
Under review as a conference paper at ICLR 2020

PREDICTION POISONING: TOWARDS DEFENSES
AGAINST DNN MODEL STEALING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

High-performance Deep Neural Networks (DNNs) are increasingly deployed in
many real-world applications e.g., cloud prediction APIs. Recent advances in
model functionality stealing attacks via black-box access (i.e., inputs in, predic-
tions out) threaten the business model of such applications, which require a lot of
time, money, and effort to develop. Existing defenses take a passive role against
stealing attacks, such as by truncating predicted information. We find such passive
defenses ineffective against DNN stealing attacks. In this paper, we propose the
first defense which actively perturbs predictions targeted at poisoning the train-
ing objective of the attacker. We find our defense effective across a wide range
of challenging datasets and DNN model stealing attacks, and additionally outper-
forms existing defenses. Our defense is the first that can withstand highly accurate
model stealing attacks for tens of thousands of queries, amplifying the attacker’s
error rate up to a factor of 85×with minimal impact on the utility for benign users.

1 INTRODUCTION

Effectiveness of state-of-the-art DNN models at a variety of predictive tasks has encouraged their
usage in a variety of real-world applications e.g., home assistants, autonomous vehicles, commercial
cloud APIs. Models in such applications are valuable intellectual property of their creators, as
developing them for commercial use is a product of intense labour and monetary effort. Hence, it is
vital to preemptively identify and control threats from an adversarial lens focused at such models.
In this work we address model stealing, which involves an adversary attempting to counterfeit the
functionality of a target victim ML model by exploiting black-box access (query inputs in, posterior
predictions out).

Stealing attacks dates back to Lowd & Meek (2005), who addressed reverse-engineering linear spam
classification models. Recent literature predominantly focus on DNNs (specifically CNN image
classifiers), and are shown to be highly effective (Tramèr et al., 2016) on complex models (Orekondy
et al., 2019), even without knowledge of the victim’s architecture (Papernot et al., 2017b) nor the
training data distribution. The attacks have also been shown to be highly effective at replicating
pay-per-query image prediction APIs, for as little as $30 (Orekondy et al., 2019).

Defending against stealing attacks however has received little attention and is lacking. Existing
defense strategies aim to either detect stealing query patterns (Juuti et al., 2019), or degrade qual-
ity of predicted posterior via perturbation. Since detection makes strong assumptions on the at-
tacker’s query distribution (e.g., small L2 distances between successive queries), our focus is on
the more popular perturbation-based defenses. A common theme among such defenses is accuracy-
preserving posterior perturbation: the posterior distribution is manipulated while retaining the top-1
label. For instance, rounding decimals (Tramèr et al., 2016), revealing only high-confidence predic-
tions (Orekondy et al., 2019), and introducing ambiguity at the tail end of the posterior distribution
(Lee et al., 2018). Such strategies benefit from preserving the accuracy metric of the defender. How-
ever, in line with previous works (Tramèr et al., 2016; Orekondy et al., 2019; Lee et al., 2018), we
find models can be effectively stolen using just the top-1 predicted label returned by the black-box.
More specifically, in many cases we observe (see Fig. 1) <1% difference between attacks that use
the full range of posteriors to train stolen models and the top-1 label alone. In this paper, we work
towards effective defenses (red line in Fig. 1) against DNN stealing attacks at a marginal cost to
defender’s accuracy.

1

Under review as a conference paper at ICLR 2020

0 10k 20k 30k 40k 50k
queries

20

40

60

80

100

%
ac

cu
ra

cy
sto

len

MNIST

undefended
top-1 label
our defense

Figure 1: We find existing de-
fenses ineffective against recent
attacks. Our defense in con-
trast significantly mitigates the
attacks.

Attacker’s Loss Landscape

Our Perturbation Objective:

Figure 2: We perturb posterior
predictions ỹ = y + δ, with an
objective of poisoning the adver-
sary’s gradient signal.

The main insight to our approach is that unlike a benign user, a
model stealing attacker additionally uses the predictions to train a
replica model. By introducing controlled perturbations to predic-
tions, our approach targets poisoning the training objective (see Fig.
2). Our approach allows for a utility-preserving defense, as well as
trading-off a marginal utility cost to significantly degrade attacker’s
performance. As a practical benefit, the defense involves a single
hyperparameter (perturbation utility budget) and can be used with
minimal overhead to any classification model without retraining or
modifications.

We rigorously evaluate our approach by defending six victim mod-
els, against four recent and effective DNN stealing attack strategies
(Papernot et al., 2017b; Juuti et al., 2019; Orekondy et al., 2019).
Our defense consistently mitigates all stealing attacks and further
shows improvements over multiple baselines. In particular, we find
our defenses degrades the attacker’s query sample efficiency by 1-2
orders of magnitude. Our approach significantly reduces the at-
tacker’s performance (e.g., 30-53% reduction on MNIST and 13-
28% on CUB200) at a marginal cost (1-2%) to defender’s test accu-
racy. Furthermore, our approach can achieve the same level of mit-
igation as baseline defenses, but by introducing significantly lesser
perturbation.

Contributions. (i) We propose the first utility-constrained de-
fense against DNN model stealing attacks; (ii) We present the first
active defense which poisons the attacker’s training objective by in-
troducing bounded perturbations; and (iii) Through extensive exper-
iments, we find our approach consistently mitigate various attacks
and additionally outperform baselines.

2 RELATED LITERATURE

Model stealing attacks (also referred to as ‘extraction’ or ‘reverse-engineering’) in literature aim to
infer hyperparameters (Oh et al., 2018; Wang & Gong, 2018), recover exact parameters (Lowd &
Meek, 2005; Tramèr et al., 2016; Milli et al., 2018), or extract the functionality (Correia-Silva et al.,
2018; Orekondy et al., 2019) of a target black-box ML model. In some cases, the extracted model
information is optionally used to perform evasion attacks (Lowd & Meek, 2005; Nelson et al., 2010;
Papernot et al., 2017b). The focus of our work is model functionality stealing, where the attacker’s
yardstick is test-set accuracy of the stolen model. Initial works on stealing simple linear models
(Lowd & Meek, 2005) have been recently succeeded by attacks shown to be effective on complex
CNNs (Papernot et al., 2017b; Correia-Silva et al., 2018; Orekondy et al., 2019) (see Appendix A
for an exhaustive list). In this work, we works towards defenses targeting the latter line of DNN
model stealing attacks.

