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ABSTRACT

Generalization error (also known as the out-of-sample error) measures how well
the hypothesis learned from training data generalizes to previously unseen data.
Proving tight generalization error bounds is a central question in statistical learn-
ing theory. In this paper, we obtain generalization error bounds for learning
general non-convex objectives, which has attracted significant attention in re-
cent years. We develop a new framework, termed Bayes-Stability, for proving
algorithm-dependent generalization error bounds. The new framework combines
ideas from both the PAC-Bayesian theory and the notion of algorithmic stabil-
ity. Applying the Bayes-Stability method, we obtain new data-dependent gener-
alization bounds for stochastic gradient Langevin dynamics (SGLD) and several
other noisy gradient methods (e.g., with momentum, mini-batch and acceleration,
Entropy-SGD). Our result recovers (and is typically tighter than) a recent result in
Mou et al.[(2018)) and improves upon the results in [Pensia et al.| (2018). Our ex-
periments demonstrate that our data-dependent bounds can distinguish randomly
labelled data from normal data, which provides an explanation to the intriguing
phenomena observed in Zhang et al.|(2017a). We also study the setting where the
total loss is the sum of a bounded loss and an additional /5 regularization term. We
obtain new generalization bounds for the continuous Langevin dynamic in this set-
ting by developing a new Log-Sobolev inequality for the parameter distribution at
any time. Our new bounds are more desirable when the noise level of the process
is not very small, and do not become vacuous even when 7' tends to infinity.

1 INTRODUCTION

Non-convex stochastic optimization is the major workhorse of modern machine learning. For in-
stance, the standard supervised learning on a model class parametrized by R? can be formulated as
the following optimization problem:

min E [F(w,z

min, B [F(w,2)],
where w denotes the model parameter, D is an unknown data distribution over the instance space Z,
and F : R? x Z — R is a given objective function which may be non-convex. A learning algorithm
takes as input a sequence S = (z1, 22, . . . , 2, ) of n data points sampled i.i.d. from D, and outputs a
(possibly randomized) parameter configuration 1 € R,

A fundamental problem in learning theory is to understand the generalization performance of learn-
ing algorithms—is the algorithm guaranteed to output a model that generalizes well to the data
distribution D? Specifically, we aim to prove upper bounds on the generalization error errgen(S) =
L(w,D) — L(, ), where L(0,D) = E.p|L(®,2)] and L(d,S) = L 3" | L(w, 2;) are the
population and empirical losses, respectively. We note that the loss function £ (e.g., the 0/1 loss)
could be different from the objective function F' (e.g., the cross-entropy loss) used in the training
process (which serves as a surrogate for the loss L£).

Classical learning theory relates the generalization error to various complexity measures (e.g., the
VC-dimension and Rademacher complexity) of the model class. Directly applying these classical
complexity measures, however, often fails to explain the recent success of over-parametrized neural
networks, where the model complexity significantly exceeds the amount of available training data



Under review as a conference paper at ICLR 2020

(see e.g., Zhang et al.| (2017a)). By incorporating certain data-dependent quantities such as margin
and compressibility into the classical framework, some recent work (e.g., Bartlett et al.|(2017);|Arora
et al.| (2018));|We1 & Ma|(2019)) obtains more meaningful generalization bounds in the deep learning
context.

An alternative approach to generalization is to prove algorithm-dependent bounds. One celebrated
example along this line is the algorithmic stability framework initiated by [Bousquet & Elisseeff
(2002). Roughly speaking, the generalization error can be bounded by the stability of the algorithm
(see Section 2] for the details). Using this framework, [Hardt et al.| (2016) study the stability (hence
the generalization) of stochastic gradient descent (SGD) for both convex and non-convex functions.
Their work motivates recent study of the generalization performance of several other gradient-based
optimization methods: [Kuzborskij & Lampert| (2018));|London| (2016); |(Chaudhari et al.| (2017); Ra-
ginsky et al.|(2017); Mou et al.| (2018)); Pensia et al.[(2018);|Chen et al.| (2018]).

In this paper, we study the algorithmic stability and generalization performance of various iterative
gradient-based method, with certain continuous noise injected in each iteration, in a non-convex
setting. As a concrete example, we consider the stochastic gradient Langevin dynamics (SGLD)
(see |Raginsky et al.| (2017); Mou et al.| (2018); |Pensia et al.| (2018)). Viewed as a variant of SGD,
SGLD adds an isotropic Gaussian noise at every update step:

(oF
Wi 4= Wit = 19:(Wi1) + —=N (0, L), (1)
V2
where g, (W;_1) denotes either the full gradient or the gradient over a mini-batch sampled from
training dataset. We also study a continuous version of (), which is the dynamic defined by the
following stochastic differential equation (SDE):

AW, = —VE(W,) dt + /28~ dB,, )

where B; is the standard Brownian motion.

1.1 RELATED WORK

Most related to our work is the study of algorithm-dependent generalization bounds of stochastic
gradient methods. [Hardt et al.| (2016) first study the generalization performance of SGD via al-
gorithmic stability. They prove a generalization bound that scales linearly with 7', the number of
iterations, when the loss function is convex, but their results for general non-convex optimization are
more restricted. [London| (2017) presents a generalization bound that also combines PAC-Bayesian
analysis with stability. However, their prior and posterior are probability distributions on the hyper-
parameter space, while ours are distributions on the hypothesis space. Our work is a follow-up of
the recent work by [Mou et al.| (2018)), in which they provide generalization bounds for SGLD from
both stability and PAC-Bayesian perspectives. Another closely related work by Pensia et al.| (2018)
derives similar bounds for noisy stochastic gradient methods, based on the information theoretic
framework of Xu & Raginsky| (2017). However, their bounds scale as O(y/T'/n) (n is the size of
the training dataset) and are sub-optimal even for SGLD.

We acknowledge that besides the algorithm-dependent approach that we follow, recent advances
in learning theory aim to explain the generalization performance of neural networks from many
other perspectives. Some of the most prominent ideas include bounding the network capacity by the
norms of weight matrices [Neyshabur et al.| (2015); [Liang et al.|(2019), margin theory Bartlett et al.
(2017); Wei et al.| (2018), PAC-Bayesian theory |[Dziugaite & Roy| (2017); Neyshabur et al.| (2018));
Dziugaite & Roy| (2018]), network compressibility |Arora et al.|(2018)), and over-parametrization Du
et al.[| (2019); |Allen-Zhu et al.| (2018); |Zou et al.| (2018)); |Chizat & Bach| (2018). Most of these
results are stated in the context of neural networks (some are tailored to networks with specific
architecture), whereas our work addresses generalization in non-convex stochastic optimization in
general. We also note that some recent work provides explanations for the phenomenon reported in
Zhang et al.|(2017a)) from a variety of different perspectives (e.g., [Bartlett et al.| (2017); |Arora et al.
(2018} 12019)).

Welling & Teh|(2011)) first consider stochastic gradient Langevin dynamics (SGLD) as a sampling
algorithm in the Bayesian inference context. Raginsky et al.|(2017) give a non-asymptotic analysis
and establish the finite-time convergence guarantee of SGLD to an approximate global minimum.
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Zhang et al.|(2017b) analyze the hitting time of SGLD and prove that SGLD converges to an approx-
imate local minimum. These results are further improved and generalized to a family of Langevin
dynamics based algorithms by the subsequent work of Xu et al.|(2018)).

1.2 OVERVIEW OF OUR RESULTS

In this paper, we provide generalization guarantees for the noisy variants of several popular stochas-
tic gradient methods.

The Bayes-Stability method and data-dependent generalization bounds. We develop a new
method for proving generalization bounds, termed as Bayes-Stability, by incorporating ideas from
the PAC-Bayesian theory into the stability framework. In particular, assuming the loss takes value
in [0, C], our method shows that the generalization error is bounded by both 2C E . [\/2KL(P, Q.)]

and 2C E,[/2KL(Q., P)], where P is a prior distribution independent of the training set S, and
Q. is the expected posterior distribution conditioned on z,, = z (i.e., the last training data is z). The
formal definition and the results can be found in Definition[3land Theorem 71

Inspired by [Lever et al.| (2013), instead of using a fixed prior distribution, we bound the KL-
divergence from the posterior to a distribution-dependent prior. This enables us to derive the fol-
lowing generalization error bound that depends on the expected norm of the gradient along the
optimization path:

n S

erTgen = O | —, | E l %2 ge(t )] . 3)
t=1

Here S is the dataset and ge(t) = Ew,_, P IVF(Wi_q, z)|I”] is the expected empirical
squared gradient norm at step ¢; see Theorem7- 1| for the details.

Compared with the previous O (%, / Zt %) bound in (Mou et al., 2018, Theorem 1), where L

is the global Lipschitz constant of the loss, our new bound (3)) depends on the data distribution and
is typically tighter (as the gradient norm is at most L). In modern deep neural networks, the worst-
case Lipschitz constant L can be quite large, and typically much larger than the expected empirical
gradient norm along the optimization trajectory. Specifically, in the later stage of the training, the
expected empirical gradient is small (see Figure [I{d) for the details). Hence, our generalization
bound does not grow much even if we train longer at this stage.

Our new bound also offers an explanation to the difference between training on correct and random
labels observed by Zhang et al.|(2017a)). In particular, we show empirically that the sum of expected
squared gradient norm (along the optimization path) is significantly higher when the training labels
are replaced with random labels (Section 3] Remark [I3] Figure[I] Appendix [C.2).

