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ABSTRACT

We propose a new framework for reasoning about information in complex systems.
Our foundation is based on a variational extension of Shannon’s information theory
that takes into account the modeling power and computational constraints of the
observer. The resulting predictive F -information encompasses mutual information
and other notions of informativeness such as the coefficient of determination.
Unlike Shannon’s mutual information and in violation of the data processing
inequality, F-information can be created through computation. This is consistent
with deep neural networks extracting hierarchies of progressively more informative
features in representation learning. Additionally, we show that by incorporating
computational constraints, F-information can be reliably estimated from data
even in high dimensions with PAC-style guarantees. Empirically, we demonstrate
predictive F-information is more effective than mutual information for structure
learning and fair representation learning.

1 INTRODUCTION

Extracting actionable information from noisy, possibly redundant, and high-dimensional data sources
is a key computational and statistical challenge at the core of AI and machine learning. Information
theory, which lies at the foundation of AI and machine learning, provides a conceptual framework
to characterize information in a mathematically rigorous sense (Shannon & Weaver, 1948; Cover &
Thomas, 1991). However, important computational aspects are not considered in information theory.
To illustrate this, consider a dataset of encrypted messages intercepted from an opponent. According
to information theory, these encrypted messages have high mutual information with the opponent’s
plans. Indeed, with infinite computation, the messages can be decrypted and the plans revealed.
Modern cryptography originated from this observation by Shannon that perfect secrecy is (essentially)
impossible if the adversary is computationally unbounded (Shannon & Weaver, 1948). This motivated
cryptographers to consider restricted classes of adversaries that have access to limited computational
resources (Pass & Shelat, 2010). More generally, it is known that information theoretic quantities
can be expressed in terms of betting games (Cover & Thomas, 1991). For example, the (conditional)
entropy of a random variable X is directly related to how predictable X is in a certain betting game,
where an agent is rewarded for correct guesses. Yet, the standard definition unrealistically assumes
agents are computationally unbounded, i.e., they can employ arbitrarily complex prediction schemes.

Leveraging modern ideas from variational inference and learning (Ranganath et al., 2013; Kingma
& Welling, 2013; LeCun et al., 2015), we propose an alternative formulation based on realistic
computational constraints that is in many ways closer to our intuitive notion of information, which
we term predictive F-information. Without constraints, predictive F-information specializes to
classic mutual information. Under natural restrictions, F -information specializes to other well-known
notions of predictiveness, such as the coefficient of determination (R2). A consequence of this new
formulation is that computation can “create usable information” (e.g., by decrypting the intercepted
messages), invalidating the famous data processing inequality. This generalizes the idea that clever
feature extraction enables prediction with extremely simple (e.g., linear) classifiers, a key notion in
modern representation and deep learning (LeCun et al., 2015).

As an additional benefit, we show that predictive F-information can be estimated with statistical
guarantees using the Probably Approximately Correct framework (Valiant, 1984). This is in sharp
contrast with Shannon information, which is well known to be difficult to estimate for high dimen-
sional or continuous random variables (Battiti, 1994). Theoretically we show that the statistical
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guarantees of estimatingF information translate to statistical guarantees for a variant of the Chow-Liu
algorithm for structure learning. In practice, when the observer employs deep neural networks as a
prediction scheme, F-information outperforms methods that approximate Shannon information in
various applications, including Chow-Liu tree contruction in high dimension and gene regulatory
network inference.

2 DEFINITIONS AND NOTATIONS

To formally define the predictive F -information, we begin with a formal model of a computationally
bounded agent trying to predict the outcome of a real-valued random variable Y ; the agent is either
provided another real-valued random variable X as side information, or provided no side information
∅. We use X and Y to denote the samples spaces of X and Y respectively (while assuming they are
separable), and use P(X ) to denote the set of all probability measures over the Borel algebra on X
(P(Y) similarly defined for Y).

Definition 1 (Predictive Family 1). Let Ω = {f : X ∪ {∅} → P(Y)}. We say that F ⊆ Ω is a
predictive family if it satisfies

∀f ∈ F ,∀P ∈ range(f), ∃f ′ ∈ F , s.t. ∀x ∈ X , f ′[x] = P, f ′[∅] = P (1)

A predictive family is a set of predictive models the agent is allowed to use, e.g., due to computational
or statistical constraints. We refer to the additional condition in Eq.(1) as optional ignorance.
Intuitively, it means that the agent can, in the context of the prediction game we define next, ignore
the side information if she chooses to.

Definition 2 (Predictive conditional F -entropy). Let X,Y be two random variables taking values in
X × Y , and F be a predictive family. Then the predictive conditional F-entropy is defined as

HF (Y |X) = inf
f∈F

Ex,y∼X,Y [− log f [x](y)]

HF (Y |∅) = inf
f∈F

Ey∼Y [− log f [∅](y)]

We additionally call HF (Y |∅) the F-entropy, and also denote it as HF (Y )

In our notation f is a function X ∪ {∅} → P(Y), so f [x] ∈ P(Y) is a probability measure on Y
chosen based on the received side information x (we use f [·] instead of the more conventional f(·));
and f [x](y) ∈ R is the value of the density evaluated at y ∈ Y . Intuitively, F (conditional) entropy is
the smallest expected negative log-likelihood that can be achieved predicting Y given observation
(side information) X (or no side information ∅), using models from F . Eq.(1) means that whenever
the agent can use P to predict Y’s outcomes, it has the option to ignore the input, and use P no matter
whether X is observed or not.

Definition 2 generalizes several known definitions of uncertainty. For example, as shown in
proposition 2, if the F is the largest possible predictive family that includes all possible mod-
els, i.e. F = Ω, then Definition 2 reduces to Shannon entropy: HΩ(Y |X) = H(Y |X) and
HF (Y |∅) = HΩ(Y ) = H(Y ). By choosing more restrictive families F , we recover several other
notions of uncertainty such as trace of covariance, as will be shown in Proposition 1.

Shannon mutual information is a measure of changes in entropy when conditioning on new variables:

I(X;Y ) = H(Y )−H(Y |X) = HΩ(Y )−HΩ(Y |X) (2)

Here, we will use predictive F-entropy to define an analogous quantity, IF (X → Y ), to represent
the change in predictability of an output variable Y when given side information X .

Definition 3 (Predictive F -information). Let X,Y be two random variables taking values in X ×Y ,
and F be a predictive family. The predictive F-information from X to Y is defined as

IF (X → Y ) = HF (Y |∅)−HF (Y |X) (3)

1Regularity Conditions: To minimize technical overhead we restrict out discussion only to distributions with
probability density functions (PDF) or probability mass functions (PMF) with respect to the underlying measure.
Also ∅ 6∈ X .
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2.1 IMPORTANT SPECIAL CASES

Several important notions of uncertainty and predictiveness are special cases of our definition. Note
that when we are defining F-entropy of a random variable Y in sample space Y ∈ Rd (without
side information), out of convenience we can assume X is empty X = ∅ (this does not violate our
requirement that ∅ 6∈ X .)
Proposition 1. For F-entropy and F-information, we have:

1. Let Ω be as in Def. 2. Then HΩ(Y ) is the Shannon entropy, HΩ(Y | X) is the Shannon
conditional entropy, and IΩ(Y → X) is the mutual information.

2. Let F = {f : {∅} → 1
Z e
−‖y−µ‖2 | µ ∈ Rd}, where Z =

∫
e−‖y−µ‖2dy, then the

F-entropy of a random variable Y equals its median absolute deviation, up to a constant.

3. Let F = {f : {∅} → N (µ,Σ) | µ ∈ Rd,Σ = 1/2Id×d}, then the F-entropy of a random
vector Y equals to the trace of its covariance tr (Cov(Y )), up to a constant.

4. Let F = {f : {∅} → h(y) exp (θ · t(y)−A(θ)) , θ ∈ Θ}, where the range is a set of
minimal exponential families with sufficient statistics t(y) : Y → Rdt and Θ = {θ ∈
Rdt |A(θ) < +∞}. Then F-entropy of Y is the maximum Shannon entropy for any random
variable with expected sufficient statistics µY = Ey∼Y [t(y)].