Since ML models are often deployed in untrusted environments, a long line of work exists on guar-
anteeing certain (often orthogonal) properties to safeguard against malicious users. The properties
include security (e.g., robustness towards adversarial evasion attacks (Biggio et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2018)) and integrity (e.g., running in untrusted environments (Tramer
& Boneh, 2019)). To prevent leakage of private attributes (e.g., identities) specific to training data in
the resulting ML model, differential privacy (DP) methods (Dwork et al., 2014) introduce random-
ization during training (Abadi et al., 2016; Papernot et al., 2017a). In contrast, our defense objective
is to provide confidentiality and protect the functionality (intellectual property) of the ML model
against illicit duplication.

Model stealing defenses are limited. Existing works (which is primarily in multiclass classification
settings) aim to either detect stealing attacks (Juuti et al., 2019; Kesarwani et al., 2018; Nelson et al.,
2009; Zheng et al., 2019) or perturb the posterior prediction. We focus on the latter since detec-
tion involves making strong assumptions on adversarial query patterns. Perturbation-based defenses
are predominantly non-randomized and accuracy-preserving (i.e., top-1 label is unchanged). Ap-

2

Under review as a conference paper at ICLR 2020

proaches include revealing probabilities only of confident classes (Orekondy et al., 2019), rounding
probabilities (Tramèr et al., 2016), or introducing ambiguity in posteriors (Lee et al., 2018). None
of the existing defenses claim to mitigate model stealing, but rather they only marginally delay the
attack by increasing the number of queries. Our work focuses on presenting an effective defense,
significantly decreasing the attacker’s query sample efficiency within a principled utility-constrained
framework.

3 PRELIMINARIES

Model Functionality Stealing. Model stealing attacks are cast as an interaction between two
parties: a victim/defender V (‘teacher’ model) and an attacker A (student model). The only means
of communication between the parties are via black-box queries: attacker queries inputs x ∈ X
and defender returns a posterior probability distribution y ∈ ∆K = P (y|x) = FV (x), where
∆K = {y � 0,1Ty = 1} is the probability simplex over K classes (we use K instead of K − 1
for notational convenience). The attack occurs in two (sometimes overlapping) phases: (i) querying:
the attacker uses the black-box as an oracle labeler on a set of inputs to construct a ‘transfer set’ of
input-prediction pairs Dtransfer = {(xi,yi)}Bi=1; and (ii) training: the attacker trains a model FA to
minimize the empirical risk on Dtransfer. The end-goal of the attacker is to maximize accuracy on a
held-out test-set (considered the same as that of the victim for evaluation purposes).

Knowledge-limited Attacker. In model stealing, attackers justifiably lack complete knowledge of
the victim model FV . Of specific interest are the model architecture and the input data distribution
to train the victim model PV (X) that are not known to the attacker. Since prior work (Hinton et al.,
2015; Papernot et al., 2016; Orekondy et al., 2019) indicates functionality largely transfers across
architecture choices, we now focus on the query data used by the attacker. Existing attacks can be
broadly categorized based on inputs {x ∼ PA(X)} used to query the black-box: (a) independent
distribution: (Tramèr et al., 2016; Correia-Silva et al., 2018; Orekondy et al., 2019) samples inputs
from some distribution (e.g., ImageNet for images, uniform noise) independent to input data used to
train the victim model; and (b) synthetic set: (Papernot et al., 2017b; Juuti et al., 2019) augment a
limited set of seed data by adaptively querying perturbations (e.g., using FGSM) of existing inputs.
We address both attack categories in our paper.

Defense Objectives We perturb predictions in a controlled setting: ỹ = F δV (x) = y + δ s.t.
ỹ,y ∈ ∆K . The defender has two (seemingly conflicting) objectives: (i) utility: such that perturbed
predictions remain useful to a benign user. We consider two utility measures: (a) Acc(F δV ,Dtest):
accuracy of defended model on test examples; and (b) dist(y, ỹ) = ||y− ỹ||p = ε to measure pertur-
bation. (ii) non-replicability: to reduce the test accuracy of an attacker (denoted as Acc(FA,Dtest))
who exploits the predictions to train a replica FA on Dtransfer. For consistency, we evaluate both the
defender’s and attacker’s stolen model on the same set of test examples Dtest.

Defender’s Assumptions We closely mimic an assumption-free scenario similar to existing
perturbation-based defenses. The scenario entails the defender: (a) unaware whether a query is
malicious or benign; (b) lacking prior knowledge of the strategy used by an attacker; and (c) per-
turbing each prediction independently (hence circumventing Sybil attacks). For added rigor, we also
study attacker’s countermeasures to our defense in Section 5.

4 APPROACH: MAXIMIZING ANGULAR DEVIATION BETWEEN GRADIENTS

Motivation: Targeting First-order Approximations We identify that the attacker eventually op-
timizes parameters of a stolen model F (·;w) (we drop the subscript ·A for readability) to minimize
the loss on training examples {(xi, ỹi)}. Common to a majority of optimization algorithms is es-
timating the first-order approximation of the empirical loss, by computing the gradient of the loss
w.r.t. the model parameters w ∈ RD:

u = −∇wL(F (x;w),y) (1)

Maximizing Angular Deviation (MAD) The core idea of our approach is to perturb the posterior
probabilities y which results in an adversarial gradient signal that maximally deviates (see Fig. 2)

3

Under review as a conference paper at ICLR 2020

from the original gradient (Eq. 1). More formally, we add targeted noise to the posteriors which
results in a gradient direction:

a = −∇wL(F (x;w), ỹ) (2)
to maximize the angular deviation between the original and the poisoned gradient signals:

max
a

2(1− cos∠(a,u)) = max
â
||â− û||22 (â = a/||a||2, û = u/||u||2) (3)

