δ, for all f ∈ Fβ ,

Ez∼P [`f (z)] ≤ (1 + η)ES [`f ] +
C(W (β + log(λn)) + log(1/δ))

n

and, if β ≥ 5, then

Ez∼P [`f (z)] ≤ ES [`f ] + C

√
W (β + log(λ)) + log(1/δ)

n

and otherwise

Ez∼P [`f (z)] ≤ ES [`f ] + C

(
βλ

√
W

n
+

√
log(1/δ)

n

)
.

If Theorem 2.1 is applied with the margin loss, then Ez∼P [`f (z)] is in turn an upper bound on
the probability of misclassification on test data. Using the algorithm from (Sedghi et al., 2018),
|| · ||σ may be efficiently computed. Since ||K −K0||σ ≤ || vec(K) − vec(K0)||1 (Sedghi et al.,
2018), Theorem 2.1 yields the same bounds as a corollary if the definition of Fβ is replaced with the
analogous definition using || vec(K)− vec(K0)||1.

2.2 TOOLS

Definition 2.2. For d ∈ N , a set G of functions with a common domain Z, we say that G is
(B, d)-Lipschitz parameterized if there is a norm || · || on Rd and a mapping φ from the unit ball
w.r.t. || · || in Rd to G such that, for all θ and θ′ such that ||θ|| ≤ 1 and ||θ′|| ≤ 1, and all z ∈ Z,
|(φ(θ))(z)− (φ(θ′))(z)| ≤ B||θ − θ′||.

The following lemma is essentially known. Its proof, which uses standard techniques (see Pollard,
1984; Talagrand, 1994; 1996; Barron et al., 1999; Van de Geer, 2000; Giné & Guillou, 2001; Mohri
et al., 2018), is in Appendix A.
Lemma 2.3. Suppose a set G of functions from a common domain Z to [0,M ] is (B, d)-Lipschitz
parameterized for B > 0 and d ∈ N.

Then, for any η > 0, there is a C such that, for all large enough n ∈ N, for any δ > 0, for any
probability distribution P over Z, if S is obtained by sampling n times independently from P , then,
with probability at least 1− δ, for all g ∈ G,

Ez∼P [g(z)] ≤ (1 + η)ES [g] +
CM(d log(Bn) + log(1/δ))

n

and

Ez∼P [g(z)] ≤ ES [g] + C

min{M
√

logB,B}
√
d

n
+M

√
log 1

δ

n

 .
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2.3 PROOF OF THEOREM 2.1

Definition 2.4. Let `F = {`f : f ∈ F}.

We will prove Theorem 2.1 by showing that `Fβ is
(
βλeβ ,W

)
-Lipschitz parameterized. This will be

achieved through a series of lemmas.

Lemma 2.5. Choose K ∈ Kβ and a layer j. Suppose K̃ ∈ Kβ satisfies K(i) = K̃(i) for all i 6= j.

Then, for all examples (x, y), |`(fK(x), y)− `(fK̃(x), y)| ≤ λeβ
∥∥∥op(K(j))− op(K̃(j))

∥∥∥
2
.

Proof. For each layer i, let βi = || op(K(i))− op(K
(i)
0 )||2.

Since ` is λ-Lipschitz w.r.t. its first argument, we have that |`(fK(x), y)−`(fK̃(x), y)| ≤ λ|fK(x)−
fK̃(x)|, so it suffices to bound |fK(x) − fK̃(x)|. Let gup be the function from the inputs to the
whole network with parameters K to the inputs to the convolution in layer j, and let gdown be the
function from the output of this convolution to the output of the whole network, so that fK =
gdown ◦ fop(K(j)) ◦ gup. Choose an input x to the network, and let u = gup(x). Recalling that ||x|| ≤ 1,

and the non-linearities are nonexpansive, we have ‖u‖ ≤
∏
i<j

∥∥∥op(K(i))
∥∥∥

2
. Since the non-linearities

are 1-Lipschitz, and, recalling that K(i) = K̃(i) for i 6= j, we have

|fK(x)− fK̃(x)| = |gdown(op(K(j))u)− gdown(op(K̃(j))u)|

≤

∏
i>j

∥∥∥op(K(i))
∥∥∥

2

∥∥∥op(K(j))u− op(K̃(j))u
∥∥∥

≤

∏
i>j

∥∥∥op(K(i))
∥∥∥

2

∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2
‖u‖

≤

∏
i 6=j

∥∥∥op(K(i))
∥∥∥

2

∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2

≤

∏
i 6=j

(1 + βi)

∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2

where the last inequality uses the fact that || op(K(i))−op(K
(i)
0 )||2 ≤ βi for all i and || op(K

(i)
0 )||2 =

1 for all i.