We would also like to mention the PAC-Bayesian bound (for SGLD with ¢5-regularization) proposed
by Mou et al.| (2018). (This bound is different from what we mentioned before; see Theorem 2 in
their paper.) Their bound scales as O(1/+/n) and the numerator of their bound has a similar sum
of gradient norms (with a decaying weight if the regularization coefficient A > 0). Their bound is
based on the PAC-Bayesian approach and holds with high probability, while our bound only holds
in expectation.

Extensions. We remark that our technique allows for an arguably simpler proof of (Mou et al., 2018},
Theorem 1); the original proof is based on SDE and Fokker-Planck equation. More importantly, our
technique can be easily extended to handle mini-batches and a variety of general settings as follows.

1. Extension to other gradient-based methods. Our results naturally extends to other noisy
stochastic gradient methods including momentum due to[Polyak!(1964) (Theorem@), Nes-
terov’s accelerated gradient method in [Nesterov (1983) (Theorem [26)), and Entropy-SGD
proposed by (Chaudhari et al| (2017) (Theorem [27)).
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2. Extension to general noises. The proof of the generalization bound in Mou et al.| (2018))
relies heavily on that the noise is Gaussialﬂ which makes it difficult to generalize to other
noise distributions such as the Laplace distribution. In contrast, our analysis easily carries
over to the class of log-Lipschitz noises (i.e., noises drawn from distributions with Lipschitz
log densities).

3. Pathwise stability. In practice, it is also natural to output a certain function of the entire
optimization path, e.g., the one with the smallest empirical risk or a weighted average. We
show that the same generalization bound holds for all such variants (Remark [I2)). We note
that the analysis in an independent work of |Pensia et al.| (2018)) also satisfies this property,

yet their bound is O (\/02L2n—1 S nf/af) (see Corollary 1 in their work), which

scales at a slower O(1/+/n) rate (instead of O(1/n)) when dealing with C-bounded loss

Generalization bounds with /; regularization via Log-Sobolev inequalities. We also study the
setting where the total objective function F' is the sum of a C'-bounded differentiable objective Fj
and an additional ¢, regularization term 3 ||w ||§ In this case, F' can be treated as a perturbation of a
quadratic function, and the continuous Langevin dynamics (CLD) is well understood for quadratic
functions. We obtain two generalization bounds for CLD, both via the technique of Log-Sobolev
inequalities, a powerful tool for proving the convergence rate of CLD. One of our bounds is as

follows (Theorem [I3):
2:45CCL [ AT
errgen S n\/)\ (1 — eXpP <_6850> > . (4)

The above bound has the following advantages:

1. Applying e~ > 1 — x, one can see that our bound is at most O(v/T'/n), which matches
the previous bound in (Mou et al., 2018, Proposition 8

2. As time T grows, the bound is upper bounded by and approaches to 2¢*?¢CLn="/5/\
(unlike the previous O(+/T'/n) bound that goes to infinity as 7' — +00).

3. If the noise level is not so small (i.e., 3 is not very large), the generalization bound is quite
desirable.

Our analysis is based on a Log-Sobolev inequality (LSI) for the parameter distribution at time ¢,
whereas most known LSIs only hold for the stationary distribution of the Markov process. We prove
the new LSI by exploiting the variational formulation of the entropy formula.

2 PRELIMINARIES

Notations. We use D to denote the data distribution. The training dataset S = (21,...,2,) is a
sequence of n independent samples drawn from D. S, S’ € Z™ are called neighboring datasets if
and only if they differ at exactly one data point (we could assume without loss of generality that
zn # 2)). Let F(w,z) and L(w, z) be the objective and the loss functions, respectively, where
w € R? denotes a model parameter and 2 € Z is a data point. Define F(w, S) = L """ | F(w, z;)
and F'(w, D) = E.~p[F(w, 2)]; L(w, S) and L(w, D) are defined similarly. A learning algorithm
A takes as input a dataset S, and outputs a parameter w € R? randomly. Let G be the set of all
possible mini-batches. G,, = {B € G : n € B} denotes the collection of mini-batches that contain
tI}e n-th Xata point, while G, = G \ G,. Let diam(A) = sup,, ,c 4 ||z — y||2 denote the diameter
of aset A.

'In particular, their proof leverages the Fokker-Planck equation, which describes the time evolution of the
density function associated with the Langevin dynamics and can only handle Gaussian noise.

>They assume the loss is sub-Gaussian. By Hoeffding’s lemma, C-bounded random variables are sub-
Gaussian with parameter C.

3The proof of their O(\/T /n) bound can be easily extended to our setting with ¢5 regularization.
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Definition 1 (L-lipschitz). A function F : R x Z — R is L-lipschitz if and only if |F(w,z) —
F(ws, 2)| < L||wy — ws|, holds for any wy,ws € R? and z € Z.

Definition 2 (Expected generalization error). The expected generalization error of a learning algo-
rithm A is defined as

[L(A(5), D) — LIA(S), 5)]-

€ITgey 1= SNIEDn[errgen(S)] = SN%EH’A

Algorithmic Stability. Intuitively, a learning algorithm that is stable (i.e., a small perturbation
of the training data does not affect its output too much) can generalize well. In the seminal work
of Bousquet & Elisseeff] (2002)) (see also|Hardt et al.| (2016)), the authors formally defined algorith-
mic stability and established a close connection between the stability of a learning algorithm and its
generalization performance.

Definition 3 (Uniform stability). (Bousquet & Elisseeff|(2002), |Elisseeff et al.|((2005)) A randomized
algorithm A is e,,-uniformly stable w.r.t. loss L, if for all neighboring sets S, S’ € Z", it holds that

sug [EA[L(ws, 2)] — Ea[L(ws, 2)]| < €n,
ze

where wg and wg: denote the outputs of A on S and S’ respectively.

Lemma 4 (Generalization in expectation). (Hardt et al.|(2016)) Suppose a randomized algorithm
A is €,-uniformly stable. Then, errgm| < €p.

3 BAYES-STABILITY METHOD

In this section, we incorporate ideas from the PAC-Bayesian theory (see e.g., [Lever et al.| (2013))
into the algorithmic stability framework. Combined with the technical tools introduced in previous
sections, the new framework enables us to prove tighter data-dependent generalization bounds.

First, we define the posterior of a dataset and the posterior of a single data point.

Definition 5 (Single-point posterior). Let Qs be the posterior distribution of the parameter for a
given training dataset S = (z1,...,2,). In other words, it is the probability distribution of the
output of the learning algorithm on dataset S (e.g., for T iterations of SGLD in (1), Qs is the pdf of
Wr). The single-point posterior Q) ; .) is defined as

Q(i,z) = E [Q(Zl,...,27;717Z,Zi+1,...,zn)} .

(Zly---,zi—1,Zi+17---Zn)

For convenience, we make the following natural assumption on the learning algorithm:

Assumption 6 (Order-independent). For any fixed dataset S = (z1, ..., z,) and any permutation
p, Qg is the same as Qgr, where S? = (zp,, ..., 2p, ).
Assumption@ implies Q(1,.) = -+ = Q(n,z), S0 We use (), as a shorthand for Q(; ) in the fol-

lowing. Note that this assumption can be easily satisfied by letting the learning algorithm randomly
permute the training data at the beginning. It is also easy to verify that both SGD and SGLD satisfy
the order-independent assumption.

Now, we state our new Bayes-stability framework, which holds for any prior distribution P over the
parameter space that is independent of the training dataset S.

Theorem 7 (Bayes-Stability). Suppose the loss function L(w, z) is C-bounded and the learning al-
gorithm is order-independent (Assumption|6). Then for any prior distribution P not depending on S,

the generalization error is bounded by both 2C'E, [\/QKL(P, QZ)} and 2C'IE, [ 2KL(Q., P)]

Remark 8. Our Bayes-Stability framework originates from the algorithmic stability framework,
and hence is similar to the notions of uniform stability and leave-one-out error (see |Elisseeff et al.
(2003)). However, there are important differences. Uniform stability is a distribution-independent
property, while Bayes-Stability can incorporate the information of the data distribution (through the
prior P). Leave-one-out error measures the loss of a learned model on an unseen data point, yet
Bayes-Stability focuses on the extent to which a single data point affects the outcome of the learning
algorithm (compared to the prior).
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To establish an intuition, we first apply this framework to obtain an expectation generalization bound
for (full) gradient Langevin dynamics (GLD), which is a special case of SGLD in (1)) (i.e., GLD uses
the full gradient V,, F(W;_1, S) as g:(W;—1)).

Theorem 9. Suppose that the loss function L is C-bounded. Then we have the following expected
generalization bound for T iterations of GLD:

T
2¢/2C 2
errgen S f E [ PYtQ e (t)] )
S~P 32 Ot

n

where go(t) = Buw~w,_, [+ iy IVF(w, 2)||3] is the empirical squared gradient norm, and W,
is the parameter at step t of GLD.
Proof The proof builds upon the following technical lemma, which we prove in Appendix [A.2]

Lemma 10. Let (W, ..., Wr) and (W, ..., W4) be two independent sequences of random vari-
ables such that for each t € {0, ..., T}, Wy and W] have the same support. Suppose Wy and W
follow the same distribution. Then,

T
KL(Wer, Wir) = [KL(Wi[Wer = wee, WIIWZ, = wer)],

=1 w<tNW<t
where W<, denotes (W, ..., Wy) and W<y denotes W<,_1.