HF (Y ) = sup
Ŷ |Ey∼Ŷ [t(y)]=µY ]

H(Ŷ )

More specifically it is equal to Ey∼Y [log h(y)] − A∗(µY ), where and A∗ is the Fenchel
conjugate of A.

5. Let F = {f : x 7→ N (t(x),Σ), x ∈ X ;∅ 7→ N (µ,Σ)|µ ∈ range(t) = Rd; Σ =
tr (Cov(Y ))/2Id×d}, then F -information IF (X → Y ) equals to the coefficient of determi-
nation , R2, with function t(x) as the regression model.

The trace of covariance represents a natural notion of uncertainty – for example, a random variable
with zero variance (when d = 1,tr (Cov(Y )) = Var(Y ))) is trivial to predict. Proposition 1.3
shows that the trace of covariance corresponds to a notion of surprise (in the Shannon sense) for
an agent restricted to make predictions using certain Gaussian models. More broadly, a similar
analogy can be drawn for other exponential families of distributions. In the same spirit, the coefficient
of determination, also known as the fraction of variance explained, represents a natural notion of
informativeness for computationally bounded agents. Also note that in the case of Proposition 1.4,
the F-entropy is invariant if the expected sufficient statistics remain the same.

3 PROPERTIES OF F -INFORMATION

3.1 ELEMENTARY PROPERTIES

We first show several elementary properties of F-entropy and F-information. In particular, F-
information preserves many properties of Shannon information that are desirable in a machine
learning context. For example, mutual information (and F-information) should be non-negative as
conditioning on additional side information X should not reduce an agent’s ability to predict Y .
Proposition 2. Let Y and X be any random variables on Y and X , and F and G be any predictive
families, then we have

1. Monotonicity: If F ⊆ G, then HF (Y ) ≥ HG(Y ), HF (Y | X) ≥ HG(Y | X).

2. Non-Negativity: IF (X → Y ) ≥ 0.

3. Independence: If X is independent of Y , IF (X → Y ) = IF (Y → X) = 0.

The optional ignorance requirement in Eq.(1) is a technical condition needed for these properties
to hold. Intuitively, it guarantees that conditioning on side information does not restrict the class of
densities the agent can use to predict Y . This property is satisfied by many existing machine learning
models, often by setting some weights to zero so that an input is effectively ignored.
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3.2 ON THE PRODUCTION OF INFORMATION THROUGH PREPROCESSING

The Data Processing Inequality guarantees that computing on data cannot increase its mutual infor-
mation with other random variables. Formally, letting t : X → X be any function, t(X) cannot have
higher mutual information with Y than X: I(t(X);Y ) ≤ I(X;Y ). But is this property desirable?
In analyzing optimal communication, yes - it demonstrates a fundamental limit to the number of
bits that can be transmitted through a communication channel. However, we argue that in machine
learning settings this property is less appropriate.

Consider an RSA encryption scheme where the public key is known. Given plain text and its
corresponding encrypted text X , if we have infinite computation, we can perfectly compute one from
the other. Therefore, the plain text and the encrypted text should have identical Shannon mutual
information with respect to any label Y we want to predict. However, to any human (or machine
learning algorithm), it is certainly easier to predict the label from the plain text than the encrypted
text. In other words, decryption increases a human’s ability to predict the label: processing increases
the “usable information”. More formally, denoting t as the decryption algorithm and F as a class of
natural language processing functions, we have that: IF (t(X)→ Y ) > IF (X → Y ) ≈ 0.

As another example, consider the mutual information between an image’s pixels and its label. Due to
data processing inequality, we cannot expect to use a function to map raw pixels to “features” that
have higher mutual information with the label. However, the fundamental principle of representation
learning is precisely the ability to learn predictive features — functions of the raw inputs that enable
predictions with higher accuracy. This is a direct contradiction to the guiding principle of Shannon
information: processing does increase “usable information” (F-information).

3.3 ON THE ASYMMETRY OF PREDICTIVE F -INFORMATION

F -information also captures the intuition that sometimes, it is easy to predict Y from X but not vice
versa. In fact, modern cryptography is founded on the assumption that certain functions h : X → Y
are one-way, meaning that there exists an polynomial algorithm to compute h(x) but no polynomial
algorithm to compute h−1(y). This means that if F contains all polynomial-time computable
functions, then IF (X → h(X))� IF (h(X)→ X).

This property is also reasonable in the machine learning context. For example, several important
methods for causal discovery (Peters et al., 2017) rely on this asymmetry: if X causes Y , then usually
it is easier to predict Y from X than vice versa; another commonly used assumption is that Y |X can
be accurately modeled by a Gaussian distribution, while X|Y cannot (Pearl, 2000).

4 ESTIMATION OF F -INFORMATION FROM DATA

For many practical applications of mutual information (e.g., structure learning), we do not know the
joint distribution of X,Y , so cannot directly compute the mutual information. Instead we only have
samples {(xi, yi)}Ni=1 ∼ X,Y and need to estimate mutual information from data.

Shannon information is notoriously difficult to estimate for high dimensional random variables.
Although non-parametric estimators of mutual information exist (Kraskov et al., 2004; Darbellay &
Vajda, 1999; Gao et al., 2017), these estimators do not scale to high dimensions. Several variational
estimators for Shannon information have been recently proposed (van den Oord et al., 2018; Nguyen
et al., 2010; Belghazi et al., 2018), but have two shortcomings: due to their variational assumptions,
their bias/variance tradeoffs are poorly understood and they are still not efficient enough for high
dimensional problems.

On the other hand, F-information is explicit about the assumptions (as a feature instead of a bug).
F-information is also easy to estimate with guarantees if we can bound the complexity of F (such
as its Radamacher or covering number complexity) As we will show, bounds on the complexity of
F directly translate to PAC bounds for F-information estimation. In practice, we can efficiently
optimize over F , e.g., via gradient descent.

4.1 INEFFICIENCY OF APPROXIMATE ESTIMATORS FOR SHANNON INFORMATION

We theoretically show that there are inherent limitations for the two commonly used high dimension
mutual information estimators due to the large bias or variance. We analysis the CPC (or InfoNCE in
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Poole et al. (2018)) estimator (ICPC) proposed by van den Oord et al. (2018) and the NWJ estimator
(INWJ) proposed by Nguyen et al. (2010). The ICPC estimator, as shown in van den Oord et al.
(2018) and Poole et al. (2018), saturates at logN , where N is typically the dataset size. For the INWJ

estimator, we show in Theorem 5 (in Appendix) that its variance is at least e
I(X;Y )−3

N , i.e., exponential
in the true amount of mutual information. The theoretical analyses are consistent with the empirical
results in Poole et al. (2018). Formal statements and proofs are available in Appendix B.

4.2 PAC GUARANTEES FOR F -INFORMATION ESTIMATION

Contrary to the difficulty of estimating Shannon information (even with variational bounds), we
can estimate F information with PAC guarantees. In this paper we will present the Rademacher
complexity version; other complexity measures (such as covering number) can be derived similarly.