Now
∏
i 6=j(1 + βi) ≤

∏L
i=1(1 + βi), and the latter is maximized over the nonnegative βi’s subject

to
∑
i6=j βi ≤ β when each of them is β/L. Since (1 + β/L)L ≤ eβ , this completes the proof.

Now we prove a bound when all the layers can change between K and K̃.

Lemma 2.6. For any K, K̃ ∈ Kβ , for any input x to the network, |`(fK(x), y) − `(fK̃(x), y)| ≤
λeβ

∥∥∥K − K̃∥∥∥
σ
.

Proof. Consider transforming K to K̃ by replacing one layer of K at a time with the corresponding
layer in K̃. Applying Lemma 2.5 to bound the distance traversed with each replacement and
combining this with the triangle inequality gives

|`(fK(x), y)− `(fK̃(x), y)| ≤ λeβ
L∑
j=1

∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2
= λeβ

∥∥∥K − K̃∥∥∥
σ
.
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Now we are ready to prove our basic bound.

Proof (of Theorem 2.1). Consider the mapping φ from the ball w.r.t. ‖·‖σ of radius 1 in RLk2c2

centered at vec(K0) to `Fβ defined by φ(θ) = `fK0+β vec−1(θ)
, where vec−1(θ) is the reshaping of θ

into a L× k × k × c× c-tensor. Lemma 2.6 implies that this mapping is βλeβ-Lipschitz. Applying
Lemma 2.3 completes the proof.

2.4 A COMPARISON

Since a convolutional network has an alternative parameterization as a fully connected network, the
bounds of (Bartlett et al., 2017) have consequences for convolutional networks. To compare our
bound with this, first, note that Theorem 2.1, together with standard model selection techniques,
yields a

O

(√
W (||K −K0||σ + log(λ)) + log(1/δ)

n

)
(1)

bound on Ez∼P [`f (z)]−ES [`f (z)] (For more details, please see Appendix B.) Translating the bound
of (Bartlett et al., 2017) to our setting and notation directly yields a bound on Ez∼P [`f (z)]−ES [`f (z)]
whose main terms are proportional to

λ
(∏L

i=1 || op(K(i))||2
)(∑L

i=1

|| op(K(i))>−op(K
(i)
0 )>||2/32,1

|| op(K(i))||2/3
2

)3/2

log(d4c2L) +
√

log(1/δ)

√
n

(2)

where, for a p × q matrix A, ||A||2,1 = ||(||A:,1||2, ..., ||A:,q||2)||1. One can get an idea of how
this bound relates to (1) by comparing the bounds in a simple concrete case. Suppose that each
of the convolutional layers of the network parameterized by K0 computes the identity function,
and that K is obtained from K0 by adding ε to each entry. In this case, disregarding edge effects,
for all i, || op(K(i))||2 = 1 + εk2c and ||K − K0||σ = εk2cL (as proved in Appendix C). Also,
|| op(K(i))> − op(K

(i)
0 )>||2,1 = (cd2)(ε

√
ck2) = εc3/2d2k. We get additional simplification if we

set ε = 1
k2 . In this case, (2) gives a constant times

(c+ 1)L
√
cd(d/k)L3/2λ log(dcL) +

√
log(1/δ)√

n

where (1) gives a constant times

c3/2kL+ ck
√

log(λ) +
√

log(1/δ)√
n

.

In this scenario, the new bound is independent of d, and grows more slowly with λ, c and L. Note
that k ≤ d (and, typically, it is much less).

This specific case illustrates a more general effect that holds when the initialization is close to the
identity, and changes to the parameters are on a similar scale.