Given that the attacker model is trained to match the posterior predictions, such as by minimizing
the cross-entropy loss L(y, ỹ) = −

∑
k ỹk log yk we rewrite Equation (2) as:

a = −∇wL(F (x;w), ỹ) = ∇w

∑
k

ỹk logF (x;w)k =
∑
k

ỹk∇w logF (x;w)k = GT ỹ

where G ∈ RK×D represents the Jacobian over log-likelihood predictions F (x;w) over K classes
w.r.t. parameters w ∈ RD. By similarly rewriting Equation (1), substituting them in Equation (3)
and including the constraints, we arrive at our poisoning objective:

max
ỹ

∥∥∥∥ GT ỹ

||GT ỹ||2
− GTy

||GTy||2

∥∥∥∥2

2

(= H(ỹ)) (4)

where G = ∇w logF (x;w) (G ∈ RK×D) (5)

s.t ỹ ∈ ∆K (Simplex constraint) (6)
dist(y, ỹ) ≤ ε (Utility constraint) (7)

We now address two challenges in the above formulation: (a) solving a non-standard and non-
convex constrained maximization objective and (b) estimating jacobian G without access to at-
tacker’s model.

Heuristic Solver Gradient-based strategies to optimize objective (Eq. 4) often leads to poor local
maxima. This is in part due to the objective increasing in all directions around point y (assumingG
is full-rank), making optimization sensitive to initialization. Consequently, we resort to a heuristic
to solve for ỹ. Hoffman (1981) show that the maximum of a convex function over a compact convex
set occurs at the extreme points of the set. Hence, our heuristic involves looking for a maximizer
y∗ for Eq. 4 by iterating over the K extremes yk (where yk=1) of the probability simplex ∆K .
We estimate the perturbed posteriors ỹ as a linear interpolation of the posteriors and the global
maximum: ỹ = (1 − α)y + αy∗, where α is selected such that the utility constraint (Eq. 7) is
satisfied. An algorithmic form to our perturbation approach is presented in Appendix B.

Estimating G Since we lack access to adversary’s model F , we estimate the jacobian G =
∇w logFsur(x;w) (Eq. 5) per input query x using a surrogate model Fsur. Empirically, we found
our defenses to perform better with models Fsur far from convergence, with the best results on a
fixed randomly initialized model. We speculate this occurs due to surrogate models with a high loss
provide better gradient signals to guide the attacker.

Variant: MAD-argmax Within our defense formulation, we can encode an additional constraint
to preserve the accuracy of predictions: dist-argmax(y, ỹ) = 0 if arg maxk yk = arg maxk ỹk
and, ∞ otherwise. We absorb the k-th label-preserving constraint in our solver by iterating over
the extremes of the probability simplex ∆K

k = {y � 0,1Ty = 1, yk ≥ yj , k 6= j} ⊆ ∆K . This
variant helps us perform accuracy-preserving perturbations similar to prior work. But in contrast,
the perturbations are constrained (Eq. 7) and are specifically introduced to maximize the MAD
objective.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

Victim Models and Datasets. We set up six victim models (see Table 1), each model trained on a
popular image classification dataset. All models are trained using SGD (LR = 0.1) with momentum
(0.5) for 30 (LeNet) or 100 epochs (VGG16), with a LR decay of 0.1 performed every 50 epochs.
We train and evaluate each victim model on their respective train/test sets.

4

Under review as a conference paper at ICLR 2020

FV Acc(FV) Acc(FA)

jbda jbself jbtop3 k.off

MNIST (LeNet) 99.4 89.2 89.4 87.3 99.0
FashionMNIST (LeNet) 92.0 38.7 45.8 68.7 69.2
CIFAR10 (VGG16) 92.0 28.6 20.7 73.8 78.7
CIFAR100 (VGG16) 72.2 5.3 2.9 39.2 51.9
CUB200 (VGG16) 80.4 6.8 3.9 21.5 65.1
Caltech256 (VGG16) 80.0 12.5 16.0 29.5 74.6

Table 1: Victim models and Accuracies. All accuracies are
w.r.t undefended victim model.

Attack Models. We hope to broadly
address all DNN model stealing strategies
during our defense evaluation. To achieve
this, we consider attacks that vary in query
data distributions (independent and syn-
thetic; see Section 3) and strategies (ran-
dom and adaptive). Specifically, in our
experiments we use the following attack
models: (i) Jacobian-based Data Aug-
mentation ‘JBDA’ (Papernot et al., 2017b);
(ii,iii) ‘JB-self’ and ‘JB-top3’ (Juuti et al., 2019); and (iv) Knockoff Nets ‘knockoff’ (Orekondy
et al., 2019); We follow the default configurations of the attacks where possible. A recap and imple-
mentation details of the attack models are available in Appendix C.

In all attack strategies, the adversary trains a model FA to minimize the cross-entropy loss on a
transfer set (Dtransfer = {(xi, ỹi)}Bi=1) which is obtained by iteratively querying inputs xi (sampled
or adaptively synthesized) to the defender’s model. By default, we use B=50K queries, which
achieves reasonable performance for all attacks and additionally makes defense evaluation tractable.
In line with prior work (Papernot et al., 2016; Orekondy et al., 2019), we too find (Section 5.2.3)
attack and defense performances are unaffected by choice of architectures, and hence use the victim
architecture for the stolen model FA. Due to the complex parameterization of VGG-16 (100M+),
we initialize the weights from a pretrained TinyImageNet or ImageNet model (except for the last
FC layer, which is trained from scratch). All stolen models are trained using SGD (LR=0.1) with
momentum (0.5) for 30 epochs (LeNet) and 100 epochs (VGG16). We find choices of attacker’s
architecture and optimization does not undermine the defense (discussed in Section 5.2.3).

Effectiveness of Attacks. The test performance of the undefended victim model FV and adver-
sary’s model FA stolen using the above attacks are reported in Table 1. We observe for all six victim
models, using just 50K black-box queries, attacks are able to significantly extract victim’s function-
ality e.g., >87% on MNIST. We find the knockoff attack to be the strongest, exhibiting reasonable
performance even on complex victim models e.g., 74.6% (0.93×Acc(FV)) on Caltech256.

