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ABSTRACT

Despite alarm over the reliance of machine learning systems on so-called spu-
rious patterns in training data, the term lacks coherent meaning in standard sta-
tistical frameworks. However, the language of causality offers clarity: spurious
associations are those due to a common cause (confounding) vs direct or indi-
rect effects. In this paper, we focus on NLP, introducing methods and resources
for training models insensitive to spurious patterns. Given documents and their
initial labels, we task humans with revise each document to accord with a coun-
terfactual target label, asking that the revised documents be internally coherent
while avoiding any gratuitous changes. Interestingly, on sentiment analysis and
natural language inference tasks, classifiers trained on original data fail on their
counterfactually-revised counterparts and vice versa. Classifiers trained on com-
bined datasets perform remarkably well, just shy of those specialized to either
domain. While classifiers trained on either original or manipulated data alone
are sensitive to spurious features (e.g., mentions of genre), models trained on the
combined data are insensitive to this signal. We will publicly release both datasets.

1 INTRODUCTION

What makes a document’s sentiment positive? What makes a loan applicant creditworthy? What
makes a job candidate qualified? What about a photograph truly makes it depict a dolphin? More-
over, what does it mean for a feature to be relevant to such a determination?

Statistical learning offers one framework for approaching these questions. First, we swap out the
semantic question for a more readily answerable associative question. For example, instead of asking
what comprises a document’s sentiment, we recast the question as which documents are likely to be
labeled as positive (or negative)? Then, in this associative framing, we interpret as relevant, those
features that are most predictive of the label. However, despite the rapid adoption and undeniable
commercial success of associative learning, this framing seems unsatisfying.

Alongside deep learning’s predictive wins, critical questions have piled up concerning spuriousness,
artifacts, reliability, and discrimination, that the purely associative perspective appears ill-equipped
to answer. For example, in computer vision, researchers have found that deep neural networks rely
on surface-level texture (Jo & Bengio, 2017; Geirhos et al., 2018) or clues in the image’s background
to recognize foreground objects even when that seems both unnecessary and somehow wrong: the
beach is not what makes a seagull a seagull. And yet researchers struggle to articulate precisely
why models should not rely on such patterns.

In NLP, these issues have emerged as central concerns in the literature on annotation artifacts and
bias (in the societal sense). Across myriad tasks, researchers have demonstrated that models tend
to rely on spurious associations (Poliak et al., 2018; Gururangan et al., 2018; Kaushik & Lipton,
2018; Kiritchenko & Mohammad, 2018). Notably, some models for question-answering tasks may
not actually be sensitive to the choice of the question (Kaushik & Lipton, 2018), while in Natural
Language Inference (NLI), classifiers trained on hypotheses only (vs hypotheses and premises) per-
form surprisingly well (Poliak et al., 2018; Gururangan et al., 2018). However, papers seldom make
clear what, if anything, spuriousness means within the standard supervised learning framework. ML
systems are trained to exploit the mutual information between features and a label to make accurate
predictions. Statistical learning does not offer a conceptual distinction between between spurious
and non-spurious associations.
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Figure 1: Pipeline for collecting and leveraging counterfactually-altered data

Causality, however, offers a coherent notion of spuriousness. Spurious associations owe to common
cause rather than to a (direct or indirect) causal path. We might consider a factor of variation to
be spuriously correlated with a label of interest if intervening upon it (counterfactually) would not
impact the applicability of the label or vice versa. While our paper does not rely on the mathematical
machinery of causality, we draw inspiration from the underlying philosophy to design a new dataset
creation procedure in which humans counterfactually augment datasets.

Returning to NLP, even though the raw data does not come neatly disentangled into manipulable
factors, people nevertheless speak colloquially of editing documents to manipulate specific aspects
(Jurafsky et al., 2014). For example, the following interventions seem natural: (i) Revise the letter
to make it more positive; (ii) Edit the second sentence so that it appears to contradict the first. The
very notion of targeted revisions like (i) suggests a generative process in which the sentiment is but
one (manipulable) cause of the final document. These edits might be thought of as intervening on
sentiment while holding all upstream features constant. However even if some other factor has no
influence on sentiment, if they share some underlying common cause (confounding), then we might
expect aspects of the final document to be predictive of sentiment owing to spurious association.

In this exploratory paper, we design a human-in-the-loop system for counterfactually manipulating
documents. Our hope is that by intervening only upon the factor of interest, we might disentangle
the spurious and non-spurious associations, yielding classifiers that hold up better when spurious
associations do not transport out of sample. We employ crowd workers not to label documents,
but rather to edit them, manipulating the text to make a targeted (counterfactual) class apply. For
sentiment analysis, we direct the worker: revise this negative movie review to make it positive,
without making any gratuitous changes. We might regard the second part of this directive as a sort
of least action principle, ensuring that we perturb only those spans necessary to alter the applicability
of the label. For NLI, a 3-class classification task (entailment, contradiction, neutral), we ask the
workers to modify the premise while keeping the hypothesis intact, and vice versa, seeking two sets
of edits corresponding to each of the (two) counterfactual classes. Using this platform, we collect
thousands of counterfactually-manipulated examples for both sentiment analysis and NLI, extending
the IMDb (Maas et al., 2011) and SNLI (Bowman et al., 2015) datasets, respectively. The result is
two new datasets (each an extension of a standard resource) that enable us to both probe fundamental
properties of language and train classifiers less reliant on spurious signal.