3 A MORE GENERAL BOUND

In this section, we generalize Theorem 2.1.

3.1 THE SETTING

The more general setting concerns a neural network where the input is a d × d × c tensor whose
flattening has Euclidian norm at most χ, and network’s output is a m-dimensional vector, which may
be logits for predicting a one-hot encoding of an m-class classification problem.

The network is comprised of Lc convolutional layers followed by Lf fully connected layers. The
ith convolutional layer includes a convolution, with kernel K(i) ∈ Rki×ki×ci−1×ci , followed by a
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componentwise non-linearity and an optional pooling operation. We assume that the non-linearity
and any pooling operations are 1-Lipschitz and nonexpansive. Let V (i) be the matrix of weights for
the ith fully connected layer. Let Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )) be all of the parameters of
the network. Let L = Lc + Lf .

We assume that, for all y, `(·, y) is λ-Lipschitz for all y and that `(ŷ, y) ∈ [0,M ] for all ŷ and y.

An example (x, y) includes a d× d× c-tensor x and y ∈ Rm.

We let K(1)
0 , . . . ,K

(Lc)
0 , V

(1)
0 , ..., V

(Lf )
0 take arbitrary fixed values subject to the constraint that, for

all convolutional layers i, || op(K
(i)
0 )||2 ≤ 1+ν, and for all fully connected layers i, ||V (i)

0 ||2 ≤ 1+ν.
Let Θ0 = (K

(1)
0 , ...,K

(Lc)
0 , V

(1)
0 , ..., V

(Lf )
0 ).

For Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )) and Θ̃ = (K̃(1), ..., K̃(Lc), Ṽ (1), ..., Ṽ (Lf )). define

||Θ− Θ̃||N =

(
Lc∑
i=1

|| op(K(i))− op(K̃(i))||2

)
+

Lf∑
i=1

||V (i) − Ṽ (i)||2.

For β, ν ≥ 0, define Fβ,ν to be set of functions computed by CNNs as described in this subsection
with parameters within || · ||N -distance β of Θ0. Let Oβ,ν be the set of their parameterizations.
Theorem 3.1 (General Bound). For any η > 0, there is a constant C such that the following holds.
For any β, ν, χ > 0, for any δ > 0, for any joint probability distribution P over Rd×d×c × Rm such
that, with probability 1, (x, y) ∼ P satisfies || vec(x)||2 ≤ χ, under the assumptions of this section,
if a training set S of n examples is drawn independently at random from P , then, with probability at
least 1− δ, for all f ∈ Fβ,ν ,

Ez∼P [`f (z)] ≤ (1 + η)ES [`f ] +
CM (W (β + νL+ log(χλβn)) + log(1/δ))

n

and, if χλβeβ ≥ 5,

Ez∼P [`f (z)] ≤ ES [`f ] + CM

√
W (β + νL+ log(χλβ)) + log(1/δ)

n
and a bound of

Ez∼P [`f (z)] ≤ ES [`f ] + C

χλβ(1 + ν +
β

L

)L√
W

n
+M

√
log 1

δ

n


holds for all χ, λ, β > 0.

3.2 PROOF OF THEOREM 3.1

We will prove Theorem 3.1 by using ||·||N to witness the fact that `Fβ,ν is
(
χλβeνL+β ,W

)
-Lipschitz

parameterized.

The first two lemmas concern the effect of changing a single layer. Their proofs are very similar to
the proof of Lemma 2.5, and are in the Appendices D and E.

Lemma 3.2. Choose Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )), Θ̃ =

(K̃(1), ..., K̃(Lc), Ṽ (1), ..., Ṽ (Lf )) ∈ Oβ,ν and a convolutional layer j. Suppose that K(i) = K̃(i)

for all convolutional layers i 6= j and V (i) = Ṽ (i) for all fully connected layers i. Then, for all
examples (x, y),

|`(fΘ(x), y)− `(fΘ̃(x), y)| ≤ χλeνL+β
∥∥∥op(K(j))− op(K̃(j))

∥∥∥
2
.