We define the function family GF = {g|g(x, y) = f [x](y), f ∈ F}, and denote the Rademacher
complexity of G with sample number N as RN (G) (Bartlett & Mendelson, 2001). Let X,Y be two
random variables taking values in X ,Y and D = {(xi, yi)}Ni=1 ∼ X,Y denotes the set of samples
drawn from the joint distribution over X × Y . Take f̂ = arg min

f∈F

1
|D|

∑
xi,yi∈D

− log f [xi](yi) and

f̂∅ = arg min
f∈F

1
|D|

∑
xi,yi∈D

− log f [∅](yi), we can estimate F-information as

ÎF (X → Y ;D) =
1

|D|
∑

xi,yi∈D
log f̂∅[∅](yi)− log f̂ [xi](yi)

assuming the above optimization problems can be solved. Then we have the following:
Theorem 1. Assume ∀f ∈ F , x ∈ X , y ∈ Y, log f [x](y) ∈ [−B,B]. Then for any δ > 0, with
probability at least 1− 2δ, we have:∣∣∣IF (X → Y )− ÎF (X → Y ;D)

∣∣∣ ≤ 4R|D|(log ◦GF ) + 2B

√
log 1

δ

2|D|
(4)

where the Rademacher complexity term can often be bounded by O(|D|− 1
2 ) (Bartlett & Mendelson,

2001; Gao & cheng Zhou, 2014). It’s worth noticing that a complex function family F (i.e., with
large Rademacher complexity) could lead to overfitting. On the other hand, an overly-simple F
maybe not expressive enough to capture the relationship between X and Y . As an example of the
theorem, we provide a concrete estimation bound when F is chosen to be linear functions mapping
X to the mean of a Gaussian distribution. This was shown in Proposition 1 to be the coefficient of
determination.
Corollary 1.1. Assume X = {x ∈ Rdx , ‖x‖2 ≤ kx} and Y = {y ∈ Rdy , ‖y‖2 ≤ ky}. If

F = {f : f [x] = N (Wx+ b, I), f [∅] = N (c, I),W ∈ Rdy×dx , b, c ∈ Rdy , ‖
(
W
b

)
‖2 ≤ 1}

Denote M = (kx + ky)2 + dy log 2π/2, then ∀δ > 0, with probability at least 1− 2δ:∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ ≤ M√

4|D|

(
1 + 4

√
log

1

δ

)

Similar results can be obtained using other classes of machine learning models with known
(Rademacher) complexity.

5 STRUCTURE LEARNING WITH F -INFORMATION

Among many possible applications of F-information, we show how to use it to perform structure
learning with provable guarantees. The goal of structure learning is to learn a directed graphical
model (Bayesian network) or undirected graphical model (Markov network) that best captures the
(conditional) independence structure of an underlying data generating process. Structure learning is
difficult in general, but if we restrict ourselves to certain set of graphsG, there are efficient algorithms.
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In particular, the Chow-Liu algorithm (Chow & Liu, 1968) efficiently learns the tree graphs (i.e. G
is the set of trees). Chow & Liu (1968) show that the problem can be reduced to:

g∗ = arg max
g∈Gtree

∑
(Xi,Xj)∈edge(g)

I(Xi, Xj) (5)

where I(Xi, Xj) is the Shannon mutual information between variables Xi and Xj . In other words, it
suffices to construct the maximal weighted spanning tree where the weight between two vertices is
their Shannon mutual information. Chow & Wagner (1973) show that the Chow-Liu algorithm is
consistent , i.e, it recovers the true solution as the dataset size goes to infinity. However, the finite
sample behavior of the Chow-Liu algorithm for high dimensional problems is much less studied,
due to the difficulty of estimating mutual information. In fact, we show in our experiments that
the empirical performance is often poor, even with state-of-the-art estimators. Also, methods based
on mutual information cannot take advantage of intrinsically asymmetric relationships, which are
common for example in gene regulatory networks (Meyer et al., 2007).

To address these two issues, we propose a new structure learning algorithm based on F-information
instead of Shannon information. The idea is that we can associate to each directed edge in G (i.e.,
each pair of variables) a suitable predictive family Fi,j (cf. Def 1). The main challenge is that we
cannot simply replace mutual information with F-information in Eq. 5 because F-information is
asymmetric – we now have to optimize over directed trees:

g∗ = arg max
g∈Gtree

m∑
i=2

IFt(g)(i),i(Xt(g)(i) → Xi) (6)

where Gtree is the set of directed trees, and t(g) : N → N is the function mapping each non-root
node of directed tree g to its parent, and Fi,j is the predictive family for random variables Xi and Xj .
After estimating F-information on each edge, we use the Chu-Liu algorithm (Chu & Liu, 1965) to
construct the maximal directed spanning tree. This allows us to solve (6) exactly, even though there
is a combinatorially large number of trees to consider. Pseudocode is summarized in Algorithm 1 in
Appendix. Denote C(g) =

∑m
i=2 IFt(g)(i),i(Xt(g)(i) → Xi), we show in the following theorem that

unlike the original Chow-Liu algorithm, our algorithm has guarantees in the finite samples regime,
even in continuous settings:

Theorem 2. Let {Xi}mi=1 be the set of m random variables, Di,j (resp. Dj) be the set of samples
drawn from P (Xi, Xj) (resp. P (Xj)). Denote the optimal tree with maximum C(g) as g∗ and the
optimal tree constructed on the dataset D as g. Then with the assumption in theorem 1, for any δ > 0,
with probability at least 1− 2m(m− 1)δ, we have:

C(g) ≥ C(g∗)− 2(m− 1) max
i,j

4RDi,j (log ◦GFi,j ) +B

√
log 1

δ

2
(|Dj |−

1
2 + |Di,j |−

1
2 )

 (7)

Theorem 2 shows that the total edge weights of the maximal directed spanning tree constructed
by algorithm 1 would be close to the optimal total edge weights if the Rademacher term is small.
Although larger C(g) does not necessarily lead to better construction of Chow-Liu tree, empirically
we find that the optimal tree in the sense of equation (6) is consistent with the optimal tree in equation
(5) under commonly used F .

6 EXPERIMENTAL RESULTS

6.1 STRUCTURE LEARNING WITH CONTINUOUS HIGH-DIMENSIONAL DATA

We generate synthetic data using various ground-truth tree structures g∗ with between 7 and 20
variables, where each variable is 10-dimensional. We use Gaussians, Exponentials, and Uniforms as
ground truth edge-conditionals. We use F-information(Gaussian) and F-information(Logistic) to
denote Algorithm 1 with two different F families. Please refer to Appendix F.1 for more details. We
compare with the original Chow-Liu algorithm equipped with state-of-the-art mutual information
estimators: CPC (van den Oord et al., 2018), NWJ (Nguyen et al., 2010) and MINE (Belghazi et al.,
2018), with the same neural network architecture as the F-families for fair comparison. All the
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experiments are repeated for 10 times. As a performance metric, we use the wrong-edges-ratio (the
ratio of edges that are different from ground truth) as a function of the amount of training data.

We show two illustrative experiments in figure 1a; please refer to Appendix F.1 for all simulations.
We can see that although the two F -families used are misspecified with respect to the true underlying
(conditional) distributions, the estimated Chow-Liu trees are much more accurate across all data
regimes, with CPC (blue) being the best alternative. Surprisingly, F-information(Gaussian) works
consistently well in all cases and only requires about 100 samples to recover the ground-truth
Chow-Liu tree in simulation-A.

(a) Chow-Liu tree Construction (b) Gene network inference (c) F-information of frames

Figure 1: (a) The expected wrong-edges-ratio of algorithm 1 with different F and other mutual
information estimators-based algorithms from sample size 10 to 5× 103. (b) AUC curve for gene
regulatory network inference. (c) The predictive F-information versus frame distance.

6.2 GENE REGULATORY NETWORK INFERENCE

Mutual information between pairs of gene expressions is often used to construct gene regulatory
networks. We evaluate F -information on the in-silico dataset from the DREAM5 challenge (Marbach
et al., 2012) and use the setup of Gao et al. (2017), where 20 genes with 660 datapoints are utilized to
evaluate all methods. We compare with state-of-the-art non-parametric Shannon mutual information
estimators in this low dimensional setting: KDE, the traditional kernel density estimator; the KSG
estimator (Kraskov et al., 2004); the Mixed KSG estimator (Gao et al., 2017) and Partitioning, an
adaptive partitioning estimator (Darbellay & Vajda, 1999) implemented by Szabó (2014). For fair
comparison with these low dimensional estimators, we select F = {f : f [x] = N (g(x), 1

2 ), x ∈
X ; f [∅] = N (µ, 1

2 )|µ ∈ range(g)}, where g is a 3rd order polynomial.