Define P = Eg,_ pn-1 [Q(E,o)}’ where 0 denotes the zero data point (i.e., f(w,0) = 0 for any w).

Theorem [7] shows that
erreen < 2CE /2KL(Q., P). 5)
z

By the convexity of KL-divergence, for a fixed z € Z, we have

KL(Q-, P) = KL (g[Q(S,Z)],IE[Q(S,O)]) <E[KL (@0 Qa0)) (6)
Let (W;)t>0 and(W/):>o be the training process of GLD for S = (S,z) and S’ = (S,0), re-
spectively. Note that for a fixed w<;, both Wy|[Wo, = we, and W/|W., = w, are Gaussian

distributions. Since KL(N (11, 01), N (12, 0°1)) = HM “2H2 (see Lemmaln APpendlx
VF(wi_1,
KL(W|Wey = wey, W[W., = wey) = ¥l (2 -1 )||2'

2
oin

Applying Lemma and KL(Wr, Wr) < KL(W<r, Wr) gives

w~W,

T
1 2
<QS,QS/s72l; EIVFQw.2)3.
=1 0%

Recall that W;_ is the parameter at step t — 1 using S = (S, z) as dataset. In this case, we can
rewrite z as z, since it is the n-th data point of .S. Note that SGLD satisfies the order-independent
assumption, we can rewrite z as z; for all i € [n]. Together with (), (6), and using £ >°" | \/z; <

/15 :
> i—1 Ti, we can prove this theorem. [ |

More generally, we give the following bound for SGLD. The proof is similar to that of Theorem [0}
the difference is that we need to bound the KL-divergence between two Gaussian mixtures instead
of two Gaussians. This proof is more technical and deferred to Appendix [A.3]

Theorem 11. Suppose that the loss function L is C-bounded and the objective function f is L-
lipschitz. Assume that the following conditions hold:

1. Batch size b < n/2.
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2. Learning rate vy, < o/(20L).

Then, the following expected generalization error bound holds for T iterations of SGLD ({I)):

8.12C
€ITgey, < Z 72 g.(t)], (empirical norm)
n SND” t=1

where o (t) = Buw~w,_, [+ Y iy [IVF(w, 2:)||3] is the empirical squared gradient norm, and W,
is the parameter at step t of SGLD.

Furthermore, based on essentially the same proof, we can obtain the following bound that depends
on the population gradient norm:

T
8.12C
€ITgen < " [Z

The full proofs of the above results are postponed to Appendix [A] and we provide some remarks
about the new bounds.

ﬁm\:ﬁw

B |EIvEw Z)HQH

w~ W7y _q
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z | g7 — p=0 20— p=0 — 2400 N
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Figure 1: Running GLD (with o; = 0.2v/2,) on a smaller version of MNIST with different
random label portion p. (a) shows the training accuracy. (b) shows the generalization error, i.e.,
the gap between the 0/1 loss £°! on the training data and on the test data. (c) plots our bound in
Theorem [0} (d) shows that for p = 0, the gradient norms become much smaller at later stages of
training.

Remark 12. In fact, our proof establishes that the above upper bound holds for the two se-
2
quences Wep and W.p: KL(Wep, WLp) < 822 S Z—%gc(t). Hence, our bound holds

— n2
for any sufficiently regular function over the parameter sequences: KL(f(W<r), f(Wir)) <
.23

2
Zt 1 U% g.(t). In particular, our generalization error bound automatically extends to sev-
eml variants of SGLD, such as outputting the average of the trajectory, the average of the suffix of
certain length, or the exponential moving average.

Remark 13. Inspired by Zhang et al| (2017al), we run both GLD (Figure |I|) and SGLD (Ap-
pendix[C.2) to fit both normal data and randomly labelled data (see Appendix[Clfor more experiment
details). As shown in Figure[l|and Figure[2)in Appendix|C.2} larger random label portion p leads to
both much higher generalization error and much larger generalization error bound. Moreover, the
shapes of the curves our bounds look quite similar to that of the generalization error curves.

4 GENERALIZATION OF CLD AND GLD WITH {5 REGULARIZATION

In this section, we study the generalization error of Continuous Langevin Dynamics (CLD) with {5
regularization. Throughout this section, we assume that the objective function over training set .S is

defined as F'(w, S) = Fy(w, S) + ||w||§, and moreover, the following assumption holds.

Assumption 14. The loss function L and the original objective Fyy are C-bounded. Moreover, Fy is
differentiable and L-lipschitz.
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The Continuous Langevin Dynamics is defined by the following SDE:
th —VF Wt, dt + \ 26 1 d.Bt7 WO ~ o, (CLD)

where (By)¢>0 is the standard Brownian motion on R? and the initial distribution g is the centered
Gaussian distribution in R? with covariance ﬁ[ 4. We show that the generalization error of CLD is

upper bounded by O (e‘m Cn=1y/B/ )\) , which is independent of the training time 7" (Theorem .

Furthermore, as T" goes to infinity, we have a tighter generalization error bound O (ﬂC’Qn_l) (The-
orem [39]in Appendix [B). We also study the generalization of Gradient Langevin Dynamics (GLD),
which is the discretization of CLD:

Wis1 = Wi = npVFE(Wy, S) + /20871, (GLD)

where &}, is the standard Gaussian random vector in R%. By leveraging a result developed in Ragin-
sky et al.|(2017), we show that, as K 772 tends to zero, GLD has the same generalization as CLD (see
Theorems [I5and [39). We first formally state our first main result in this section.

AB|wl|?

Theorem 15. Under Assumption M( with initial probability measure djy = %e — 2 dw)
has the following expected generalization error bound:

2e48CCL T
€ITgey < enC\/f (1 — exp (—e{i\ﬁC)). (7

In addition, if L is M-smooth and non-negative, by setting \g > 2, A > = and neo1A 28’}421 ),

[GLD|(running K iterations with the same i as CLD) has the expected generalzzatlon error bound:

2C Le*PC K
erTgen < 2C/2KCm? + C:\/f (1 — exp (_;\;760>>’ (8)

where C is a constant that only depends on M, )\, 5, b, L and d.

The following lemma is crucial for establishing the above generalization bound for[CLD} In partic-
ular, we need to establish a Log-Sobolev inequality for 1, the parameter distribution at time ¢, for
every time step ¢ > 0. In contrast, most known LSIs only characterize the stationary distribution of
the Markov process. The proof of the lemma can be found in Appendix

Lemma 16. Under Assumption let iy be the probability measure of Wy in (with dpy =

—28|w||? - . . .
%e 2 dw). Let v be a probability measure that is absolutely continuous with respect to ji;.

Suppose dpy = m¢(w) dw and dv = ~y(w) dw. Then, it holds that

88C
KL(m) < SB[

¥ log 1)

(@) ~y(w) dw.

2

We sketch the proof of Theorem [T3] and the complete proof is relegated to Appendix [B]

Proof Sketch of Theorem (15| Suppose .S and S’ are two neighboring datasets. Let (W,);>( and
(W/)e>0 be the process of CLD running on S and S’, respectively. Let y; and 7 be the pdf of W/
and W;. Let F's(w) denote F'(w, S). We have

d -1 2
iKL(%ﬂTt) = — Yt Vlog& dw _|_/ %<V log E7VF5 _ VFsr> dw
dt B Jra Tt {|o Rd e
—1 | B
< log || dw+ 5 Fs —VFg|? duw.
=95 f. " Vogm2 w—I—Q/Rd’ytHVS Vs dw
- 26 L2
< o8BC KL (¢, m) + ) (Lemma [16)

< 42BL2%e8PC(1 — *)‘t/esﬁc). Hence the generaliza-

tion error of CLD can be bounded by 2C %KL(’}/T, 7r), which proves the first part. The second
part of the theorem follows from Lemma [36|in Appendix ]

Solving this inequality gives KL (v, m) <
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Our second generalization bound for [CLD|(Theorem [39]in Appendix [B)) is

2 _
eITgen < 86C + 4C exp (ﬁ) v/ BC.

n

The high level idea to prove this bound is very similar to that in Raginsky et al.| (2017). We first
observe that the (stationary) Gibbs distribution w has a small generalization error. Then, we bound
the distance from p; to p. In our setting, we can use the Holley-Stroock perturbation lemma which
allows us to bound the Logarithmic Sobolev constant, and we can thus bound the above distance
easily.

5 FUTURE DIRECTIONS

In this paper, we prove new generalization bounds for a variety of noisy gradient-based methods. Our
current techniques can only handle continuous noises for which we can bound the KL-divergence.
One future direction is to study the discrete noise introduced in SGD (in this case the KL-divergence
may not be well defined). For either SGLD or CLD, if the noise level is small (i.e., 3 is large), it may
take a long time for the diffusion process to reach the stable distribution. Hence, another interesting
future direction is to consider the local behavior and generalization of the diffusion process in finite
time through the techniques developed in the studies of metastability (see e.g., Bovier et al.|(2005);
Bovier & den Hollander| (2006); Tzen et al.| (2018)). In particular, the technique may be helpful for
further improving the bounds in Theorems [[5|and [39](when 7" is not very large).
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A PROOFS IN SECTION 3

A.1 BAYES-STABILITY FRAMEWORK

Lemma 17. Under Assumption[6] for any prior distribution P not depending on the dataset S =

(21, .., 2n), the generalization error is upper bounded by
E[ E L(w,z)— IE ﬁ(w z)] + E[ E L(w)— E ﬁ(w)} ,
zZ |w~P w~Q z (w~P w~Q

where L(w) denotes the population loss L(w, D).