How Good are Existing Defenses? Most existing defenses in literature (Tramèr et al., 2016;
Orekondy et al., 2019; Lee et al., 2018) perform some form of information truncation on the poste-
rior probabilities e.g., rounding, returning top-k labels; all strategies preserve the rank of the most
confident label. We now evaluate model stealing attacks on the extreme end of information trun-
cation, wherein the defender returns just the top-1 ‘argmax’ label. This strategy illustrates a rough
lower bound on the strength of the attacker when using existing defenses. Specific to knockoff,
we observe the attacker is minimally impacted on simpler datasets (e.g., 0.2% accuracy drop on
CIFAR10; see Fig. A2 in Appendix). While this has a larger impact on more complex datasets
involving numerous classes (e.g., a maximum of 23.4% drop observed on CUB200), the strategy
also introduces a significant perturbation (L1=1±0.5) to the posteriors. The results suggest existing
defenses, which largely preserve the top-1 label, are ineffective at mitigating model stealing attacks.

Defenses: Evaluation. We evaluate all defenses on a non-replicability vs. utility curve at various
operating points ε of the defense. We furthermore evaluate the defenses for a large query budget
(50K). We use as non-replicability the accuracy of the stolen model on held-out test data Dtest.
We use two utility metrics: (a) accuracy: test-accuracy of the defended model producing perturbed
predictions on Dtest; and (b) perturbation magnitude ε: measured as L1 distance ||y − ỹ||1.

Defense: Baselines. We compare our approaches against three methods: (i) reverse-sigmoid
(Lee et al., 2018): which softens the posterior distribution and introduces ambiguity among non-
argmax probabilities. For this method, we evaluate non-replicability and utility metrics for the
defense operating at various choices of their hyperparameter β ∈ [0, 1], while keeping their dataset-
specific hyperparameter γ fixed (MNIST: 0.2, FashionMNIST: 0.4, CIFAR10: 0.1, rest: 0.2). (ii)
random noise: For controlled random-noise, we add uniform random noise δz on the logit pre-
diction scores (z̃ = z + δz , where z = log(y

1−y)), enforce utility by projecting δz to an εz-ball
(Duchi et al., 2008), and renormalizing probabilities ỹ = 1

1+e−z̃ . (iii) dp-sgd: while our method
and previous two baselines perturbs predictions, we also compare against introducing randomization
to victim model parameters by training with the DP-SGD algorithm (Abadi et al., 2016). DP is a

5

Under review as a conference paper at ICLR 2020

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

MNIST

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100
FashionMNIST

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100
CIFAR10

jbda jbself jbtop3 knockoff ideal defense undefended

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100
CIFAR100

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100
CUBS200

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100
Caltech256

Figure 3: Attackers vs. Our Defense. Curves are obtained by varying degree of perturbation ε (Eq. 7) in our
defense. ↑ denotes higher numbers are better and ↓, lower numbers are better. Non-replicability objective is
presented on the x-axis and utility on the y-axis.

40 60 80 100

0.0

0.5

1.0

1.5

||y
−
ỹ
|| 1
↓

MNIST

20 40 60

0.0

0.5

1.0

1.5

FashionMNIST

40 60 80

0.0

0.5

1.0

1.5

CIFAR10

0 20 40

0.0

0.5

1.0

1.5

CIFAR100

0 20 40 60

0.0

0.5

1.0

1.5

CUBS200

0 20 40 60

0.0

0.5

1.0

1.5

Caltech256

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

mad mad-argmax randnoise dpsgd reversesigmoid ideal defense

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

Figure 4: Knockoff attack vs. Ours + Baseline Defenses. Non-replicability is presented on the x-axis. We
consider two utility measures: (a) top: Utility = L1 distance (b) bottom: Utility = Defender’s accuracy. Region
above the diagonal indicates instances where defender outperforms the attacker.

popular technique to protect the model against training data inference attacks. This baseline allows
us to verify whether the same protection extends to model functionality.

5.2 RESULTS

In the follow sections, we demonstrate the effectiveness of our defense rigorously evaluated across
a wide range of complex datasets, attack models, defense baselines, query, and utility budgets. For
readability, we first evaluate the defense against attack models, proceed to comparing the defense
against strong baselines and then provide an analysis of the defense.

5.2.1 MAD DEFENSE VS. ATTACKS

Figure 3 presents evaluation of our defense against the four attack models. To successfully mitigate
attacks as a defender, we want the defense curves (solid lines with operating points denoted by
thin crosses) to move away from undefended accuracies (denoted by circles, where ε=0.0) to ideal
defense performances (cyan cross, where Acc(Def.) is unchanged and Acc(Att.) is chance-level).

We observe from the Figure 3 that by employing an identical defense across all datasets and at-
tacks, we find the effectiveness of the attacker can be greatly reduced. Across all models, we find
MAD provides reasonable operating points (above the diagonal), where defender achieves signifi-
cantly higher test accuracies compared to the attacker. For instance, on MNIST, for <1% drop in
defender’s accuracy, our defense simultaneously reduces accuracy of the jbtop3 attacker by 64%
(99.4%→35.7%) and knockoff by 30% (99.4%→69.8%). We find similar promising results even
on high-dimensional complex datasets e.g., on CUB200, a 23% (65%→41.9%) performance drop
of knockoff for 2% drop in defender’s test performance. Our results indicate effective defenses
are achievable, where the defender can trade-off a marginal utility cost to drastically impede the
attacker.

6

Under review as a conference paper at ICLR 2020

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

MAD
MAD-argmax
random-noise
reverse-sigmoid
ideal

Figure 5: Attacker argmax.
Follow-up to Figure 4b (CI-
FAR10), but with attacker us-
ing only the argmax label.

0◦

20◦

40◦

60◦
80◦100◦

120◦

140◦

160◦

180◦
1 10 100 1k 10k

114.7◦

24.9◦

15.9◦

4.4◦
0.6◦

0.01 0.1 0.5 1.0 2.0

Figure 6: Histogram of Angular Devia-
tions. Presented for MAD attack on CI-
FAR10 with various choices of ε.