Lemma 3.3. Choose Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )), Θ̃ =

(K̃(1), ..., K̃(Lc), Ṽ (1), ..., Ṽ (Lf )) ∈ Oβ,ν and a fully connected layer j. Suppose that K(i) = K̃(i)

for all convolutional layers i and V (i) = Ṽ (i) for all fully connected layers i 6= j. Then, for all
examples (x, y),

|`(fΘ(x), y)− `(fΘ̃(x), y)| ≤ χλeνL+β
∥∥∥V (j) − Ṽ (j)

∥∥∥
2
.
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Figure 1: Generalization gaps for a 10-layer all-conv model on CIFAR10 dataset.

Figure 2: Generalization gap as a function of W

Now we prove a bound when all the layers can change between Θ and Θ̃.

Lemma 3.4. For any Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )), Θ̃ =

(K̃(1), ..., K̃(Lc), Ṽ (1), ..., Ṽ (Lf )) ∈ Oβ,ν , for any input x,

|`(fΘ(x), y)− `(fΘ̃(x), y)| ≤ χλeνL+β
∥∥∥Θ− Θ̃

∥∥∥
N
.

Proof. Consider transforming Θ to Θ̃ by replacing one layer at a time of Θ with the corresponding
layer in Θ̃. Applying Lemma 3.2 to bound the distance traversed with each replacement of a
convolutional layer, and Lemma 3.3 to bound the distance traversed with each replacement of a fully
connected layer, and combining this with the triangle inequality gives the lemma.

Now we are ready to prove our more general bound.

Proof (of Theorem 3.1). Consider the mapping φ from the ball of || · ||N -radius 1 centered at Θ0

to `Fβ,ν defined by φ(Θ) = `fΘ0+βΘ
. Lemma 2.6 implies that this mapping is

(
χλβeνL+β ,W

)
-

Lipschitz. Applying Lemma 2.3 completes the proof.

3.3 ANOTHER COMPARISON

Theorem 3.1 applies in the case that there are no convolutional layers, i.e. for a fully connected
network. In this subsection, we compare its bound in this case with the bound of (Bartlett et al.,
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(a) mean and error bar (b) median

Figure 3: ||K −K0||σ as a function of W .

2017). Because the bounds are in terms of different quantities, we compare them in a simple
concrete case. In this case, for D = cd2, each hidden layer has D components, and there are
D classes. For all i, V (i)

0 = I and V (i) = I + H/
√
D, where H is a Hadamard matrix (using

the Sylvester construction), and χ = M = 1. Then, dropping the superscripts, each layer V has
||V ||2 = 2, ||V − V0||2 = 1, ||V − V0||2.1 = D.

Further, in the notation of Theorem 3.1, W = D2L, and β = L, and ν = 0. Plugging into to
Theorem 3.1 yields a bound on the generalization gap proportional to

DL+D
√
L log(λ) +

√
log(1/δ)√

n

where, in this case, the bound of (Bartlett et al., 2017) is proportional to

λ2LL3/2D log(DL) +
√

log(1/δ)√
n

.

4 EXPERIMENTS

We trained a 10-layer all-convolutional model on the CIFAR-10 dataset. The architecture was similar
to VGG (Simonyan & Zisserman, 2014). The network was trained with dropout regularization and
an exponential learning rate schedule. We define the generalization gap as the difference between
train error and test error. In order to analyze the effect of the number of network parameters on
generalization gap, we scaled up the number of channels in each layer, while keeping other elements
of the architecture, including the depth, fixed. Each network was trained repeatedly, sweeping over
different values of the initial learning rate and batch sizes 32, 64, 128. For each setting the results
were averaged over five different random initializations. Figure 1 shows the generalization gap for
different values of W ||K −K0||σ . As in the bound of Theorem 3.1, the generalization gap increases
with W ||K − K0||σ. Figure 2 shows that as the network becomes more over-parametrized, the
generalization gap remains almost flat with increasing W . This is expected due to role of over-
parametrization on generalization (Neyshabur et al., 2019). An explanation of this phenomenon
that is consistent with the bound presented here is that increasing W leads to a decrease in value
of ||K −K0||σ; see Figure 3a. The fluctuations in Figure 3a are partly due to the fact that training
neural networks is not an stable process. We provide the medians ||K −K0||σ for different values of
W in Figure 3b.
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A PROOF OF LEMMA 2.3

Definition A.1. If (X, ρ) is a metric space and H ⊆ X , we say that G is an ε-cover of H with
respect to ρ if every h ∈ H has a g ∈ G such that ρ(g, h) ≤ ε. ThenNρ(H, ε) denotes the size of the
smallest ε-cover of H w.r.t. ρ.