Proof of Lemma [17] Let erTain = Es Ew~gs £(w,S) and erTiest = Es Ew~gs £(w). We can
rewrite generalization eITOr as eITgen = €ITtest — CITtrain, Where

IT¢est = IE g L(w)=FE IEQ L(w) (Assumption 6)
zZ wn (1,2) zZ w~Q

= @Ad(Qz(w) — P(w))L(w) dw Jr/ P(w)L(w) dw.

R
and
€ITtrain = Z]EwNEQS ‘C(w ZZ)
— Z]E Lw,z)=FE E L(w,z) (Assumption [6)
— Z wNQu ) zZ w~Q:
= E/ (Qz(w) — P(w))L(w, z) dw + / P(w)E L(w, z) dw (P is a prior)
Zz JR4 Rd z
= E/ (Qz(w) — P(w))L(w, z) dw +/ P(w)L(w) dw. (definition of f(w))
z JRd R4
Thus, we have
|errgen| = |errtest — €ITgrain|
~ | [ (@.(0) - Pt)etw) dw & [ (@.(0) - Pl ) du
z Rd

{ Qﬁwz EC(w,z)HJr

w~P

IE{ E L(w)— E z(w)H.

Z (w~Q, w~P

Now we are ready to prove Theorem[7] which we restate in the following.

Theorem 7 (Bayes-Stability). Suppose the loss function L(w, z) is C-bounded and the learning al-
gorithm is order-independent (Assumption|[6), then for any prior distribution P not depending on S,

the generalization error is bounded by both 2C E, [ 2KL(P, Qz)} and 2CE, [ 2KL(Q., P)}

Proof By Lemmal|l7]

IZE[E Lw,2)— E z(w,z)H+

B| B L)~ E L)

€ITgen <
w~P w~Q . w~P w~Q .
<E[2C-TV(P,Q.)+2C - TV(P,Q.)] (C-boundedness)
1
<4CE gKL(R Q) (Pinsker’s inequality)
z
The other bound follows from a similar argument. |

12
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A.2 TECHNICAL LEMMAS

Now we turn to the proof of Theorem The following lemma allows us to reduce the proof of
algorithmic stability to the analysis of a single update step.

Lemma 10. Let (W, ..., Wr) and (W{, ..., W4) be two independent sequences of random vari-
ables such that for each t € {0,...,T}, Wy and W] have the same support. Suppose Wy and W
follow the same distribution. Then,

T
KL(W<r, Wir) = Z E  [KL(WWe; = wee, W/IWL, = we)],

=1 wet~Wey
where W<, denotes (W, ..., W) and W<, denotes W<,_1.

Proof By the chain rule of the KL-divergence,
KL(W<, W/St) = KL(W<y, WL,) + E  [KL(WiWep = wey, Wi WL, = wey)].

wet~Wey

The lemma follows from a summation overt = 1,...,7. |

The following lemma (see e.g., (Duchil 2007, Section 9)) gives a closed-form formula for the KL-
divergence between two Gaussian distributions.

Lemma 18. Suppose that P = N (u1,%1) and Q = N (u2, X2) are two Gaussian distributions on
R?. Then,

KL(Pa Q) = % (tr(22_121> 4 (‘u2 _ MI)TEQ_:L(,UQ o Ml) —d+In det(Zg)) .

det(Zl)

The following lemma (Topsoe, [2000, Theorem 3) helps us to upper bound the KL-divergence.

Definition 19. Let P and Q be two probability distributions on R®. The directional triangular
discrimination from P to Q) is defined as

+oo
A" (PQ) =) 2 AP+ (1-27%Q,Q),
k=0

where

o (P(w) - Qu))?
AFQ) ‘/ Pw) T Qw)

Lemma 20. For any two probability distributions P and Q on R?,
KL(P,Q) <In2-A*(P,Q).

Recall that G is the set of all possible mini-batches. G,, = {B € G : n € B} denotes the collection
of mini-batches that contain n, while G,, = G \ Gy,. diam(A) = sup, ,c 4 [z — yl| denotes the
diameter of set A. The following technical lemma upper bounds the KL-divergence between two
Gaussian mixtures induced by sampling a mini-batch from neighbouring datasets.

Lemma 21. Suppose that batch size b < n/2. {up : B € G} and {y)z : B € G} are two
collections of points in R¢ labeled by mini-batches of size b that satisfy the following conditions for
some constant 3 € [0, 0):

1. \lup — pgll < Bfor B € Gy and pup = 'y for B € Gy,.
2. diam({up : B€ G} U{uy : B € G}) <a/l0.

2
1 . .o . ..
el Y Bea Py, o be two mixture distributions over all mini-batches. Then,

Let p,, , denote the Gaussian distribution N (p, "—Qld). Let P = ﬁ > BeG Pup,o and P =

8.23b2 32

o2n?

KL(P, P') <

13
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Proof of Lemma 21| By Lemma[20] KL (P, P’) is bounded by

+oo
In2-A*(P,P')=In2- Z 2. A(27FP+(1-277)P P)

IR H(Pw) < Pw)?
= n2 22 / <>+<2 %) Pr(w)

The numerator of the above integrand is upper bounded by

4HP - P =47k <|G|Zp,ma Pus,, ))

BeG
2
47%|G,, |2 ( 1
2 Z (pIJ«B7U P, ,a) (
P \lGal & b
4=kp? 1 9
2 Z (Pup,o = Pulyo)™s
" Gl BeG, "’

while the denominator can be lower bounded as follows:

2— 2’€
—k
2 P+(272 P/>|?| g p,uBa+ § p,uBa

BeG,,
Z Pup,o (up = wy for B € Gy)
BeG
(n—0)
= T Z Pup,o
| nl n —~
BeG,
Z Pup.os (b <n/2)
BeG,
which implies, by the convexity of 1/, that
1 1 1 1
- - < < == : (10)
27kP + (2 -27F)P ﬁZBe(TnPMB,U Gl Bgc; Pup,o
Inequalities (9) and together imply
4=hp? o o(w))?
N O R D Dl B s
n |G71||G |AeG Bea, Ppua,o(W)

(an

Now we bound the right-hand side of for fixed A and B. By applying a translation and a
rotation, we can assume without loss of generality that ;14 = 0, and the last d — 2 coordinates of
wp and p'y are all zero. Note that the integral is unchanged when we project the space to the two-
dimensional subspace corresponding to the first two coordinates. Thus, it suffices to prove a bound
for d = 2. We rewrite (TI)) as

2

> dw.

12)

w—ly
—

wepip (|2
- [ ||

— €
kb2

AQ7FP+(1-27F)P' P) < —— n2|G Ten >y 71'02/ (

AeG,, BeGn e

2

o
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Let I be the integral in the right-hand side of (T2). Note that || £2|| , ’ % < 0.1 and ’ % <
g. Leto = g and r = ||%2]|. Our goal is to bound max;e(,0.1)(I672). Let (z)* = max(z,0).
Since )
max, c(,— , eV — em(¥H0)?)2
I<co / yel(r=0.1)%,r+0. 1]2 ) 27 dr.
e T

We have

I oo —y° _ o—(y+8)*)2

max — < o’ / e 2mr max (e < ) dr.
5€[0,0.1] 02 0 yE[(r—0.1)F ,r+0. 1]56[001] 02

Let ¢(y,d) = (%) we make two claims which we will prove later:

1. Forally,d >0, ¢(y,6) < 2.
2. Forally > f’ ¢(y, d) is non-increasing in J.

The above claims imply that:

1. Forany r € [Oa % + 0-1}, MaXye((r—0.1)+,r+0.1],6€(0,0.1] [¢(y, 0)] < 2.

2. Forany r € (% +O.1,+oo), we have

0) < | )
ye[(r—O.l)‘*’r,I?l“%-)(g.l],66[0,0.1] ?(y,9) < yel(r— (I)nl)?*'( 740.1) 5133)[¢(y’ )
= max 4y 2¢-2y"

y€[(r—0.1)+,r+0.1]
= 4(r — 0.1)2e 200,

The last step holds since y — y2e~2Y" is decreasing on [%, +oo).

Thus we have

Vet oo 2 2 —2(r—0.1)2
max — <o e 2y - dr—i—a e" 2mr-4(r —0.1)%e =0 dr
§€[0,0.1] 52 1401
vz
< 18.648702.

Plugging the above into (T2) gives
4—kp2 —kp2
62 max (I/6%) <

- 18.648742.
n202w 5€[0,0.1]

ARTFP+(1-277MP P)<

We conclude that

+oo
KL(P,P') <In2) 2¢-A@@7*P+ (1-27F)P, P')

k=0
252 2 2
< 37.2974b%6° In 2 < 8.23b°0 .
- n2m - n20?

Finally, we prove the two claims used above:

1. For all y,§ > 0, let h(z) = e=*", we have e~ ¥ — e~ (W+9)? — f;H R (t) dt. Since
I (8)] = |e ¥ (—2t)] = e~ (2t). Let 2| (t)| = 0, we have t = 1/v/2. Thus, [h'(t)| <
el /22 and e=Y" — e~ (WH9)? < 5\/%.
2. Suppose y > 1/\/?, we have
0 (ey2 - e(y+5)2> e~ WH)* (2§ + 262 +1) — eV’
06 ) 52

_y2 R
- 7652 [e=200-0%(2y6 + 282 + 1) — 1].