The task is to predict whether a directed edge between genes exists in the ground-truth gene network.
We use the estimated mutual information and F-information for gene pairs as the test statistic to
obtain the AUC for various methods. As shown in Figure 1b, our method outperforms all other
methods in network inference under different fractions of data used for estimation. The natural
information measure in this task is asymmetry since the goal is to find the pairs of genes (Ai, Bi)s in
which Ai regulates Bi, thus F-information is more suitable for such case than mutual information.

6.3 RECOVERING THE ORDER OF VIDEO FRAMES

Let X1, · · · , X20 be random variables each representing a frame in videos from the Moving-MNIST
dataset, which contains 10,000 sequences each of length 20 showing two digits moving with stochastic
dynamics. Can Algorithm 1 be used to recover the natural (causal) order of the frames? Intuitively,
predictability should be inversely related with frame distance, thus enabling structure learning. Using
a conditional Pixelcnn++ (Salimans et al., 2017) as predictive family F , we shown in Figure 1c that
predictive F-information does indeed decrease with frame distance, despite some fluctuations when
the frame distances are large. Using algorithm 1 to construct a Chow-Liu tree, we find that the tree
perfectly recovers the relative order of the frames. We also generate a Deterministic-Moving-MNIST
dataset, where digits move according to deterministic dynamics. From the perspective of Shannon
mutual information, every pair of frames has the same mutual information. Hence, standard Chow-Liu
tree learning algorithm would fail to discover the natural ordering of the frames (causal structure).
In contrast, once we constrain the observer to Pixcelcnn++ models, algorithm 1 with predictive
F-information can still recover the order of different frames when the frame distances are relatively
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small (less than 9). Compared to the stochastic dynamics case, F -information is more irregular with
increasing frame distance, since the Pixelcnn++ tends to overfit.

6.4 INFORMATION THEORETIC APPROACHES TO FAIRNESS

The goal of fair representation learning is to map inputs X ∈ X to a feature space Z ∈ Z such that
the mutual information between Z and some sensitive attribute U ∈ U (such as race or gender) is
minimized. The motivation is that using Z (instead of X) as input we can no longer use the sensitive
attributes U to make decisions, thus ensuring some notion of fairness. Existing methods obtain fair
representations by optimizing against an “adversarial” discriminator so that the discriminator cannot
predict U from Z (Edwards & Storkey, 2015; Louizos et al., 2015; Madras et al., 2018; Song et al.,
2018). Under some assumptions on U and F , we show in Appendix E that these works actually use
F-information minimization as part of their objective, where F depends on the functional form of
the discriminator. However, it is clear from the F-information perspective that features trained with
FA-information minimization might not generalize to FB-information and vice versa. To illustrate
this, we use a function family Fj as the attacker to extract information from features trained with
IFi(Z → U) minimization, where all the Fs are neural nets. On three datasets commonly used in the
fairness literature (Adult, German, Heritage), previous methods work well at preventing information
“leak” against the class of adversary they’ve been trained on, but fail when we consider different ones.
As shown in Figure 3b in Appendix, the diagonal elements in the matrix are usually the smallest in
rows, indicating that the attacker function family Fi extracts more information on featured trained
with Fj(j 6=i)-information minimization. This challenges the generalizability of fair representations in
previous works. Please refer to Appendix F.2 for details.

7 RELATED WORK

Alternative definitions of Information Several alternative definitions of mutual information are
available in the literature. Renyi entropy and Renyi mutual information (Lenzi et al., 2000) extend
Shannon information by replacing KL divergence with f -divergences. However, they have the same
difficulty when applied to high dimensional problems as Shannon information.

A line of works most related to ours is H entropy and H mutual information (DeGroot et al., 1962;
Grünwald et al., 2004), which associate a definition of entropy to every prediction loss. However,
there are two key differences. First, literatures in H entropy only consider a few special types of
prediction functions that serve unique theoretical purposes; for example, (Duchi et al., 2018) considers
the set of all functions on a feature space to prove surrogate risk consistency, and (Grünwald et al.,
2004) considers distributions with fixed moments to prove the duality between maximum entropy and
loss minimization. In contrast, our definition takes a completely different perspective — emphasizing
bounded computation and intuitive properties of “usable” information. Furthermore H entropy still
suffers from difficulty of estimation in high dimension because the definitions do not restrict to
functions with small complexity (e.g. Radamacher complexity).

Mutual information estimation The estimation of mutual information in the machine learning
field is often on the continuous underlying distribution. For non-parametric mutual information
estimators, many methods have exploited the 3H principle to calculate the mutual information, such
as the Kernel density estimator (Paninski & Yajima, 2008) ,k-Nearest-Neighbor estimator and the
KSG estimator (Kraskov et al., 2004). However, these non-parametric estimators usually aren’t
scalable to high dimension. Recently, several works utilize the variational lower bounds of MI
to design MI estimator based on deep neural network in order to estimate MI of high dimension
continuous random variables, and typical works are NWJ (Nguyen et al., 2010), CPC (van den Oord
et al., 2018), and MINE (Belghazi et al., 2018). In Appendix B we discuss the inefficiencies of theses
estimators, which coincide with the experimental results in (Poole et al., 2018).

8 CONCLUSION

We defined and investigated F-information, a variational extension to classic mutual information
that incorporates computational constraints. Unlike Shannon mutual information, F-information
attempts to capture usable information, and has very different properties, such as invalidating the data
processing inequality. In addition, F-information can be provably estimated, and can thus be more
effective for structure learning and fair representation learning.

8
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. (1)

HΩ(Y |X) = inf
f∈Ω

Ex∼X,y∼Y
[
log

1

f [x](y)

]
= inf
f∈Ω

Ex∼X
[∫

PY |X(y|x) log
1

f [x](y)
dy

]
= inf
f∈Ω

Ex∼X
[
KL(PY |X ||f [x]) +H(PY |X)

]
= Ex∼X

[
H(PY |X)

]
= H(Y |X) (8)

where the optimal choice for f is f [x] = P (Y |X = x). The same proof techniques for HΩ(Y ) =
H(Y ), with the optimal choice for f is f [∅](y) = PY (y). Hence we have

IΩ(Y → X) = HΩ(Y )−HΩ(Y |X) = H(Y )−H(Y |X) = I(Y ;X) (9)

10
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(2)Assume Y ∈ Rd and F = {f : {∅} → 1
Z e
−‖y−µ‖2 | µ ∈ Rd},where Z is a normalizing constant∫

e−‖y−µ‖2dy. In fact Z = dΓ(d)Bd, where Bd is the volume of d-dimensional unit ball. Then we
have

HF (Y ) = inf
f∈F
−Ey∼Y

[
log

1

dΓ(d)Bd
e−‖y−µ‖2

]
= inf
µ∈Rd

Ey∼Y [‖ y − µ ‖2] + log (dΓ(d)Bd)

= MAD(Y ) + log (dΓ(d)Bd) (10)

(3) Assume F = {f : {∅} → N (µ,Σ) | µ ∈ Rd,Σ = 1/2Id×d}, then we have

HF (Y ) = inf
f∈F
−Ey∼Y

[
log

1

(2π)
d
2 |Σ| 12

e−
1
2 (y−µ)TΣ−1(y−µ)

]
= inf
µ∈Rd

Ey∼Y [(y − µ)T (y − µ)] + d log π

= tr (Cov(Y )) + d log π (11)

(4)Assume Y ∈ Rd and F = {f : X → h(y) exp (θ · t(y)−A(θ)) , θ ∈ Θ}, where Θ = {θ ∈
Rd|A(θ) < +∞} then

HF (Y ) = inf
f∈F
−Ey∼Y [log h(y)]− Ey∼Y [log exp (θ · t(y)−A(θ))]

=− Ey∼Y [log h(y)]− sup
θ∈Θ

(θ · Ey∼Y [t(y)]−A(θ))]

=− Ey∼Y [log h(y)]−A∗(Ey∼Y [t(y)]) (12)

where A∗ is the Fenchel dual of the log-partition function A(θ). Under mild conditions

A∗(µ) = −H(pθ(µ))− Ey∼Y [log h(y)]

where θ(µ) is the unique parameter satisfying Ey∼pθ(µ) [t(y)] = Ey∼Y [t(y)] and H() is the Shannon
entropy. Therefore

HF (Y ) =− Ey∼Y [log h(y)]−A∗(Ey∼Y [t(y)])

=H(pθ(Ey∼Y [t(y)])) (13)

where H(pθ(µY )) is the entropy of the maximum entropy distribution with expected sufficient
statistics µY .