Definition A.2. For a domain Z, define a metric ρmax on pairs of functions from Z to R by
ρmax(f, g) = supz∈Z |f(z)− g(z)|.

We need two lemmas in terms of these covering numbers. The first is by now a standard bound
from Vapnik-Chervonenkis theory (Vapnik & Chervonenkis, 1971; Vapnik, 1982; Pollard, 1984). For
example, it is a direct consequence of (Haussler, 1992, Theorem 3).

Lemma A.3. For any η > 0, there is a constant C depending only on η such that the following holds.
Let G be an arbitrary set of functions from a common domain Z to [0,M ]. If there are constants B
and d such that, Nρmax

(G, ε) ≤
(
B
ε

)d
for all ε > 0, then there is an absolute constant C such that,

for all large enough n ∈ N, for any δ > 0, for any probability distribution P over Z, if S is obtained
by sampling n times independently from P , then, with probability at least 1− δ, for all g ∈ G,

Ez∼P [g(z)] ≤ (1 + η)ES [g] +
CM(d log(Bn) + log(1/δ))

n
.

We will also use the following, which is the combination of (2.5) and (2.7) of (Giné & Guillou, 2001).

Lemma A.4. Let G be an arbitrary set of functions from a common domain Z to [0,M ]. If there
are constants B ≥ 5 and d such that Nρmax(G, ε) ≤

(
B
ε

)d
for all ε > 0, then there is an absolute

constant C such that, for all large enough n ∈ N, for any δ > 0, for any probability distribution P
over Z, if S is obtained by sampling n times independently from P , then, with probability at least
1− δ, for all g ∈ G,

Ez∼P [g(z)] ≤ ES [g] + CM

√
d logB + log 1

δ

n
.

The following, which can be obtained by combining Talagrand’s Lemma with the standard bound on
Rademacher complexity in terms of the Dudley entropy integral (see (Van de Geer, 2000; Bartlett,
2013)), yields a bound for small B.

Lemma A.5. Let G be an arbitrary set of functions from a common domain Z to [0,M ]. If there
are constants B > 0 and d such that Nρmax

(G, ε) ≤
(
B
ε

)d
for all ε > 0, then there is an absolute

constant C such that, for all large enough n ∈ N, for any δ > 0, for any probability distribution P
over Z, if S is obtained by sampling n times independently from P , then, with probability at least
1− δ, for all g ∈ G,

Ez∼P [g(z)] ≤ ES [g] + C

B√ d

n
+M

√
log 1

δ

n

 .

So now we want a bound on Nρmax
(G, ε) for Lipschitz-parameterized classes. For this, we need the

notion of a packing which we now define.

Definition A.6. For any metric space (X, ρ) and any H ⊆ S, letMρ(H, ε) be the size of the largest
subset of H whose members are pairwise at a distance greater than ε w.r.t. ρ.

Lemma A.7 ((Kolmogorov & Tikhomirov, 1959)). For any metric space (X, ρ), any H ⊆ X , and
any ε > 0, we have

Nρ(H, ε) ≤Mρ(H, ε).

We will also need a lemma about covering a ball by smaller balls. This is probably also already
known, and uses a standard proof (see Pollard, 1990, Lemma 4.1), but we haven’t found a reference
for it.

Lemma A.8. Let

11
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• d be an integer,

• || · || be a norm

• ρ be the metric induced by || · ||, and

• κ, ε > 0.

A ball in Rd of radius κ w.r.t. ρ can be covered by
(

3κ
ε

)d
balls of radius ε.