Let g(y,8) = e~ 249" (26 4 262 4 1) — 1. Note that
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—y? _e*(y+5)2

(a) lims_,q 2% (“——5——) = 0.

(b) 2g(1/v2,8) = —4e*C+V252(5 4 v/2) < 0 and g(1/V/2,0) = 0.

— 2 _ 2
It implies that %(e Qe — AL ) < 0 for 6 > 0. Since a%g(y,é) =

—462e790F29) (§ + y) < 0 for y > 0, we conclude that for any y > 1//2:

a e_y2 — e_(y+5)2 8 e_(l/\/i)z — e—(l/\/§+§)2 0
— ) < = <0.
00 ) ) 0 -

A.3 MAIN THEOREM

Recall that SGLD on dataset S is defined as

o
Wi Wit — wVuF(Wi_1,SB,) + —=N (0, I,).
V2
Here 7, is the step size. By = {i1,...,%} is a subset of {1,...,n} of size b, and Sp, =

(%iys---,%,) is the mini-batch indexed by B;. Recall that F'(w,.S) denotes ﬁ Z‘ii‘l F(w, z;).
We restate and prove Theorem[IT]in the following.

Theorem 11. Suppose that the loss function L is C-bounded and the objective function F' is L-
lipschitz. Assume that the following conditions hold:

1. Batch sizeb < n/2.

2. Learning rate vy, < o/(20L).

Then, the following expected generalization error bound holds for T iterations of SGLD (I)):

T
8.12C 2
€ITgen < E [ lg ge(t)] , (empirical norm)
n S~Dn < 0}

where go(t) = Buwmw,_, [z Y1y IVF(w, zl)||§] is the empirical squared gradient norm, and W,
is the parameter at step t of SGLD.

Proof By Theorem[7] we have

errgen < 2CE+/2KL(Q., P) (13)

for any prior distribution P. In particular, we define the prior as P(w) = Eg_pn—1[Pg(w)], where
Pg(w) = Q3,0)- By the convexity of KL-divergence,

KL(Q., P) = KL (IE[Q(S,Z)ME[Q(S,O)]) <E KL (. Q0] - (14)

Fix a data point z € Z. Let (W;)>0 and (W/);>0 be the training process of SGLD for S = (S, z)
and S’ = (S, 0), respectively. Fix a time step ¢t and w~; = (wy, ..., w;_1). Let P, and P/ denote
the distribution of W; and W/ conditioned on W, = w«; and W’<t = wy, respectively. By the
definition of SGLD, we have P, = &7 3" e Pup and P/ = &1 3o pe Dy, » Where fip = wi—1 —
Y VuwF(wi—1,88), usg = we—1 — % VuwF(wi—1,S%), and p,, denotes the Gaussian distribution

N(u, %’?Id). We note that:

1 |y — pp| < 2IVE@e2)le for B e @, and pp = g for B € Gy,
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2. diam({pz : Be G} U{up: B € G}) <2y L < 0,/10.

By applying Lemmawith 8= MJ’“ZME and o0 = oy,

2 2
KL(Pt,Pt/) S 8'23,yt ||VF(wt717Z)H2

oin?
By Lemma(I0]
T
KL(Wer,Wip)=> E  [KL(P,P))]
- =1 wei~Wey
T
8.2392 |[VF(w, 2)|5
<> 2 )
=1 Wi ayn®

which implies that

KL(Qs,Qs') = KL(Wp, Wr) < KL(W<r, Wir)
. L2 9
oY B [IVF@w, )

Together with (I3)) and (T4), we have

wNWt71

T 9
erTgen < 2CE 21% lQ Z l’; E [VF(U’;Z)“%H
z i

wNWt_l

T
8.2 2
Sy E [llVF<w,zn)||§]]. (concavity of /Z)
t

Since SGLD is order-independent, we can replace V F (w, z,) with VF(w, z;) for any i € [n] in the
right-hand side of the above bound. Our theorem then follows from the concavity of /x. Further-
more, if we bound KL(P, @) instead of KL(Q,, P) in the above proof, we obtain the following
bound that depends on the population squared gradient norm:

8.12C
E

€ITgen < It
n S

2
> % E ]E|VF(1U»Z)||2]-
t=1

2
Ot w~W/_, 2~D

A.4 EXTENSION TO GENERAL NOISES

We can extend the generalization bounds in previous sections, which require the noise to be Gaus-
sian, to other general noises, namely the family of log-lipschitz noises.

Definition 22 (Log-Lipschitz Noises). A probability distribution on R¢ with density p is L-log-

lipschitz if and only if |V Inp(w)|| < L holds for any w € R%. A random variable  is called an
L-log-lipschitz noise if and only if it is drawn from an L-log-lipschitz distribution.

The analog of SGLD, noisy momentum method (Definition 24), and noisy NAG (Definition [25))
can be naturally defined by replacing the Gaussian noise (; at each iteration with an independent
L-log-lipschitz noise in the definition.

The following lemma is an analog of Lemma[2TJunder L-log-lipschitz noises. Recall that G denotes
a collection of mini-batches of size b. Lemma 23| readily implies the analogs of Theorems |11}
and [27|under more general noise distributions.
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Lemma 23. Suppose that baich size b < n/2 and N is an Ly,is.-log-lipschitz distribution on R4,
{up : B € G} and {y'y : B € G} are two collections of points in R that satisfy the following

conditions for some constant § € [0, T }

1. |lps — Wyl < Bfor B € Gy and up = ply for B € G,,.
2. diam({up: Be G}U{uz:BeG}) <1

For i € RY, let pu denote the distribution of (4 when ( is drawn from N'. Let P = ﬁ > Bec Pus
and P! = ﬁ > 5 cG Py, be mixture distributions over all mini-batches. Then,

Oob252
n2

KL(P, P <
for some constant Cyy that only depends on Liise.

Proof of Lemma 23] Following the same argument as in the proof of Lemma[21] we have

+oo
KL(P,P') <In2-> 2F - AQ7"P+(1-27F)P, P (15)
k=0
where
47kp? (Pus (W pu (w))?
ART*P+(1-27MP P)< —n— / B dw. (16)
n2|G HGn| Z Z puA )

G, BEG,

Fixed A € G, and B € G,,. Let pnoise denote the density of the noise distribution . Since
lxa — gl < 1 and phoise i Lnoise-log-lipschitz, we have
Prur (W) = Proise(W — 118) < Proise (w — pua) - eFroselra=nsll < elwiey (4),
Similarly, since ||ug — pz|| < B, we have
e*ﬁLn‘mpHB (w) < Py, (w) < eﬁmepuB (w)
Then, it follows from Ly < 1 that
(p#B (w) - p#/B (U}))Q S (eBLmise - 1)2p#B( ) < ﬂ2Ln0156pﬂ'B( )2'

Therefore, the integral on the righthand side of (T6)) can be upper bounded as follows:
g\ W) — s lw . 2
/ (Pyp (w) puB( ))? dw < nmse/ Pus (W) dw
Rd

Ppra (w) a DPua (w)
ﬁQLnome/ Pugp (U}) ' eanse dw
R

— 62 Lioise
noi se °

Plugging the above inequality into (I3]) and (I6) gives

—k —k / / ka 2 2 7kb2/62
A(Q P+ (1 -2 )P aP ) < == n2|G ||G ‘ Z Z B Ln(nse Froise — anse Enoie . n2 .
A€G,, BEG
and
4_kb252 b2ﬁ2
k Lnoise 2 Lnoise
KL(P,P') <In2- Z 2 L™ -~ = 2l 2L - o

k=0
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A.5 EXTENSION TO OTHER GRADIENT-BASED METHODS
A.5.1 STABILITY BOUND FOR MOMENTUM AND NESTEROVS ACCELERATED GRADIENT

We adopt the formulation of Classical Momentum and Nesterov’s Accelerated Gradient (NAG)
methods in|Sutskever et al.| (2013)) and consider the noisy versions of them.

Definition 24 (Noisy Momentum Method). Noisy Momentum Method on objective function F(w, z)
and dataset S is defined as

Vi = Vi1 =%V F(Wi1,SB,) + G
Wy~ W1+ V4
Definition 25 (Noisy Nesterovs Accelerated Gradient). Noisy Nesterovs Accelerated Gradient
(NAG) on objective function F (w, z) and dataset S is defined as
Vi = nVicr =%V F(Wio1 +0Vi1, S,) + G,
Wi« W1 + Vi

In both definitions, -, is the step size, mini-batch B is drawn uniformly from G, (; is a Gaussian
2
noise drawn from N (0, %14), and ) € [0, 1] is the momentum coefficient.

Theorem 26. Under the same assumptions on the loss function, objective function, batch size and
learning rate as in Theorem the generalization bounds in Theorem (I 1| still hold for noisy mo-
mentum method and noisy NAG.