(5) Assume random variable X ∈ Rdx , Y ∈ Rdy , F = {f : x 7→ N (t(x),Σ), x ∈ X ;∅ 7→
N (µ,Σ)|µ ∈ range(t); Σ = tr(Cov(Y ))

2 Idy×dy}. Then the F-information from X to Y is

IF (X → Y ) = HF (Y )−HF (Y |X)

= inf
µ∈Rdy

Ey∼Y

[
− log

1

(2π)
dy
2 |Σ| 12

e
−‖y−µ‖22
tr(Cov(Y ))

]
− inf

t
Ex,y∼X,Y

[
− log

1

(2π)
d
2 |Σ| 12

e
−‖y−t(x)‖22
tr(Cov(Y ))

]

= 1− inf
t
Ex,y∼X,Y

[
‖ y − t(x) ‖22
tr (Cov(Y ))

]
= R2 (14)

A.2 PROOF OF PROPOSITION 2

Proof. (1)

HF (Y ) = inf
f∈F

Ey∼Y
[
log

1

f [∅](y)

]
≥ inf
f∈G

Ey∼Y
[
log

1

f [∅](y)

]
= HG(Y ) (15)

HF (Y |X) = inf
f∈F

Ex,y∼X,Y
[
log

1

f [x](y)

]
≥ inf
f∈G

Ex,y∼X,Y
[
log

1

f [x](y)

]
= HG(Y ) (16)

11
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The inequalities (15) and (16) are due to take infimum over a larger set.

(2)

Define FX→P(Y) = {g : X → P(Y)|∃f ∈ F ,∀x ∈ X , g[x] = f [x]}. Similarly define F∅→P(Y) =
{g : ∅→ P(Y)|∃f ∈ F ,∀x ∈ X , g[∅] = f [∅]}. Intuitively, FX→P(Y) (resp. F∅→P(Y)) restricts
the domain of functions in F to X (resp. ∅).

Let η : (∅ → P(Y)) → (X → P(Y)) be the function matching each f ∈ F∅→P(Y) with the
g ∈ FX→P(Y) that ignores X and returns g[x] = f [∅] for each x ∈ X . Then

HF (Y |X) = inf
g∈FX→P(Y)

Ex∼X,y∼Y [− log
1

g[x](y)]
]

≤ inf
f∈F∅→P(Y)

Ex∼X,y∼Y [− log
1

η(f)([x](y)
] (η(F∅→P(Y)) ⊂ FX→P(Y))

= inf
f∈F∅→P(Y)

Ey∼Y [Ex∼X|Y [− log
1

f [∅](y)
]]

= inf
f∈F∅→P(Y)

Ey∼Y [− log
1

f [∅](y)
]

= HF (Y ) (17)

The η(F∅→P(Y)) ⊂ FX→P(Y) holds by the definition 1. Hence we have

IF (Y → X) = HF −HF (Y |X) ≥ 0

(3)

Define FX→P(Y) = {g : X → P(Y)|∃f ∈ F ,∀x ∈ X , g[x] = f [x]}. Similarly define F∅→P(Y) =
{g : ∅→ P(Y)|∃f ∈ F ,∀x ∈ X , g[∅] = f [∅]}. Intuitively, FX→P(Y) (resp. F∅→P(Y)) restricts
the domain of functions in F to X (resp. ∅).

Let ψ : (X → P(Y)) × X → (∅ → P(Y)) be the function matching each g ∈ FX→P(Y) and
x ∈ X with the f ∈ F∅→P (Y ) such that f [∅] = g[x]. Then

HF (Y |X) = inf
g∈FX→P(Y)

Ex∼X,y∼Y
[
− log

1

g[x](y)

]
= inf
g∈FX→P(Y)

Ex∼X
[
Ey∼Y |X

[
− log

1

ψ(g, x)[∅](y)

]]
≥ Ex∼X

[
inf

g∈FX→P(Y)

Ey∼Y |X
[
− log

1

ψ(g, x)[∅](y)

]]
≥ Ex∼X

[
inf

f∈F∅→P(Y)

Ey∼Y |X
[
− log

1

f [∅](y)

]]
(F∅→P(Y) ⊃ ψ(FX→P(Y) ×X ))

= Ex∼X
[

inf
f∈F∅→P(Y)

Ey∼Y
[
− log

1

f [∅](y)

]]
(Independence of X and Y )

= Ex∼X [HF (Y )]

= HF (Y ) (18)

The F∅→P(Y) ⊃ ψ(FX→P(Y) × X ) holds by the definition 1. It was previously established via
optional-ignorance that for any F , HF (Y |X) ≤ HF (Y ), and thus HF (Y |X) = HF (Y ). We
therefore observe that when X is independent of Y , IF (X → Y ) = 0.

A.3 PROOF OF THEOREM 1

Before proofing theorem 1, we introduce two lemmas:
Lemma 3. LetX,Y be two random variables taking values in X ,Y andD denotes the set of samples
drawn from the joint distribution overX×Y . Assume ∀f ∈ F , x ∈ X , y ∈ Y, log f [x](y) ∈ [−B,B].

12
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Take f̂ = arg min
f∈F

1
|D|

∑
xi,yi∈D

− log f [xi](yi), then ∀δ > 0, with probability at least 1− δ, we have:

∣∣∣∣∣∣HF (Y |X)− 1

|D|
∑

xi,yi∈D
− log f̂ [xi](yi)

∣∣∣∣∣∣ ≤ 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|
(19)

Proof. Applying McDiarmid’s inequality to function Φ defined for any sample D by

Φ(D) = sup
f∈F

∣∣∣∣∣∣Ex,y [− log f [x](y)]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)

∣∣∣∣∣∣ (20)

Let D and D′ be two samples differing by exactly one point, then since the difference of suprema
does not exceed the supremum of the difference and ∀f ∈ F , x ∈ X , y ∈ Y, log f [x](y) ∈ [−B, 0],
we have:

Φ(D)− Φ(D′)

≤ sup
f∈F

∣∣∣∣∣∣ 1

|D|
∑

xi,yi∈D
log f [xi](yi)− Ex,y [log f [x](y)]

∣∣∣∣∣∣−
∣∣∣∣∣∣ 1

|D′|
∑

xi,yi∈D′
log f [xi](yi)− Ex,y [log f [x](y)]

∣∣∣∣∣∣


≤ sup
f∈F

∣∣∣∣∣∣ 1

|D|
∑

xi,yi∈D
− log f [xi](yi)| −

1

|D′|
∑

xi,yi∈D′
− log f [xi](yi)

∣∣∣∣∣∣
≤ B

|D|

then by McDiarmid’s inequality, for any δ > 0, with probability at least 1− δ, the following holds:

Φ(D) ≤ ED[Φ(D)] +B

√
log 1

δ

2|D|
(21)

13
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Then we bound the ED[Φ(D)] term:

ED[Φ(D)] = ED

sup
f∈F

∣∣∣∣∣∣Ex,y [− log f [x](y)]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)

∣∣∣∣∣∣
 (22)

= ED

sup
f∈F

∣∣∣∣∣∣ED′
 1

|D′|
∑

x′i,y
′
i∈D′

log f [x′i](y
′
i)

− 1

|D|
∑

xi,yi∈D
log f [xi](yi)