Proof. We may assume without loss of generality that κ > ε. Let q > 0 be the volume of the unit
ball w.r.t. ρ in Rd. Then the volume of any α-ball with respect to ρ is αdq. Let B be the ball of
radius r in Rd. The ε/2-balls centered at the members of any ε-packing of B are disjoint. Since these
centers are contained in B, the balls are contained in a ball of radius κ+ ε/2. Thus

Mρ(B, ε)
( ε

2

)d
q ≤

(
κ+

ε

2

)d
q ≤

(
3κ

2

)d
q.

Solving forMρ(B, ε) and applying Lemma A.7 completes the proof.

We now prove Lemma 2.3. Let || · || be the norm witnessing the fact that G is (B, d)-Lipschitz
parameterized, and let B be the unit ball in Rd w.r.t. || · || and let ρ be the metric induced by || · ||.
Then, for any ε, we have

Nρmax
(G, ε) ≤ Nρ(B, ε/B).

Applying Lemma A.8, this implies

Nρmax
(G, ε) ≤

(
3B

ε

)d
.

Then applying Lemma A.3, Lemma A.4 and Lemma A.5 completes the proof.

B PROOF OF (1)

For δ > 0, and for each j ∈ N, let βj = 5 × 2j let δj = 1
2j2 . Taking a union bound over an

application of Theorem 2.1 for each value of j, with probability at least 1−
∑
j δj ≥ 1− δ, for all j,

and all f ∈ Fβj

Ez∼P [`f (z)] ≤ (1 + η)ES [`f (z)] +
C(W (βj + log(λn)) + log(j/δ))

n

and

Ez∼P [`f (z)] ≤ ES [`f (z)] + C

√
W (βj + log(λ)) + log(j/δ)

n
.

For any K, if we apply these bounds in the case of the least j such that ||K −K0||σ ≤ βj , we get

Ez∼P [`f (z)] ≤ (1 + η)ES [`f (z)] +
C(W (2||K −K0||σ + log(λn)) + log(log(||K −K0||σ)/δ))

n

and

Ez∼P [`f (z)] ≤ ES [`f (z)] + C

√
W (2||K −K0||σ + log(λ)) + log(log(||K −K0||σ)/δ)

n
,

and simplifying completes the proof.
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C THE OPERATOR NORM OF K(i)

Let J = K(i) −K(i)
0 . Since || op(K(i))||2 = 1 + || op(J)||2, it suffices to find || op(J)||2.

For the rest of this section, we number indices from 0, let [d] = {0, ..., d − 1}, and define ω =
exp(2πi/d). To facilitate the application of matrix notation, pad the k × k × c× c tensor J out with
zeros to make a d× d× c× c tensor J̃ .

The following lemma is an immediate consequence of Theorem 6 of Sedghi et al. (2018).

Lemma C.1 (Sedghi et al. (2018)). Let F be the complex d× d matrix defined by Fij = ωij .

For each u, v ∈ [d]× [d], let P (u,v) be the c× c matrix given by P (u,v)
k` = (FT J̃:,:,k,`F )uv . Then

|| op(J)||2 = max
u,v
||P (u,v)||2.

First, note that, by symmetry, for each u and v, all components of P (u,v) are the same. Thus,

||P (u,v)||2 = c|P (u,v)
00 |. (3)

For any u, v,

|P (u,v)
00 | =

∣∣∣∣∣∑
p,q

ωupωvqJ̃p,q,0,0

∣∣∣∣∣ ≤ εk2

and P (0,0)
00 = εk2. Combining this with (3) and Lemma C.1, || op(J)||2 = εck2, which implies

|| op(K)||2 = 1 + εck2.

D PROOF OF LEMMA 3.2

For each convolutional layer i, let βi = || op(K(i)) − op(K
(i)
0 )||2, and, for each fully connected

layer i, let γi = ||V (i) − V (i)
0 ||2.