Proof of TheoremFor any time step t and w<; = (wg, w1, ..., wt—1), let P; and P/ denote the
distribution of W} and W/ conditioned on W, = w.; and W’<t = W, respectively. By definition,

we have P, = ﬁ > pecPus and P} = ﬁ Yo Bea P,
If t = 1, for both noisy momentum method and noisy NAG, we have
puB = wi—1 — Vo F(wi—1,S5B),
pp =wi—1 — 7 VuF(w_1,Sp).
For ¢ > 1, if noisy momentum method is used, we have
pp = wi—1 +n(wi—1 — wi—2) = ¥V F(wi-1,58),
Wp = wi—1 + n(wi—1 — wi—2) — %V F (w1, Sp).
Similarly, the following holds under noisy NAG:
pp = wi—1 +n(wi—1 — wi—2) = ¥V F(wi—1 + n(wi—1 — wi—2), Sp),
e = wi—1 + n(wi—1 — wi—2) — ¥V F (w1 + n(wi—1 — wi—2), S).

In either case, it can be verified that the conditions of Lemma [21| hold for 8 = QW}jL and 0 = oy.

The rest of the proof is the same as the proof of Theorem [T} |

A.5.2 STABILITY BOUND FOR ENTROPY-SGD

In the Entropy-SGD algorithm due to |Chaudhari et al.| (2017), instead of directly optimizing the
original objective F'(w), we minimize the negative local entropy defined as follows:

—E(w,v) = —log /Rd exp (—F(w’) — % [lw — w’||§) dw (17)

Intuitively, a wider local minimum has a lower loss (i.e., —FE(w,)) than sharper local minima.
See [Chaudhari et al.|(2017) for more details. The Entropy-SGD algorithm invokes standard SGD to
minimize the negative local entropy. However, the gradient of negative local entropy

—VwEw,y) =7 (w - E [w’]> , P(w') < exp(—F(w') — % [lw — w’||§) (18)

w’'~P

is hard to compute. Thus, the algorithm uses exponential averaging to estimate the gradient in the
SGLD loop; see Algorithm [I] for more details.

We have the following generalization bound for Entropy-SGD.
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Algorithm 1: Entropy-SGD

Input: Training set S = (z1, .., z,) and loss function g(w, z).
Hyper-parameters: Scope 7, SGD learning rate 1, SGLD step size i’ and batch size b.
1 fort =1t T do

2 //SGD iteration

3 W0, tit0 & Wit k415

4 fork=0t K —1do

5 //SGLD iteration

6 By 1, < mini-batch with size b;

7 Wigr1 < Wige = 'Vg(Wik, Sp,) + 'y (Wi, k41 — Was) + VITeEN (0, 314);
8 Pt 1 — (1 — o) pe i + aWe s

9 end

10 Wi k1 Wik —y(Wek — e,k );

1 end

12 return W i q;

Theorem 27. Suppose that the loss function L is C-bounded and the objective function F' is L-
lipschitz. If batch size b < n/2 and \/7/ < ¢/(20L), the following expected generalization error
bound holds for Entropy-SGD:

elTgen < E Z g (t, k)] , (empirical norm)

where ga(t,k) = Buw, , [L S0, [VF(w, 2)2
Wi denotes the training process with respect to S

is the empirical squared gradient norm, and

Since go(t, k) is at most L?, it further implies the generalization error of Entropy-SGD is bounded

by O (%@\/ﬁ)

Proof of Theorem 27| Define the history before time step (¢, k) as follows:
Weieny = Wo0, s Wo ka1, s Wee1,05 00, Wit k1, Weos oo, W) (19)

Since p is only determined by W, we only need to focus on W. This proof is similar to the proof of
Theorem By setting P’ = Ez[Q 5 o)]- Suppose 5 = (S,2)and S’ = (S, 0) are fixed, let W and

W' denote their training process, respectlvely Considering the following 3 cases:
1. Wio <= W1 k41: Inthis case, for a fixed w< ;1,5 41), we have
KL (Wt,O‘Wg(tfl,KJrl) = w1541 WiolWe1 1) = wg(tfl,KJrl)) =0.

2. Wit ¢ Wik = 1'Vg(Wek, Sp,) + ' v(Wio1, k41 — Wer) + VI'eN (0, 51q): In
this case, fix a w< ), applying Lemma@gives

8.230 |V F (wy g, 2)]|2

KL (Wt k1 W) = W) Wik (Wen = we, k)) 22,2

3. Wi kg1 Wik —ny(We, K — pg i ): In this case, for a fixed w< 4, k), we have
KL (Wt,K+1|W§(t,K) = W< (t,K)> Wt/,KJrl'Wé(t,K) = wS(tyK)) =0.

By applying Lemma|[I0] we have

_ 823y T K]
KL(Wrsci1, Wriien) € <55 > gelt k),
t=1 k=0
and Where g.(t, k) is the empirical squared gradient norm of the k-th SGLD iteration in the ¢-th
SGD iteration, respectively. The rest of the proof is the same as the proof of Theorem|[T1] |
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B PROOFS IN SECTION 4

B.1 MARKOV SEMIGROUP AND LOG-SOBOLEV INEQUALITY

The continuous version of the noisy gradient descent method is the Langevin dynamics, described
by the following stochastic differential equation:

th = —VF(Wt) dt + vV 2571 dBt, WO ~ o, (20)

where B, is the standard Brownian motion. To analyze the above Langevin dynamics, we need some
preliminary knowledge about Log-Sobolev inequalities.

Let p;(w, y) denote the probability density function (i.e., probability kernel) describing the distri-
bution of W; starting from w. For a given SDE such as (20), we can define the associated diffusion
semigroup P:

Definition 28 (Diffusion Semigroup). (see e.g., (Bakry et al. 2013} p. 39)) Given a stochastic
differential equation (SDE), the associated diffusion semigroup P = (P,)¢>¢ is a family of operators
that satisfy for every t > 0, P, is a linear operator sending any real-valued bounded measurable
function f on R to

Puf () = ELOV)Wo = wl = [ )i,

The semigroup property P,+s = P, o P, holds for every ¢,s > 0. Another useful property of P;
is that it maps a nonnegative function to a nonnegative function. The carré du champ operator I" of
this diffusion semigroup (w.r.t 20)) is (Bakry et al.|[2013] p. 42)

I'(f,9) = 5*1<Vf7 Vg).
We use the shorthand notation T'(f) = I'(f, f) = B~ ||V f ||2, and define (with the convention that

0log0 =0)
Ent,(f) :/Rdflogfdu—/Rdfdulog(/Rdfdu>.

Definition 29 (Logarithmic Sobolev Inequality). (see e.g., (Bakry et al.ll2013, p. 237)) A probability
measure | is said to satisfy a logarithmic Sobolev inequality LS(«) (with respect to T'), if for all
functions f : RY — RY in the Dirichlet domain D(E),

Tr
Ent,(f) < %/Rd Scf) dp.

D(E) is the set of functions f € 1L2(u) for which the quantity %fRd f(f = P.f) du has a finite
(decreasing) limit as t decreases to O.

A well-known Logarithmic Sobolev Inequality is the following result for Gaussian measures.

Lemma 30 (Logarithmic Sobolev Inequality for Gaussian measure). (Bakry et al.| 2015} p. 258)
Let yu be the centered Gaussian measure on R% with covariance matrix 0?I,. Then y satisfies the

following LSI:
2 2
o< 7 [ 90,
2 Jrae

Lemrna states that the centered Gaussian measure with covariance matrix o2, satisfies LS(802)
(with respect to I'), where I' = 371(V f, Vg) is the carré du champ operator of the diffusion semi-
group defined above.

Before proving our results, we need some known results from Markov diffusion process. It is well
known that the invariant measure (Bakry et al.l 2013} p. 10) of the above is the Gibbs measure
dp = exp( BF(w)) dw (Menz et al., 2014} (1.3)). In other words, p satisfies [, P, fdpu =

fRd fdu for every bounded positive measurable function f, where P; is the Markov semigroup
in Definition 28] The following lemma by Holley and Stroock [Holley & Stroock| (1987) (see also
(Bakry et al.,2013} p. 240)) allows us to determine the Logarithmic Sobolev constant of the invariant
measure /.
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Lemma 31 (Bounded perturbation). Assume that the probability measure v satisfies LS(«) (with
respect to T). Let p be a probability measure such that 1/b < du/dv < b for some constant b > 1.
Then . satisfies LS(b*a) (with respect to T').

In fact, Lemma [31]is a simple consequence of the following variational formula in the special case
that ¢(x) = x log =, which we will also need in our proof:

Lemma 32 (Variational formula). (see .g., (Bakry et al., 2013} p. 240)) Let ¢ : I — R on some
open interval I C R be convex of class C?. For every (bounded or suitably integrable) measurable
function f : R* — R with values in I,

/ o(f) dp =9 ( / N du) =inf | [6(f) = ()= ¢'()(f—r)]du. @D

rel Rd
It is worth noting the integrand of the right-hand side is nonnegative due to the convexity of ¢.

B.2 LOGARITHMIC SOBOLEV INEQUALITY FOR CLD

Recall that Fs(w) = F(w,S) := Fo(w,S) + A ||w||§/2 is the sum of the empirical original ob-
jective Fy(w, S) and ¢5 regularization. Let dy = Z% exp(—pFFs(w)) dw be the invariant (Gibbs)

, and v is the centered Gaussian measure dv = - exp(— A Hw||§ /2) dw. In-

with 02 = /\—16 shows that v satisfies LS(1/)) (with respect to I'). Consider the

density h(w) = = g—: exp(—pBFy(w,S)). If the original objective function Fy is C-bounded,

we have exp(—28C) < h(w) < exp(23C). By applying Lemma 31| with b = exp(23C), we have
the following lemma.