∣∣∣∣∣∣
 (23)

≤ ED

sup
f∈F

ED′

∣∣∣∣∣∣ 1

|D′|
∑

x′i,y
′
i∈D′

log f [x′i](y
′
i)| −

1

|D|
∑

xi,yi∈D
log f [xi](yi)

∣∣∣∣∣∣
 (24)

≤ ED,D′

sup
f∈F

∣∣∣∣∣∣ 1

|D′|
∑

x′i,y
′
i∈D′

log f [x′i](y
′
i)| −

1

|D|
∑

xi,yi∈D
log f [xi](yi)

∣∣∣∣∣∣
 (25)

= ED,D′

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

(log f [x′i](y
′
i)− log f [xi](yi))

∣∣∣∣∣∣
 (26)

= ED,D′,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi(log f [x′i](y
′
i)− log f [xi](yi))

∣∣∣∣∣∣
 (27)

≤ ED,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log f [xi](yi)

∣∣∣∣∣∣
+ ED′,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log f [x′i](y
′
i)

∣∣∣∣∣∣


(28)

= 2ED,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log f [xi](yi)

∣∣∣∣∣∣
 (29)

= 2ED,σ

sup
g∈G

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log g(xi, yi)

∣∣∣∣∣∣
 = 2R|D|(log ◦GF ) (30)

where σis are Rademacher variables that is uniform in {−1,+1}. Inequality (25) follows from the
convexity of sup, inequality (24) follows from the convexity of |x−c|. (30) follow from the definition
of G and Rademacher complexity.

Finally, combining inequality (21) and (30) yields for all f ∈ F , with probability at least 1− δ∣∣∣∣∣∣Ex,y[− log f [x](y)]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)

∣∣∣∣∣∣ ≤ 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|
(31)

The results holds for f̂ = arg min
f∈F

1
|D|

∑
xi,yi∈D

− log f [xi](yi). Then the bound (19) can be derived

easily by the definition of HF (Y |X).

Similar bounds can be derived for HF (Y ) if we choose the domain of x to be X = {∅}. Define
GF∅ = {g|g(y) = f [∅](y), f ∈ F}, then we have following lemma:

Lemma 4. Let Y be random variable taking values in Y and D denotes the set of samples drawn
from the underlying distribution P (Y ). Assume ∀f ∈ F , y ∈ Y, log f [∅](y) ∈ [−B,B]. Take

14
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f̂ = arg min
f∈F

1
|D|

∑
xi,yi∈D

− log f [∅](yi), then for any δ > 0, with probability at least 1− δ, we have:

∣∣∣∣∣∣HF (Y )− 1

|D|
∑
yi∈D

− log f̂ [∅](yi)

∣∣∣∣∣∣ ≤ 2R|D|(log ◦GF∅) +B

√
log 2

δ

2|D|
(32)

≤ 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|
(33)

Proof. The first inequality (32) can be similarly derived as Lemma 3. Since F belongs to predictive
family, hence there exits function h : F → F , such that h(f) = f ′ and ∀x ∈ X , f ′[x] = f [∅].

R|D|(log ◦GF∅) = ED,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log f [∅](yi)

∣∣∣∣∣∣


= ED,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log h(f)[xi](yi)

∣∣∣∣∣∣


≤ ED,σ

sup
f∈F

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi log f [xi](yi)

∣∣∣∣∣∣
 (34)

= R|D|(log ◦GF )

The inequality (34) holds because of ∀f ∈ F , h(f) ∈ F .

Now we begin to prove the theorem 1:

Theorem 1. Assume ∀f ∈ F , x ∈ X , y ∈ Y, log f [x](y) ∈ [−B,B], for any δ > 0, with probability
at least 1− 2δ, we have:

∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ ≤ 4R|D|(log ◦GF ) + 2B

√
log 2

δ

2|D|

Proof. Using the triangular inequality we have:

∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ ≤

∣∣∣∣∣∣HF (Y |X)− 1

|D|
∑

xi,yi∈D
− log f̂ [xi](yi)

∣∣∣∣∣∣+

∣∣∣∣∣∣HF (Y )− 1

|D|
∑
yi∈D

− log f̂∅[∅](yi)

∣∣∣∣∣∣
(35)

15
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For simplicity let DY |X =
∣∣∣HF (Y |X)− 1

|D|
∑
xi,yi∈D − log f̂ [xi](yi)

∣∣∣ and DY =∣∣∣HF (Y )− 1
|D|
∑
yi∈D − log f̂∅[∅](yi)

∣∣∣. With inequality (35), Lemma 3 and Lemma 4, we have:

Pr

∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ > 4R|D|(log ◦GF ) + 2B

√
log 2

δ

2|D|


≤ Pr

DY |X +DY > 4R|D|(log ◦GF ) + 2B

√
log 2

δ

2|D|

 (Inequality (35))

≤ Pr

DY |X > 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|

 ∨
DY > 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|


≤ Pr

DY |X > 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|

+ Pr

DY > 2R|D|(log ◦GF ) +B

√
log 2

δ

2|D|


(Union bound)

≤ 2δ (Lemma 3 and Lemma 4)

Hence we have:

Pr

∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ ≤ 4R|D|(log ◦GF ) + 2B

√
log 2

δ

2|D|

 ≥ 1− 2δ

A.4 PROOF OF COROLLARY 1.1

Proof. From theorem 1 we have:

∣∣∣IF (X → Y )− ÎF (X → Y ;D)
∣∣∣ ≤ 4R|D|(log ◦GF ) + 2B

√
log 1

δ

2|D|

In the following ‖
(
W
b

)
‖2 is the matrix 2-norm of

(
W
b

)
, then the Rademacher term can be bounded

as following:

R|D|(log ◦GF ) =
1

|D|
Eσ

 sup
W,b,‖(W,b)‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi

(
log

1√
2π
− 1

2
‖
(
W
b

)
‖2 ≤ 1

)∣∣∣∣∣∣


≤ 1

|D|
Eσ

 sup

W,b,‖
(
W
b

)
‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi

(
−1

2
‖yi −Wxi − b‖2

)∣∣∣∣∣∣
+

1

|D|
Eσ

∣∣∣∣∣∣
|D|∑
i=1

σi log
1√
2π

∣∣∣∣∣∣


(36)
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The second term in RHS can be bounded as following:

1

|D|
Eσ

∣∣∣∣∣∣
|D|∑
i=1

σi log
1√
2π

∣∣∣∣∣∣
 ≤ 1

|D|

√√√√√√Eσ


 |D|∑
i=1

σi log
1√
2π

2
 (concavity of x

1
2 )

=
1

|D|

√
|D| ∗ (log

1√
2π

)2 (Independence of σis)

=

√
(log 1√

2π
)2

|D|
(37)

The first term in RHS can be bounded as following:

1

|D|
ED,σ

 sup

W,b,‖
(
W
b

)
‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi

(
−1

2
‖yi −Wxi − b‖2

)∣∣∣∣∣∣


=
1

2|D|
ED,σ

 sup

W,b,‖
(
W
b

)
‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi
(
‖yi −Wxi − b‖2

)∣∣∣∣∣∣


≤ maxi‖yi‖22
2

√
1

|D|
+ max

i
‖xi‖2

√
maxi‖yi‖2
|D|

+
1

2|D|
ED,σ

 sup

W,b,‖
(
W
b

)
‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi
(
‖Wxi + b‖2

)∣∣∣∣∣∣


(38)

≤ maxi‖yi‖22
2

√
1

|D|
+ max

i
‖xi‖2

√
maxi‖yi‖2
|D|

+
maxi‖xi‖2

2|D|
ED,σ

 sup

W,b,‖
(
W
b

)
‖2≤1

∣∣∣∣∣∣
|D|∑
i=1

σi (‖Wxi + b‖)

∣∣∣∣∣∣


(39)

≤ maxi‖yi‖22
2

√
1

|D|
+ max

i
‖xi‖2

√
maxi‖yi‖22
|D|

+
maxi‖xi‖2

2

√
maxi‖xi‖22
|D|

(40)

The inequalities (39) and (38) follow the same proof in (37).