Since ` is λ-Lipschitz w.r.t. its first argument, we have that |`(fΘ(x), y)− `(fΘ̃(x), y)| ≤ λ|fΘ(x)−
fΘ̃(x)|. Let gup be the function from the inputs to the whole network with parameters Θ to the inputs
to the convolution in layer j, and let gdown be the function from the output of this convolution to the
output of the whole network, so that fΘ = gdown ◦ fop(K(j)) ◦ gup. Choose an input x to the network,
and let u = gup(x). Recalling that ||x|| ≤ χ, and that the non-linearities and pooling operations are

non-expansive, we have ‖u‖ ≤ χ
∏
i<j

∥∥∥op(K(i))
∥∥∥

2
. Using the fact that the non-linearities 1-Lipschitz,

we have

|fΘ(x)− fΘ̃(x)| = |gdown(op(K(j))u)− gdown(op(K̃(j))u)|

≤

∏
i>j

∥∥∥op(K(i))
∥∥∥

2

(∏
i

∥∥∥V (i)
∥∥∥

2

)∥∥∥op(K(j))u− op(K̃(j))u
∥∥∥

≤

∏
i>j

∥∥∥op(K(i))
∥∥∥

2

(∏
i

∥∥∥V (i)
∥∥∥

2

)∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2
‖u‖

≤ χ

∏
i 6=j

∥∥∥op(K(i))
∥∥∥

2

(∏
i

∥∥∥V (i)
∥∥∥

2

)∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2

≤ χ

∏
i 6=j

(1 + ν + βi)

(∏
i

(1 + ν + γi)

)∥∥∥op(K(j))− op(K̃(j))
∥∥∥

2
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where the last inequality uses the fact that || op(K(i))−op(K
(i)
0 )||2 ≤ βi for all i, ||V (i)−V (i)

0 ||2 ≤
γi for all i, || op(K

(i)
0 )||2 ≤ 1 + ν for all i and ||V (i)

0 ||2 ≤ 1 + ν for all i.

Since
(∏

i 6=j(1 + ν + βi)
)

(
∏
i(1 + ν + γi)) ≤ (

∏
i(1 + ν + βi)) (

∏
i(1 + ν + γi)), and the latter

is maximized subject to (
∑
i βi) +

∑
i γi ≤ β when each summand is β/L, this completes the proof.

E PROOF OF LEMMA 3.3

For each convolutional layer i, let βi = || op(K(i)) − op(K
(i)
0 )||2, and, for each fully connected

layer i, let γi = ||V (i) − V (i)
0 ||2.

Since ` is λ-Lipschitz w.r.t. its first argument, we have that |`(fΘ(x), y)− `(fΘ̃(x), y)| ≤ λ|fΘ(x)−
fΘ̃(x)|. Let gup be the function from the inputs to the whole network with parameters Θ to the inputs
to fully connected layer layer j, and let gdown be the function from the output of this layer to the
output of the whole network, so that fΘ = gdown ◦ fV (j) ◦ gup. Choose an input x to the network,
and let u = gup(x). Recalling that ||x|| ≤ χ, and that the non-linearities and pooling operations are

non-expansive, we have ‖u‖ ≤ χ

(∏
i

∥∥∥op(K(i))
∥∥∥

2

)∏
i<j

∥∥∥V (i)
∥∥∥

2

 . Thus

|fΘ(x)− fΘ̃(x)| = |gdown(V (j)u)− gdown(Ṽ (j)u)|

≤

∏
i>j

∥∥∥V (i)
∥∥∥

2

∥∥∥V (j)u− Ṽ (j)u
∥∥∥

≤

∏
i>j

∥∥∥V (i)
∥∥∥

2

∥∥∥V (j) − Ṽ (j)
∥∥∥

2
‖u‖

≤ χ

(∏
i

∥∥∥op(K(i))
∥∥∥

2

)∏
i6=j

∥∥∥V (i)
∥∥∥

2

∥∥∥V (j) − Ṽ (j)
∥∥∥

2

≤ χ

(∏
i

(1 + ν + βi)

)∏
i 6=j

(1 + ν + γi)

∥∥∥V (j) − Ṽ (j)
∥∥∥

2
.

Since (
∏
i(1 + ν + βi))

(∏
i 6=j(1 + ν + γi)

)
≤ (
∏
i(1 + ν + βi)) (

∏
i(1 + ν + γi)), and the latter

is maximized subject to (
∑
i βi) +

∑
i γi ≤ β when each summand is β/L, this completes the proof.
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