Lemma 33. Under Assumption let T(f,g) = B~V f,Vg) be the carré du champ operator
of the diffusion semigroup associated to and ji be the invariant measure of the SDE. Then, u
satisfies LS(e*P¢ /| \) with respect to T.

measure of

voking Lemma [30

Let p; be the probability measure of W;. By definition of P, for any real-valued bounded measur-
able function f on R? and any s,t > 0,
E [f(w)= E [Pf(w)]. (22)

Wt s w s

In particular, if the invariant measure p = i, €Xxists, we have

E[fw)]= E [Bfw]= E [f(w)]= E [Ff(w)] (23)

wn~ W~ oo Wt oo w~

The following lemma is crucial for establishing the first generalization bound for In fact, we
establish a Log-Sobolev inequality for p;, the parameter distribution at time ¢, for any time ¢ > 0.
Note that our choice of the initial distribution i is important for the proof. E]

Lemma 34. Under Assumption let y; be the probability measure of Wy in (CLD)) with initial

8 w|?
probability measure duy = %e 275 Qw. Let T be the carré du champ operator of diffusion

semigroup associated to (CLD). Then, for any f : R — Rt in D(E):

Bt () < L2 L= a
]Rd

= 9 f t
Proof Let 1 be the invariant measure of By Lemma [33|and Definition [29]

IV
208 Jra f

Ent,(f) < dp. (24)

* For arbitrary initial distribution, it is impossible to prove similar inequality for any ¢ > 0 (unless the loss
is strongly convex).
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By applying Lemma[32]with ¢(z) = x log z, we rewrite the left-hand side as

But (/) = [ flogfan— [ aplog </Rdfdu)
—inf [ [6(5) — 6(r) — &'(r)(F — ] dn

rel Rd

=inf [ [P(e(f) = o(r) — ¢'(r)(f — )] dp.

rel Rd

where the last equation holds by the definition of invariant measure [ P;f du = [ f dp. Thus, we
have

eABC 2
it [ (PO — 6(r) = ()1 = 1) dp = Bt (1) < V712 g, s)

rel T 2B Jpa f
Let p; be the probability measure of W;. Lemma[32]and (22) together imply that

Bty () = inf [ [6(7) = 0(r) = &/ ()7 = )] s

rel

(26)
= int [ [P (01) = 60) = (1) = 7))
Since Py (¢(f) — ¢(r) — ¢'(r)(f — 1)) = (Fland %2 < exp(28C), we have
d
Bty () = inf | [P (8(f) = 6(r) = 9 (r)(f = )]y 2 dn
27
< exp(26C)Ent, (f) < e ||fo§ d o
=~ exXp 7 =208 Jra [ e
Since ;lﬁ) < exp(2BC) and p is the invariant measure, we conclude that
eS0C |Vl eS8C IV£I5
Buty (1)< G55 | 2 gy — o L 2 ) du
55 (nwni) du
= P — duo
282[2 Ré f 2 dpo 28)
e IV
= 2)[3 ]RdPt< f 2) Ao
O BTV L eON [T
o S f S =— /Rdfd’“
|

Lemma 16. Under Assumption let iy be the probability measure of Wy in (with dpg =

— w 2
%ew dw). Let v be a probability measure that is absolutely continuous with respect to [i.
Suppose dpy = m(w) dw and dv = y(w) dw. Then it holds that:
2
exp(85C) / (w)
KL (7, < —— V1 dw. 29
(’y ﬂ—t) = 2)\ﬁ Rd Y ﬂ't(UJ) QW(M) w ( )

Proof Let f(w) = vy(w)/m(w), by Lemmaand Jga [ dpy = 1, we have

e88C v 12
R4

T 208 Jra  f

> This is because ¢ is convex and P; is a positive operator.
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We can see that the left-hand side is equal to KL(vy, 7¢) EI, and the right-hand side is equal to

2
y(w)
e || vRE, e35¢ y(w) ||
m(w) dw = —— lo w) dw.
N Jyo @) m(w) ™ YT 5 o |V B TG [,
This concludes the proof. |

B.3 THE DISCRETIZATION LEMMA FROM |RAGINSKY ET AL.[(2017))

Let h(w, z) = Fy(w, z) + % We can rewrite Fs(w) = = " | h(w, 2;). Define ugj, and vg
as the probability measure of W (in and W; (in |[CLD), respectively. |Raginsky et al.| (2017)
provided a bound of KL (s k, Vs k) under Assumption This bound enables us to derive a
generalization error bound for the discrete GLD from the bound for the continuous CLD. We use

the assumption from Raginsky et al.|(2017)). Their work considers the following SGLD:

Wiy = Wi —ngs(We) + /20871

Where gs(wy) is a conditionally unbiased estimate of the gradient V Fg(wy,). In our setting,
gs(Wk) is equal to VFg (’U)k)

Assumption 35. Let Fs(w) = L S0 h(w, 2;) = Fo(w, ) + 3 w2

1. The function h takes non-negative real values, and there exist constants A, B > 0, such
that
|h(0,2)| < A and IVA(0,2)]l, < B Vze Z.

2. Foreach z € Z, the function h(-, z) is M -smooth: for some M > 0,
IVh(w, z) — Vh(v,2)|l, < M |lw—v],, Yw,v € RY,
3. Foreach z € Z, the function h(-, z) is (m, b)-dissipative: for some m > 0 and b > 0,

(w, Vh(w,2)) >m|w|3—b,  YweR?
4. There exists a constant § € [0,1), such that, for each S € Z",

Elllgs(w) - VEs(w)[3] < 25 (M2 wl} + B2),  ¥we R

5. The probability law ug of the initial hypothesis Wy has a bounded and strictly positive
density py with respect to the Lebesgue measure on R?, and

Ko = 1og/ eHngpo(w) dw < oo.
Rd

Lemma 36. (Raginsky et al.| 2017, Lemma 7) Suppose that Assumption 35| holds and set |15 =
vs,0 = po. Then, for any k € N and anyn € (0,1 A ;5= ), the following inequality holds
KL(ps,k, Vsi) < (Cofd + Cin)kn,

where Cy and C1 are constants that only depend on M, ko, m, b, 5, B and d.

B.4 PROOFS FOR MAIN THEOREMS

—2B|lw)2
2

Theorem 15. Under Assumption (with initial probability measure dpg = %e dw)

has the following expected generalization error bound:

2e40CCL T
€ITge, < n\/lf (1 — exp <_e8ﬁ0>) 3D

SIndeed, Jpa flog fdpe = [oa L log(L)mdw = KL(y, )
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In addition, if Fy is also M-smooth and non-negative, by setting \f > 2, A > % andn € [0,1 A

%’}V;Ql ), the (running K iterations with the same g as CLD) has the expected generalization
error bound:

| 20Let AnK
erTgen < 2C+/2KChip? ClLe \/f <1 —exp ( 687750)), (32)

where C is a constant that only depends on M, )\, 5, b, L and d.
Proof of TheoremWe apply the uniform stability framework. Suppose S and S’ are two neigh-

boring datasets that differ on exactly one data point. Let (W});>0 and (W{):>o be the process of
CLD running on S and S’, respectively. Let v; and 7; be the pdf of W/ and ;. We have

d d Tt
—KL log — d
at (v, ) = at /Rd% 0og py w
dv: . v ur ddni —yp iz
= P log & St de Tt Tt dt | g
/Rd ( a{ og - + " % p w (33)

d d
= [ (Grroe2t) v [ (25) au
Rd dt Tt R4 Tt dt
According to Fokker-Planck equation (see Risken| (1996)) for[CLD} we know that
0 ony

1 1
¥ = BA7t+V'(7tvFS’)a o = BAﬁt+V'(WtVFS)~

It follows that

dy Tt
I:= —log— | d
/l:gd ( dt 8 7Tt> v

1
_ / (A% +V- (%VFSI)) log 2t dw
Rd ﬂ T

= -1 / (Vlog &, V) dw — / (Vlog ﬁ,%VFS/) dw, (integration by parts)
B Jra T R4 Tt
and
J ':/ 20 dme dw
’ Rd Tt de
[ 2 (lam+v.(mvEg) d
= . 71'71, B T + . (ﬂ—t S) w
R
*1 Yt Yt . .
<V th> dw — / (V=,mVFs) dw. (integration by parts)
5 Re Tt
Together with (33), we have
iKL( y=1—-J
dt Ve, Tt
= / ( ﬂ _ E V) — <v7t _ YV V7Tt>) dw
Tt Tt 7Tt
( Vlog ,*ytVFS/> - (V log 7TtVF5>> dw
= — "}/t VIng dw+/ ’yt<V10g VFS*VFS/>
B Tt 2 Rd
-1 3
< 25 /. el Vlog— dw+ = / Y [|[VFg — VFS/H2 dw.
/8 Tt 2
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The last step holds because (a/v/B,by/B) < ”;}3@ + ﬁ”;”g. Since |VFg — VFSI||§ < ‘%,2, by
Lemma |16 we have

£88C Y 2
KL(, < Viog —| dw,
(¢, m¢) < 225 Rd% Ogﬂt , w
which implies
—A -1 Mt ?
sspe KL(e, ) = ﬁ/w Ve Vlog;t ) dw.
Hence,
d Y 28L? )
@KL('}%,'H}) S WKL('}%, 7Tt) + 77 with KL(’YO,TFO) =0. (34)

Solving this differential inequality gives

25[/268,80(1 _ efkt/esﬁc)
n2\ '

KL(’yt,’]Tt) S (35)

By Pinsker’s inequality, we can finally see that

2:450CL | B (1 - 6_5%)
n A

By Lemma 4] the generalization error of CLD is bounded by the right-hand side of the above in-
equality.