0 10k 20k 30k 40k 50k
Iterations N

0.0

0.02

0.04

0.06

0.08

0.1

0.12

te
st-

los
s(

at
ta

ck
er

)

ε = 0.01
ε = 0.1
ε = 0.5
ε = 1.0
ε = 2.0

Figure 7: Test loss. Visual-
ized during training. Colours
and lines correspond to ε val-
ues in Fig. 6.

5.2.2 MAD DEFENSE VS. BASELINE DEFENSES

We now study how our approach MAD compares to baseline defenses, by evaluating the defenses
against the knockoff attack (which resulted in the strongest attack in our experiments). From Figure
4, we observe:

(i) Utility objective = L1 distance (Fig. 4a): Although random-noise and reverse-sigmoid reduce
attacker’s accuracy, the strategies in most cases involves larger perturbations. In contrast, MAD and
MAD-argmax provides similar non-replicability (i.e., Acc(Att.)) with significantly lesser perturba-
tion, especially at lower magnitudes. For instance, on MNIST (first column), MAD (L1 = 0.95)
reduces the accuracy of the attacker to under 80% with 0.63× the perturbation as that of reverse-
sigmoid and random-noise (L1 ≈ 1.5).

(ii) Utility objective = argmax-preserving (Fig. 4b): By setting a hard constraint on retaining the la-
bel of the predictions, we find the accuracy-preserving defenses MAD-argmax and reverse-sigmoid
successfully reduce the performance of the attacker by at least 20% across all datasets. In most
cases, we find MAD-argmax in addition achieve this objective by introducing lesser distortion to the
predictions compared to reverse-sigmoid. For instance, in Fig. 4a, we find MAD-argmax consis-
tently reduce the attacker accuracy to the same amount at lesser L1 distances. In reverse-sigmoid,
we attribute the large L1 perturbations to a shift in posteriors towards a uniform distribution e.g.,
mean entropy of perturbed predictions is 3.02 ± 0.16 (max-entropy = 3.32) at L1=1.0 for MNIST;
in contrast, MAD-argmax displays a mean entropy of 1.79 ± 0.11. However, common to accuracy-
preserving strategies is a pitfall that the top-1 label is retained. In Figure 5 (see overlapping red and
yellow cross-marks), we present the results of training the attacker using only the top-1 label. In line
with previous discussions, we find that the attacker is able to significantly recover the original per-
formance of the stolen model for accuracy-preserving defenses MAD-argmax and reverse-sigmoid.

(iii) Non-replicability vs. utility trade-off (Fig. 4b): We now compare our defense MAD (blue lines)
with other baselines (rand-noise and dp-sgd) which trade-off utility to mitigate model stealing.
Our results indicate MAD offers a better defense (lower attacker accuracies for similar defender
accuracies). For instance, to reduce the attacker’s accuracy to <70%, while the defender’s accuracy
significantly degrades using dp-sgd (39%) and rand-noise (56.4%), MAD involves a marginal
decrease of 1%.

5.2.3 ANALYSIS

How much angular deviation does MAD introduce? To obtain insights on the angular deviation
induced between the true and the perturbed gradient, we conduct an experiment by tracking the true
gradient direction (which was unknown so far) at each training step. We simulate this by training
an attacker model using online SGD (LR=0.001) over N iterations using B distinct images to query
and a batch size of 1. At each step t of training, the attacker queries a randomly sampled input xt
to the defender model and backpropogates the loss resulting from ỹt. In this particular experiment,
the perturbation ỹt is crafted having exact knowledge of the attacker’s parameters. We evaluate the
angular deviation between gradients with (a) and without (u) the perturbation.

7

Under review as a conference paper at ICLR 2020

40 50 60 70 80 90 100
Acc(Attacker) ↓

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

||y
−
ỹ
|| 1
↓

MNIST

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

MNIST

MAD
MAD-argmax
G = I

y∗=rand
ideal

Figure 8: MAD Ablation experiments. Utility = (left)
L1 distance (right) defender test accuracy.

0 20 40 60 80
Acc(Attacker) ↓

0.0

0.2

0.4

0.6

0.8

1.0

||y
−
ỹ
|| 1
↓

CIFAR10

0 20 40 60 80 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

CIFAR10

none
argmax
arch-resnet34

arch-densenet
arch-alexnet
nquery

nquery+aug
opt-adam

opt-adagrad
ideal

Figure 9: Subverting the Defense.
In Figure 6, we visualize a histogram of deviations: θ = arccos u·a

||u||||a|| , where u = ∇wL(wt,y, ·)
and a = ∇wL(wt, ỹ, ·). We observe: (i) although our perturbation space is severely restricted (a
low-dimensional probability simplex), we can introduce surprisingly high deviations (0-115◦) in the
high-dimensional parameter space of the VGG16; (ii) for ε values at reasonable operating points
which preserves the defender’s accuracy within 10% of the undefended accuracy (e.g., ε ∈ [0.95,
0.99] for CIFAR10), we see deviations with mean 24.9◦ (yellow bars in Fig. 6). This indicates
that the perturbed gradient on an average leads to a slower decrease in loss function; (iii) on the
extreme end, with ε = εmax = 2, on an average, we find the perturbations successfully flips (>90◦)
the gradient direction leading to an increase on the test loss, a seen in Figure 7 (blue line). We find
our approach considerably influences the gradient direction.

Ablative Analysis. We present an ablation analysis of our approach in Figure 8. In this experiment,
we compare our approach MAD and MAD-argmax to: (a) G = I: We substitute the jacobian G
(Eq. 5) with a K ×K identity matrix; and (b) y∗=rand: Inner maximization term (Eq. 4) returns
a random extreme of the simplex. Note that both (a) and (b) do not use the gradient information to
perturb the posteriors.

From Figure 8, we observe: (i) poor performance of y∗=rand, indicating random untargeted per-
turbations of the posterior probability is a poor strategy; (ii) G = I , where the angular deviation
is maximized between the posterior probability vectors is a slightly better strategy; (iv) MAD out-
performs the above approaches. Consequently, we find using the gradient information (although a
proxy to the attacker’s gradient signal) within our formulation (Equation 4) is crucial to providing
better model stealing defenses.