Hence we have:

R|D|(log ◦GF ) ≤ M√
4|D|

(41)

Moreover, it’s easy to prove that B ≤ 2M
√

log 1
δ , combine inequality (41) we arrive at the theorem.

A.5 PROOF OF THEOREM 2

Proof. Let CD(g∗) be the estimated sum of edge weights on dataset D of the optimal di-
rected tree g∗. The same notation for tree g that is optimal on dataset D. Let ε =

max
i,j

{∣∣∣IF (Xi → Xj)− ÎF (Xi → Xj ;D)
∣∣∣} which is the maximum absolute estimation error of

single edge weight, then we have:
C(g) + (m− 1)ε ≥ CD(g) ≥ CD(g∗) ≥ C(g∗)− (m− 1)ε (42)
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By the definition of εwe have ∀g, |C(g)− CD(g)| ≤ (m−1)ε, hence the first and the third inequality
in (42) hold. From theorem 1 we have:

Pr

ε > max
i,j

4RDi,j (log ◦Gi,j) +B

√
log 1

δ

2
(|Dj |−

1
2 + |Di,j |−

1
2 )




≤ Pr

∃i, j, ∣∣∣IF (Xi → Xj)− ÎF (Xi → Xj ;D)
∣∣∣ > 4RDi,j (log ◦Gi,j) +B

√
log 1

δ

2
(|Dj |−

1
2 + |Di,j |−

1
2 )


≤ m(m− 1)2δ (Theorem 1 and Union bound)

Hence

Pr

ε ≤ max
i,j

4RDi,j (log ◦Gi,j) +B

√
log 1

δ

2
(|Dj |−

1
2 + |Di,j |−

1
2 )


 ≥ 1−m(m− 1)2δ

(43)

Then using inequality (42) and (43) we arrive at the result.

B ANALYSIS OF APPROXIMATE ESTIMATORS FOR SHANNON INFORMATION

Firstly we show that there are inherent limitations for the two commonly used high dimension mutual
information estimators. The first is the CPC (or InfoNCE in Poole et al. (2018)) estimator (ICPC)
proposed by van den Oord et al. (2018):

ICPC = E

 1

N

N∑
i=1

log
fθ(xi, yi)

1
N

N∑
j=1

fθ(xi, yj)

 ≤ I(X;Y ) (44)

where the expectation is over N independent samples form the joint distribution
∏
i

p(xi, yi), and the

second is the NWJ estimator (INWJ) proposed by Nguyen et al. (2010):

INWJ = Ex,y∼P (x,y) [fθ(x, y)]− e−1Ex,y∼P (x)P (y)

[
efθ(x,y)

]
≤ I(X;Y ) (45)

In both case, fθ is a parameterized function. The objection of these work is to optimize θ to
approximate mutual information. van den Oord et al. (2018) shows ICPC tends to underestimate the
mutual information and have estimates that saturate at log(N), typically N is the batch size. It’s
straightforward to show that ICPC ≤ logN (Appendix), which coincide with the empirical result.
This means the ICPC estimator will incur large bias when I(X;Y ) ≥ logN .

Poole et al. (2018) also shows that INWJ suffers from high variance. Note that the INWJ involves
the 1

eEx,y∼p(x)p(y)

[
efθ(x,y)

]
term, which is commonly used in large deviation theory can often be

dominated by rare datapoint. These phenomenons make it a poor mutual information estimator
by optimizing θ. The optimal value for INWJ achieves when fθ(x, y) = 1 + log p(x,y)

p(x)p(y) . Given
{(xi, yi)}Ni=1 (resp. {(x̄i, ȳi)}Ni=1) as N datapoints independently sampled from the distribution
p(x, y) (resp. p(x)p(y)), denote the empirical estimation of INWJ as ÎNWJ = 1

N

∑N
i=1 [fθ(xi, yi)]−

e−1

N

∑N
i=1

[
efθ(x̄i,ȳi)

]
. Below we show that when even fθ(x, y) = 1 + log p(x,y)

p(x)p(y) , ÎNWJ suffers
from high variance:

Theorem 5. Assume fθ achieves the optimum, which is fθ(x, y) = 1 + log p(x,y)
p(x)p(y) , and

Ep(x,y)

[
p(x,y)
p(x)p(y)

]
≥ 1

1−e−1 . Then we have Var
(
ÎNWJ

)
≥ eI(X;Y )−3

N .
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Proof. Let xi, yi ∼ p(x)p(y), denote zi = p(xi,yi)
p(xi)p(yi)

. Apparently Ep(x)p(y) [zi] = 1. By central
limit theorem we have:

Var(z1) = Ep(x)p(y)

[
z2
i

]
− (Ep(x)p(y) [z1])2

= Ep(x)p(y)

[
z2

1

]
− 1

= Ep(x)p(y)

[(
p(x1, y1)

p(x1)p(y1)

)2
]
− 1

= Ep(x,y)

[
p(x1, y1)

p(x1)p(y1)

]
− 1 (46)

(47)

Hence, by assumption that

log Var(z1) = log

(
Ep(x,y)

[
p(x1, y1)

p(x1)p(y1)

]
− 1

)
≥ log

(
Ep(x,y)

[
p(x1, y1)

p(x1)p(y1)

])
− 1 (48)

≥
(
Ep(x,y) log

[
p(x1, y1)

p(x1)p(y1)

])
− 1 (49)

= I(X;Y )− 1 (50)

(48) holds by assumption Ep(x,y)

[
p(x,y)
p(x)p(y)

]
≥ 1

1−e−1 and (49) follows the Jensen’s inequality. Then
we have the variance of the estimation satisfy

Var

(
1

N

N∑
i=1

zi

)
=

Var (z1)

N

≥ eI(X;Y )−1

N
(51)

Since {(xi, yi)}Ni=1 (resp. {(x̄i, ȳi)}Ni=1) are N datapoints independently sampled from the distribu-
tion p(x, y) (resp. p(x)p(y)), we have

Var
(
ÎNWJ

)
= Var

(
1

N

N∑
i=1

[fθ(xi, yi)]−
e−1

N

N∑
i=1

[
efθ(x̄i,ȳi)

])

≥ Var

(
e−1

N

N∑
i=1

[
efθ(x̄i,ȳi)

])

= Var

(
e−1

N

N∑
i=1

zi

)
≥ eI(X;Y )−3

N
(52)

The lower bound of the variance highly coincides with the empirical results in Poole et al. (2018),
which shows the variance increases in exponential to mutual information when sample number N is
finite. Similar to INWJ, the mutual information estimator IMINE proposed by Belghazi et al. (2018) is
also a unnormalized mutual information estimator. The only difference between IMINE and INWJ is
the second term of IMINE is the log partition function, which is notoriously difficult to be estimated.

C THE NEW ALGORITHM FOR CHOW-LIU TREE CONSTRUCTION

Denote ÎF (Xi → Xj ;D) as the estimation of IF (Xi → Xj) on the dataset D,
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Algorithm 1 Construct Chow-Liu Trees with F-Information

Require: D = {X̂i}mi=1, with each X̂i being a set of datapoints sampled from the underlying
distribution of random variable Xi. The set of function families {Fi,j}mi,j=1,i6=j

1: for i = 1, . . . ,m do
2: for j = 1, . . . ,m do
3: if i 6= j then
4: Calculate the edge weight: ei→j = ÎFi,j (Xi → Xj ; {X̂i, X̂j}).
5: end if
6: end for
7: end for
8: Construct the fully connected graph G = (V,E), with node set V = (X1, . . . , Xm) and edge

set E = {ei→j}mi,j=1,i6=j .
9: Construct the maximal directed spanning tree g on G by Chu-Liu algorithm.