1
sup|ﬂljj\[£(W},z) — L(Wr,2)]] <2C iKL('yT,wT) <

Now, we prove the second part of the theorem. Let (W}),>o and (W])x>o be the (discrete) GLD
processes training on .S and S’, respectively. Then for any z € Z:

[EIL(Wic, 2)] - EIL(W, )]
<2C-TV(pus ki, s’ k) (C-boundedness)
<2C - (TV(us,x,vsnr) + TV(vs i, Vs mr) + TV (ps k. Vs i) -
Since A8 > 2 and \ > %, Assumptionholds with A =C,B=Lm= 21 b= %2, §=0
and ko = g log (1 + ﬁ) By applying Pinskers inequality and Lemma , we have

1 1
TV(us x,Vsnr) < \/QKL(NS,KaVS,nK) < \/2K01772 (36)

and

1 1
TV(us ik, vs mr) < \/QKL(MS/,K, Vs gKk) < \/2KC’1772~ 37
From (33)), we have

- BL2ESIC (1 — ¢~ ¥ )

TV(VS,nK, VS’,nK) < \/2KL(VS,UK, VS’,nK) < RSN (38)

Combining (36), (37) and (38)), we have
_ Ak
20 LetC | B (1 —e e*‘f*c)
|E[L(Wk, 2)] — E[L(W, 2)]| < 2Cv2KCin? + - 3 = €y

By Definition 3} [GLD]is €,-uniformly stable. Applying Lemma ] gives the generalization bound of
GLD. |

Lemma 37 (Exponential decay in entropy). (Bakry et al., |2013| Theorem 5.2.1) The logarithmic
Sobolev inequality LS(«) for the probability measure 1 is equivalent to saying that for every positive
function p in L () (with finite entropy),

Ent,(Pip) < e 2/“Ent,(p)
foreveryt > 0.
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The following Lemma shows that Pt(%) = p in our diffusion process.

Lemma 38. Let P denote the diffusion semigroup o Let u denote the invariant measure of P
and let i, denote the probability measure of W,. Then Pt(%) = .

Proof Let dy = p(z) dz and dus = pe(x) de. As shown in (Pavliotis, 2014, page 118), our dif-
fusion process (Smoluchowski dynamics) is reversible, which means p(z)p:(z, y) = p(y)pe(y, x).
Thus for any g(z), we have

B (o)) = [ glahula) (Pulduo/du) (@)

INPt(dd‘iLMO)
~ [@nt@)ds [ wowpde.)/n(wiy
~ [@nt@)ds [ wolwpils. o))y
_ / g(@)u(@) (@) /p(z)de = E [g(z)].

Tt

‘ii’:f) and y; must be the same. [ |

Since g is arbitrary, P;(

Theorem 39. Suppose that n > 83C. Under Assumption[I4] (with initial distribution dpy =

ABJw|? . .
Le=""2"— dw) has the following expected generalization error bound:

zZ
ﬁ C? AT
€ITgen S + 4C ex 64% \ BC
1

In addition, if Fy is also M-smooth and non-negative, by setting A\3 > 2, A > 5 andn €

[0,1A 2 1) the process (running K iterations with the same py as CLD) has the expected

SN2
generalization error bound:

83C? —AnK
eI gen < 20/ 2K Cyip? + 22— ﬁ +4C ex <e4/7370) VBC,
where C is a constant that only depends on M, )\, 5, b, L and d.

Proof of Theorem [39| Suppose S and S’ are two datasets that differ on exactly one data point. Let
(Wi)i>0 and (W/);>0 be their processes, respectively. Let duy = m(w) dw and dpy = mj(w) dw
be the probability measure of W; and W, respectively. The invariant measure of CLD for S and S’
are denoted as i and 1/, respectively. Recall that

1 1
dp = Z—#e_ﬁFS(w) dw, dy’ = —ZM e PFs (W) qup,
The total variation distance of y and p’ is
1 d
TV(u, 1) = */ o du
2 Rd d,U, (39)
1 Z 1
== [ —B(Fs(w) — F. — e AFs(W) gy,
5 [ | 2 e ) - Fotw))| e w
Since ZZ exp(—B(Fs(w) — Fs(w))) € [674&0,6%} and 450 < 1/2, we have
1 1 4
TV(u, 1) < max {2 (1 - e*‘ic) - (J‘ic — 1)} < 45C (40)
n

Since x and p/ satisfy LS(e*?¢/*) (Lemma , applying Lemma 37| with p = M and p/ = i’; ‘/,3
and Lemma 38]yields:

2t 2t
KL(p¢, p) < exp ( 4ﬁc> KL(po,p),  KL(up, ') < exp ( 4BC> KL(ug, 1) (41)
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Since KL(uo, p) and KL(u(, ') are upper bounded by 28C, Pinsker’s inequality implies that
TV (i, 1) and TV (u;, p') are upper bounded by 4/exp (;5}3) BC. Combining with @0) and
note that TV (e, py) < TV (e, ) + TV (e, ') + TV (y, p'), we have

—2)t

8BC?2
sup | E[L(Wr, z) = LW, 2)]| < 2C TV (e, 1) < 4C\/€XP <e460> so+

n

By Lemma] the generalization error of is bounded by the right-hand side.
The proof for[GLD] proceeds in the same way as the second part of the proof of Theorem T3] [ |

C EXPERIMENT
We first present the general setup of our experiments:

Dataset: We use MNIST (LeCun et al.l [1998) and CIFAR10 (Krizhevsky & Hinton, [2009) in our
experiments.

Neural network: In our experiments, we test two different neural networks: a smaller version of
AlexNet (Krizhevsky et al.,2012) and MLP. The structures of the networks are similar to what are
used inZhang et al.|(2017a).

e Small AlexNet: k is the kernel size, d is the depth of a convolution layer, fc(m) is the fully-
connected layer that has m neurons. The ReLLU activation are used in the first 6 layers.

1 2 3 4 5 6 7
conv(k:5,d:64) pool(k:3) conv(k:5,d:192) pool(k:3) fc(384) fc(192) fc(10)

e MLP: The MLP used in our experiment has 3 hidden layers, each having width 512. We
also use ReLU as the activation function in MLP.

Objective function: For a data point z = (x, y) in MNIST, the objective function is

F(W, z) = — In(softmax(netw (z))[y]),

where softmax(a)[i] = Elf,ailiam, and netyy () is the output of the neural network (10 dimensional
j=1% "

vector). Note that the objective function F' is exactly the cross-entropy loss.

0/11oss : The 0-1 loss £°! is defined as:

1 (argmax; nety (2)[i]) #y
LT — ’ 42

W, (z,9)) {O otherwise. (42)
Random labels: Suppose the dataset contains n datapoint, and the corruption portion is p. We

randomly select n - p data points, and replace their labels with random labels, as in [Zhang et al.
(2017a).

C.1 EXPERIMENTAL RESULTS FOR GLD

The result of this experiment (see Figure[T) is discussed in Section [3] Remark [T3] Here we present
our implementation details.

We repeat our experiment 5 times. At every individual run, we first randomly sample 10000 data
points from the complete MNIST training data. The initial learning rate vy = 0.003. It decays 0.995
after every 60 steps, and it stops decaying when it is lower than 0.0005. During the training, we kee
oy = 0.2¢/27;. Recall that the empirical squared gradient norm g () in our bound (Theorem
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isEw, ,[2 30 IVf(Wio1,2) ||?]. Since it is time-consuming to compute the exact g (t), in our
experiment, we use an unbiased estimation instead. At every step, we randomly sample a mini-
batch B with batch size 200 from the training data, and use 525 > .. 5 ||V f(Wi—1, z)|1? as ge(t)
to compute our bound in Figure|l| The estimation of g.(t) at every step ¢ is shown in Figure d).

Since g.(t) is not very stable, in our figure, we plot its moving average over a window of size 100

to make the curve smoother (i.e., 8avg (t) = 155 Zt;;lt(m g.(7)).

C.2 EXPERIMENTAL RESULTS FOR SGLD

In this subsection, we present some experiment results for running SGLD on both MNIST and
CIFAR10 datasets, to demonstrate that our bound (see Theorem , in particular the sum of the em-
pirical squared gradient norms along the training path, can distinguish normal dataset from dataset
that contains random labels. We note that in our experiments, the learn rate we choose is larger than
that is required by the condition of Theorem Due to the (non-optimal) constant in our bound,
the bound is currently greater than 1, and hence we ignore the numbers on the y-axis. However,
again, the curves of our bounds look quite similar to the generalization curves (see Figure [2). This
indicates that the sum of squared empirical gradient norms is highly related to the generalization
performance, and we believe by further optimizing the constants in our bound, we can achieve a
generalization bound that is close to the real generalization error.
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Figure 2: SGLD fitting random labels. The meaning of these plots are the same as those in Figure[I]
(a-c): CIFAR10 + MLP; (d-f): MNIST+AlexNet; (g-1): MNIST+MLP; For each data set, only 5000
data points that randomly sampled from the complete dataset are used for training. Mini-batch size
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b = 500. Learning rate v; = max(0.0005,0.003 - 0.995¢/601) Noise level oy = 0.002/27;.
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