Subverting the Defense. We now explore various strategies an attacker can use to circumvent
the defense. To this end, we evaluate the following strategies: (a) argmax: attacker uses only the
most-confident label during training; (b) arch-*: attacker trains other choices of architectures; (c)
nquery: attacker queries each image multiple times; (d) nquery+aug: same as (c), but with random
cropping and horizontal flipping; and (e) opt-*: attacker uses an adaptive LR optimizer e.g., ADAM
(Kingma & Ba, 2014).

We present results over the subversion strategies in Figure 9. We find our defense robust to above
strategies. Our results indicate that the best strategy for the attacker to circumvent our defense
is to discard the probabilities and rely only on the most confident label to train the stolen model.
In accuracy-preserving defenses (see Fig. 5), this previously resulted in an adversary entirely cir-
cumventing the defense (recovering up to 1.0× original performance). In contrast, we find MAD
is nonetheless effective in spite of the strategy, maintaining a 9% absolute accuracy reduction in
attacker’s stolen performance.

6 CONCLUSION

In this work, we were motivated by limited success of existing defenses against DNN model stealing
attacks. While prior work is largely based on passive defenses focusing on information truncation,
we proposed the first active defense strategy that attacks the adversary’s training objective. We found
our approach effective in defending a variety of victim models and against various attack strategies.
In particular, we find our attack can reduce the accuracy of the adversary by up to 65%, without
significantly affecting defender’s accuracy.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In CCS, 2016.

Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang Zhang. Adding robustness to support vector
machines against adversarial reverse engineering. In CIKM, 2014.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In ECML
PKDD, 2013.

Varun Chandrasekaran, K Chaudhari, Irene Giacomelli, Somesh Jha, and Songbai Yan. Exploring
connections between active learning and model extraction. arXiv preprint arXiv:1905.09165,
2019.

Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F de Souza, and Thiago
Oliveira-Santos. Copycat cnn: Stealing knowledge by persuading confession with random non-
labeled data. In IJCNN, 2018.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l 1-ball for learning in high dimensions. In ICML, 2008.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Karla Leigh Hoffman. A method for globally minimizing concave functions over convex sets. Math-
ematical Programming, 20(1):22–32, 1981.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High-
fidelity extraction of neural network models. arXiv preprint arXiv:1909.01838, 2019.

Mika Juuti, Sebastian Szyller, Alexey Dmitrenko, Samuel Marchal, and N Asokan. Prada: Protect-
ing against dnn model stealing attacks. In Euro S&P, 2019.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model extraction warning
in mlaas paradigm. In ACSAC, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. Defending against model stealing
attacks using deceptive perturbations. S&P Deep Learning and Security (DLS) Workshop, 2018.

Daniel Lowd and Christopher Meek. Adversarial learning. In KDD, 2005.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. Model reconstruction from
model explanations. arXiv preprint arXiv:1807.05185, 2018.

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein,
Udam Saini, Charles Sutton, JD Tygar, and Kai Xia. Misleading learners: Co-opting your spam
filter. In Machine learning in cyber trust. 2009.

Blaine Nelson, Benjamin Rubinstein, Ling Huang, Anthony Joseph, Shing-hon Lau, Steven Lee,
Satish Rao, Anthony Tran, and Doug Tygar. Near-optimal evasion of convex-inducing classifiers.
In AISTATS, 2010.

9

Under review as a conference paper at ICLR 2020

Seong Joon Oh, Max Augustin, Bernt Schiele, and Mario Fritz. Towards reverse-engineering black-
box neural networks. In ICLR, 2018.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In CVPR, 2019.

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and Vinod Ganapathy. A
framework for the extraction of deep neural networks by leveraging public data. arXiv preprint
arXiv:1905.09165, 2019.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277,
2016.

Nicolas Papernot, Martı́n Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. In ICLR, 2017a.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Asia CCS, 2017b.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In ICLR, 2019.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction apis. In USENIX Security, 2016.

Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine learning. In S&P,
2018.

Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. Bdpl: A boundary differen-
tially private layer against machine learning model extraction attacks. In ESORICS, 2019.

10

Under review as a conference paper at ICLR 2020

Appendix

A RELATED WORK: EXTENSION

Black-box type Proposed Attack Proposed Defense

Input Query Data Adapt.? Strategy P/D? AP? AC

1. Lowd & Meek (2005) Linear Random Noise 3 - - - -
2. Nelson et al. (2009) Linear Labeled Data 7 Rejection D 7 1
3. Nelson et al. (2010) Linear Random Noise 3 - - - -
4. Alabdulmohsin et al. (2014) Linear Random Noise 3 Ensembling P 7 4
5. Tramèr et al. (2016) Linear, NN Random Noise † Rounding P 3 5
6. Milli et al. (2018) Linear, NN Random Noise 3 - - - -
7. Kesarwani et al. (2018) Decision Tree - - Detection D 3 5
8. Chandrasekaran et al. (2019) Linear Random Noise 3 Random Pert. P 7 -

9. Papernot et al. (2017b) CNN Synth. Data 3 - - - -
10. Correia-Silva et al. (2018) CNN Unlabeled Data 7 - - - -
11. Pal et al. (2019) CNN Unlabeled Data † - - - -
12. Orekondy et al. (2019) CNN* Unlabeled Data † Rounding, Top-k P 3 12
13. Jagielski et al. (2019) CNN* Unlabeled Data 3 - - - -

14. Juuti et al. (2019) CNN Synth. Data 3 Detection D 3 9,14
15. Lee et al. (2018) CNN - - Reverse sigmoid P 3 9
16. Ours CNN* - - Targeted Pert. P † 9,12,14

Table A1: Existing DNN Attacks and Defenses. Complements the discussion in Section 2. ‘CNN∗’: Complex
ImageNet-like CNN. ‘†’: Both. ‘P/D’: Perturbation/Detection. ‘AP’: Accuracy preserving (i.e., maintains top-1
labels of predictions). ‘AA’: Attacks addressed.