10: return g

D PROOFS FOR CONNECTING F -INFORMATION TO MLE

If we constrain the joint distribution on a directed tree structure and only use functions in F to
approximate the relationship between random variables. Denote Ft(g)(i)→i as the function family for
HF (Xi|Xt(g)(i)) and we assume Fi is the same as Fj,i. Then the maximum log-likelihood under F
and g is:

E ~X [logPg,F ( ~X)] = E ~X

[
log inf

f∈F1

f [∅](X1) ∗
N∏
i=2

inf
f∈Ft(g)(i),i

P (Xi | Xt(g)(i))

]

= −
N∑
i=2

HFt(g)(i),i(Xi|Xt(g)(i))−HF1
(X1)

=

N∑
i=2

HFi(Xi)−HFt(g),i(Xi|Xt(g)(i))−
N∑
i=1

HFi(Xi)

=

N∑
i=2

IFt(g)(i),i(Xt(g)(i) → Xi)−
N∑
i=1

HFi(Xi)︸ ︷︷ ︸
independent of g

(53)

E CONNECTION TO EXISTING METHODS FOR FAIRNESS

We can adapt the F-information to fairness. Denote the sensitive data as U and the representation
as Z. Assume U is discrete and F belongs to preditive family 1. Then we have HF (U) = H(U)
as long as F has softmax on the top and belongs to predictive family. In this case, minimizing
IF (Z → U) equals to minimize −HF (Y |X). Let joint distribution of Z and U be paramterized by
φ. Hence the final objective is:

min
φ
{IF (u; z)} = min

φ

(
sup
f∈F

Ez,u∼qφ(z,u)[logPf (z|u)]

)

In Edwards & Storkey (2015); Madras et al. (2018); Louizos et al. (2015); Song et al. (2018), functions
in F are parameterized by a discriminator.

F DETAILED EXPERIMENTS SETUP

F.1 CHOW-LIU TREE CONSTRUCTION

Figure 2 shows Simulation-1∼Simulation-6 of Chow-Liu tree construction. The Simulation-A and
Simulation-B in the main body correspond to Simulation-1 and Simulation-4.
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Simulation-1 ∼ Simulation-3 :

The true Chow-Liu tree is a star tree (i.e. all random variables are conditionally independent
given X1). We conduct all experiments for 10 times, each time with random simulated orthogonal
matrices {Wi}20

i=2. The ground-truth Chow-Liu is a star tree. Simulation-1: X1 ∼ U(0, 10) and
Xi | X1 ∼ N (WiX1, 6I), (2 ≤ i ≤ 20); Simulation-2: X1 ∼ U(0, 10) and Xi | X1 ∼ WiE(X1 +
εi), (2 ≤ i ≤ 20), εi ∼ E(0.1); Simulation-3 is a mixed version:X1 ∼ U(0, 10), Xi | X1 ∼
1
2N (WiX1, 6I) + 1

2WiE(X1 + ε1), (2 ≤ i ≤ 20).

Simulation-4 ∼ Simulation-6 :

The true Chow-Liu tree is a tree of depth two. We conduct all experiments for 10 times, each
time with random simulated orthogonal matrices {Wi}7i=2. The ground-truth Chow-Liu is a tree
of depth two. Simulation-4: X1 ∼ U(0, 10), Xi | X1 ∼ N (WiX1, 2I)(i = 2, 3), Xi | X2 ∼
N (WiX2, 2I)(i = 4, 5), Xi | X3 ∼ N (WiX3, 2I)(i = 6, 7); Simulation-5: X1 ∼ U(0, 10), Xi |
X1 ∼ E(X1+εi)(i = 2, 3),Xi | X2 ∼WiE(X2+εi)(i = 4, 5),Xi | X3 ∼WiE(X3+εi)(i = 6, 7),
εi ∼ E(0.1); Simulation-6 is a mixed version: X1 ∼ U(0, 10), Xi | X1 ∼WiE(X1 + εi)(i = 2, 3),
Xi | X2 ∼ N (WiX2, 2I)(i = 4, 5), Xi | X3 ∼ N (WiX3, 2I)(i = 6, 7),εi ∼ E(0.1).

Figure 2: Chow-Liu Tree Construction: The expected wrong-edges-ratio of algorithm 1 with different
F and other mutual information estimators-based algorithms from sample size 10 to 5× 103.

F.2 FAIRNESS

For the (Fi, Fj) elements described in the main body, please refer to figure 3b. The three datasets
are: the UCI Adult dataset2 has gender as the sensitive attribute; the UCI German credit dataset3 has
age as the sensitive attribute and the Heritage Health dataset4 has the 18 configurations of ages and
gender as the sensitive attribute.

The models in the figure are:
2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets
4https://www.kaggle.com/c/hhp
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FA = {f : Z → P(U)|f [z](u) =
∑

(zi,ui)∈D

e‖zi−z‖
2
2/h∑

(zi,ui)∈D
e‖zi−z‖

2
2/h
∗ I(ui = u), h ∈ R},where the D

is the training set.

FB = {f : f [z] = softmax(g(z))},where g is a two layers MLP with Relu as the activation function.

FC = {f : f [z] = softmax(g(z))}, where g is a three layers MLP with LeakyRelu as the activation
function. We further visualize a special case of the (Fi,Fj) pair in figure 3a, where the Fi = {f :

Z → P(U)|f [z](u) =
∑

(zi,ui)∈D

e‖zi−z‖
2
2/h∑

(zi,ui)∈D
e‖zi−z‖

2
2/h
∗ I(ui = u), h ∈ R} explicitly makes the

features of different sensitivity attributes more evenly spread, and functions in Fj is a simple two
layers MLP with softmax at the top. The leaned features by Fi-information minimization appear
more evenly spread as expected, however, the attacker functions in Fj can still achieve a high AUC
of 0.857.

Figure 3: (a) The t-sne visualization (van der Maaten & Hinton, 2008) of latent features of models
trained on UCI Adult dataset with/without F-information minimization, where the F is specified
above. (b) The AUC of predicted sensitive attribute on different dataset. The (Fi,Fj) element is
the test AUC of the functions in Fj can achieve on the features that are obtained by Fi-information
minimization.

G MINIMALITY OF PREDICTIVE FAMILY

Define FX→P(Y) = {g : X → P(Y)|∃f ∈ F ,∀x ∈ X , g[x] = f [x]}. Similarly define F∅→P(Y) =
{g : ∅→ P(Y)|∃f ∈ F ,∀x ∈ X , g[∅] = f [∅]}. Intuitively, FX→P(Y) (resp. F∅→P(Y)) restricts
the domain of functions in F to X (resp. ∅).

Non-Negativity As we demonstrated in Proposition 2, optional-ignorance guarantees that in-
formation will be non-negativity for any X and Y . Conversely, given any discrete X , Z,
F∅→P(Y), FX→P(Y) not satisfying optional-ignorance, there exists distribution X , Y such that
IF (X → Y ) < 0. Choose Y ∼ f∗[∅] where f∗ is the function that has no correspondent
g ∈ FX→P(Y) that can ignore it’s inputs. Pick X as the uniform distribution, and note that for
all g ∈ G, there exists some measurable subset X ′ ⊂ X on which g will produce a distribution
unequal to f∗[∅], and therefore having higher crossentropy. The expected crossentropy expressed in
HFX→P(Y)

(Y |X) is thus higher than in HF∅→P(Y)
(Y ), and IF (X → Y ) < 0.

Independence Given any discrete X , Y , F∅→P(Y), FX→P(Y) not satisfying optional-ignorance,
there exists an independent X , Y such that IF (X → Y ) > 0. Choose Y to be the distribution that
can be expressed as g[x] for some x ∈ X, g ∈ FX→P(Y), but which cannot be expressed by any
f ∈ F∅→P(Y). Let X be the distribution with all it’s mass on x, and note that the crossentropy of Y
with g[x] will be less than that of the function f [∅], which differs on a measurable subset. Thus, the
optional-ignorance is the least we could ask of function classes in order for the F-Information to be
both nonnegative and take the value 0 when two distributions are independent.
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