B DETAILED ALGORITHM

We present a detailed algorithm (see Algorithm 1) for the approach described in Section 4.

1 Function PerturbedPredict-MAD(x):
Input: Input data x, model to defend FV (·; wV), proxy attacker model F (·; w)

Output: Perturbed posterior probability ỹ ∈ ∆K s.t. dist(ỹ,y) ≤ ε
2 y := FV (x; wV) // Obtain K-dim posteriors
3 G := ∇w logF (x; w) // Pre-compute (K x D) Jacobian

4 y∗ := arg maxyk∈ext(∆K)

∥∥∥ GTyk

||GTyk||2 −
GTy
||GTy||2

∥∥∥2

2
// Alternatively ext(∆K

k)

for MAD-argmax
5 Define h(α) = (1− α)y + αy∗

6 α∗ := arg maxα∈[0,1],dist(·)≤ε dist(h(α), y∗) // Find optimal step-size via
bisection, or OptStep(.) for Lp norms

7 ỹ := h(α∗) // Perturbed probabilities
8 return ỹ
9

10 Function OptStep(y,y∗, ε, p):
11 α∗ := max

{
ε

||y−y∗||p , 1
}

12 return α∗

Algorithm 1: MAD Defense. To supplement approach in Section 4

11

Under review as a conference paper at ICLR 2020

0 20k 40k
queries

0
20
40
60
80

100

Ac
cu

ra
cy

(A
tta

ck
er

)

MNIST

0 20k 40k
queries

0
20
40
60
80

100
FashionMNIST

0 20k 40k
queries

0
20
40
60
80

100
CIFAR10

jbda jbself jbtop3 knockoff

0 20k 40k
queries

0
20
40
60
80

100
CIFAR100

0 20k 40k
queries

0
20
40
60
80

100
CUBS200

0 20k 40k
queries

0
20
40
60
80

100
Caltech256

Figure A1: Evaluation of all attacks on undefended victim models.

C ATTACK MODELS: RECAP AND IMPLEMENTATION DETAILS

Jacobian Based Data Augmentation (jbda). (Papernot et al., 2017b) The motivation of the
approach is to obtain a surrogate of the victim black-box classifier, with an end-goal of performing
evasion attacks (Biggio et al., 2013; Goodfellow et al., 2014). We restrict discussions primarily to
the first part of constructing the surrogate. To obtain the surrogate (the stolen model), the authors
depend on an unlabeled seed set, typically from the same distribution as that used to train the victim
model.

The key idea behind the approach is to query perturbations of inputs, to obtain a reasonable ap-
proximation of the decision boundary of the victim model. The attack strategy involves performing
the following steps in a repeated manner: (i) images from the substitute set (initially the seed) D is
labeled by querying the victim model FV as an oracle labeler; (ii) the surrogate model FA is trained
on the substitute dataset; (iii) the substitute set is augmented using perturbations of existing images:
Dρ+1 = Dρ ∪ {x+ λρ+1 · sgn(JF [FA(x)]) : x ∈ Dρ}, where J is the jacobian function.

We use a seed set of: 100 (MNIST and FashionMNIST), 500 (CIFAR10, CUB200, Caltech256) and
1000 (CIFAR100). We use the default set of hyperparameters of Papernot et al. (2017b) in other
respects.

Jacobian Based {self, top-k} (jbself, jbtop3). (Juuti et al., 2019) The authors generalize the
above approach, by extending the manner in which the synthetic samples are produced. In jbself,
the jacobian is calculated w.r.t to k nearest classes and in jb-self, w.r.t the maximum a posterior
class predicted by FA.

Knockoff Nets (knockoff). (Orekondy et al., 2019) Knockoff is a relatively recent attack model,
which demonstrated model stealing can be performed without access to seed samples. Rather, the
queries to the black-box involve natural images (which can be unrelated to the training data of the
victim model) sampled from a large independent data source e.g., ImageNet1K. The paper proposes
two strategies on how to sample images to query: random and adaptive. We use the random strategy
in the paper, since adaptive resulted in marginal increases in an open-world setup (which we have).

As the independent data sources in our knockoff attacks, we use: EMNIST-Letters (when stealing
MNIST victim model), EMNIST (FashionMNIST), CIFAR100 (CIFAR10), CIFAR10 (CIFAR100),
ImageNet1k (CUB200, Caltech256). Overlap between query images and the training data of the
victim models are purely co-incidental.

We use the code from the project’s public github repository.

D ADDITIONAL PLOTS

D.1 ATTACKER EVALUATION

We present evaluation of all attacks considered in the paper on an undefended model in Figure A1.
Furthermore, specific to the knockoff attack, we analyze how training using only the top-1 label
(instead of complete posterior information) affects the attacker in Figure A2.

12

Under review as a conference paper at ICLR 2020

0 20k 40k
queries

0
20
40
60
80

100

Ac
cu

ra
cy

(A
tta

ck
er

)

MNIST

0 20k 40k
queries

0
20
40
60
80

100
FashionMNIST

0 20k 40k
queries

0
20
40
60
80

100
CIFAR10

Posteriors Top-1 label

0 20k 40k
queries

0
20
40
60
80

100
CIFAR100

0 20k 40k
queries

0
20
40
60
80

100
CUBS200

0 20k 40k
queries

0
20
40
60
80

100
Caltech256

Figure A2: Stolen model trained using knockoff strategy on complete posterior information (y) and only the
top-1 label of the posteriors (argmaxk yk).

0 10k 20k 30k 40k 50k
Budget

0

20

40

60

80

100

M
NI

ST
-E

M
NI

ST
Le

tte
rs

Te
st

Ac
cu

ra
cy

ε = 0.1

MAD
Undefended

Defender
Attacker

0 10k 20k 30k 40k 50k
Budget

ε = 0.5

0 10k 20k 30k 40k 50k
Budget

ε = 0.99

0 10k 20k 30k 40k 50k
Budget

ε = 1.1

0 10k 20k 30k 40k 50k
Budget

0

20

40

60

80

100

Fa
sh

ion
M

NI
ST

-E
M

NI
ST

Te
st

Ac
cu

ra
cy

ε = 0.1

0 10k 20k 30k 40k 50k
Budget

ε = 0.5

0 10k 20k 30k 40k 50k
Budget

ε = 0.99

0 10k 20k 30k 40k 50k
Budget

ε = 1.1

0 10k 20k 30k 40k 50k
Budget

0

20

40

60

80

100

CI
FA

R1
0-

CI
FA

R1
00

Te
st

Ac
cu

ra
cy

ε = 0.1

0 10k 20k 30k 40k 50k
Budget

ε = 0.5

0 10k 20k 30k 40k 50k
Budget

ε = 0.99

0 10k 20k 30k 40k 50k
Budget

ε = 1.1

Figure A3: Budget vs. Test Accuracy. Supplements Fig. 3c in the main paper.

D.2 BUDGET VS. ACCURACY

We plot the budget (i.e., number of distinct black-box attack queries to the defender) vs. the test
accuracy of the defender/attacker in Figure A3. The figure supplements Figure 1 and the discussion
found in Section 5.2.1 of the main paper.

D.3 ATTACKER ARGMAX

In Figure A4, we perform the non-replicability vs. utility evaluation (complementing Fig. 5 in the
main paper) under a special situation: the attacker discards the probabilities and only uses the top-1
‘argmax’ label to train the stolen model. Relevant discussion can be found in Section 5.2.2.

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

MNIST-EMNISTLetters

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

FashionMNIST-EMNIST

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

CIFAR10-CIFAR100

MAD
MAD-argmax
random-noise
reverse-sigmoid
ideal

Figure A4: Attacker argmax. Supplements Fig. 4 in the main paper.

13

Under review as a conference paper at ICLR 2020

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

112.5¶

31.5¶
25.1¶

13.3¶
3.8¶

MNIST-EMNISTLetters

0.01 0.1 0.5 1.0 2.0

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

118.7¶

27.1¶
17.3¶

5.0¶0.6¶

FashionMNIST-EMNIST

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

114.7¶

24.9¶
15.9¶

4.4¶0.6¶

CIFAR10-CIFAR100

0 10k 20k 30k 40k
Iterations N

0.0

0.02

0.04

0.06

0.08

0.1

0.12

te
st-

los
s(

at
ta

ck
er

)

MNIST-EMNISTLetters

0 10k 20k 30k 40k
Iterations N

0.01

0.02

0.03

0.04

0.05

0.06

0.07

te
st-

los
s(

at
ta

ck
er

)

FashionMNIST-EMNIST

0 20k 40k
Iterations N

0.0

0.02

0.04

0.06

0.08

0.1

0.12

te
st-

los
s(

at
ta

ck
er

)

CIFAR10-CIFAR100

‘ = 0.01
‘ = 0.1
‘ = 0.5
‘ = 1.0
‘ = 2.0

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

112.5¶

31.5¶
25.1¶

13.3¶
3.8¶

MNIST-EMNISTLetters

0.01 0.1 0.5 1.0 2.0

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

118.7¶

27.1¶
17.3¶

5.0¶0.6¶

FashionMNIST-EMNIST

0.0¶

50.0¶
100.0¶

150.0¶

1 10 100 1k 10k

114.7¶

24.9¶
15.9¶

4.4¶0.6¶

CIFAR10-CIFAR100

0 10k 20k 30k 40k
Iterations N

0.0

0.02

0.04

0.06

0.08

0.1

0.12

te
st-

los
s(

at
ta

ck
er

)

MNIST-EMNISTLetters

0 10k 20k 30k 40k
Iterations N

0.01

0.02

0.03

0.04

0.05

0.06

0.07

te
st-

los
s(

at
ta

ck
er

)
FashionMNIST-EMNIST

0 20k 40k
Iterations N

0.0

0.02

0.04

0.06

0.08

0.1

0.12

te
st-

los
s(

at
ta

ck
er

)

CIFAR10-CIFAR100

‘ = 0.01
‘ = 0.1
‘ = 0.5
‘ = 1.0
‘ = 2.0

Figure A5: Histogram of Angular Deviations. Supplements Fig. 6 in the main paper. The test-loss during of
the attacker model for each of the histograms (over multiple ε values) are provided in the bottom row.

40 60 80 100
Acc(Attacker) ↓

0.0

0.2

0.5

0.8

1.0

1.2

||y
−
ỹ
|| 1
↓

MNIST-EMNISTLetters · B =50K

20 40 60
Acc(Attacker) ↓

0.0

0.2

0.5

0.8

1.0

1.2

||y
−
ỹ
|| 1
↓

FashionMNIST-EMNIST · B =50K

40 60 80
Acc(Attacker) ↓

0.0

0.2

0.5

0.8

1.0

1.2

1.5

||y
−
ỹ
|| 1
↓

CIFAR10-CIFAR100 · B =50K

MAD
MAD-argmax
MAD-relax
G = I

y∗=rand
ideal

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

0 25 50 75 100
Acc(Attacker) ↓

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
↑

Figure A6: MAD ablation experiments. Supplements Fig. 8 in the main paper.

D.4 ANGULAR DEVIATIONS

In the white-box attacker setting, we plot the angular deviations obtained over all defender models in
Figure A5. The bottom row displays test-loss of the attacker evaluated during online training. Dis-
cussions for this experiment in Section 5.2.3 of the main paper under “How much angular deviation
does MAD introduce?”.

D.5 MAD ABLATION EXPERIMENTS

We present the ablation experiments covering all defender models in Figure A6. Relevant discussion
is available in Section 5.2.3 of the main paper under “Ablative Analysis”.

14

	Introduction
	Related Literature
	Preliminaries
	Approach: Maximizing Angular Deviation between Gradients
	Experimental Results
	Experimental Setup
	Results
	MAD Defense vs. Attacks
	MAD Defense vs. Baseline Defenses
	Analysis

	Conclusion
	Related Work: Extension
	Detailed Algorithm
	Attack Models: Recap and Implementation Details
	Additional Plots
	Attacker Evaluation
	Budget vs. Accuracy
	Attacker argmax
	Angular Deviations
	MAD Ablation Experiments