We show that classifiers trained on original IMDb reviews fail on counterfactually-revised data and
vice versa, and spurious correlations in these datasets are picked up by even linear models, however,
augmenting the revised examples breaks up these correlations (e.g., genre ceases to be predictive of
sentiment). For a Bidirectional LSTM (Graves & Schmidhuber, 2005) trained on IMDb reviews,
classification accuracy goes down from 79.3% to 55.7% when evaluated on original vs revised
reviews. The same classifier trained on revised reviews achieves an accuracy of 62.5% on original
reviews compared to 89.1% on their revised counterparts. These numbers go to 81.7% and 92.0%
respectively when the classifier is retrained on the combined dataset. Similar behavior is observed
for linear classifiers. We discovered that BERT (Devlin et al., 2019) is more resilient to such drops
in performance on sentiment analysis. Despite that, it appears to rely on spurious associations
in SNLI hypotheses identified by Gururangan et al. (2018). We show that if fine-tuned on SNLI
sentence pairs, BERT fails on pairs with revised premise and vice versa, experiencing more than a
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30 point drop in accuracy. However, fine-tuned on the combined set, it performs much better across
all datasets. Similarly, a Bi-LSTM trained on hypotheses alone can accurately classify 69% of the
SNLI dataset but performs worse than the majority class baseline when evaluated on the revised
dataset. When trained on hypotheses only from the combined dataset, its performance is expectedly
worse than simply selecting the majority class on both SNLI as well as the revised dataset.

2 RELATED WORK

Several papers demonstrate cases where NLP systems appear not to learn what humans consider to
be the difference that makes the difference. For example, otherwise state-of-the-art models have been
shown to be vulnerable to synthetic transformations such as distractor phrases (Jia & Liang, 2017;
Wallace et al., 2019), to misclassify paraphrased task (Iyyer et al., 2018; Pfeiffer et al., 2019) and
to fail on template-based modifications (Ribeiro et al., 2018). Glockner et al. (2018) demonstrate
that simply replacing words by synonyms or hypernyms, which should not alter the applicable label,
nevertheless breaks ML-based NLI systems. Gururangan et al. (2018) and Poliak et al. (2018) show
that classifiers correctly classified the hypotheses alone in about 69% of SNLI corpus. They further
discover that crowd workers adopted specific annotation strategies and heuristics for data genera-
tion. Chen et al. (2016) identify similar issues exist with automatically-constructed benchmarks for
question-answering (Hermann et al., 2015). Kaushik & Lipton (2018) discover that reported num-
bers in question-answering benchmarks could often be achieved by the same models when restricted
to be blind either to the question or to the passages. Dixon et al. (2018); Zhao et al. (2018) and Kir-
itchenko & Mohammad (2018) showed how imbalances in training data lead to unintended bias in
the resulting models, and, consequently, potentially unfair applications. Shen et al. (2018) substitute
words to test the behavior of sentiment analysis algorithms in the presence of stylistic variation,
finding that similar word pairs produce significant differences in sentiment score.

Several papers explore richer feedback mechanisms for classification. Some ask annotators to high-
light rationales, spans of text indicative of the label (Zaidan et al., 2007; Zaidan & Eisner, 2008;
Poulis & Dasgupta, 2017). For each document, Zaidan et al. (2007) remove the rationales to gener-
ate contrast documents, learning classifiers to distinguish original documents from their contrasting
counterparts. While this feedback is easier to collect than ours, how to leverage it for training deep
NLP models, where features are not neatly separated, remains less clear.

Lu et al. (2018) programmatically alter text to invert gender bias and combined the original and
manipulated data yielding gender-balanced dataset for learning word embeddings. In the simplest
experiments, they swap each gendered word for its other-gendered counterpart. For example, the
doctor ran because he is late becomes the doctor ran because she is late. However, they do not
substitute names even if they co-refer to a gendered pronoun. Building on their work, Zmigrod et al.
(2019) describe a data augmentation approach for mitigating gender stereotypes associated with
animate nouns for morphologically-rich languages like Spanish and Hebrew. They use a Markov
random field to infer how the sentence must be modified while altering the grammatical gender
of particular nouns to preserve morpho-syntactic agreement. In contrast, Maudslay et al. (2019)
describe a method for probabilistic automatic in-place substitution of gendered words in a corpus.
Unlike Lu et al., they propose an explicit treatment of first names by pre-defining name-pairs for
swapping, thus expanding Lu et al.’s list of gendered word pairs significantly.

3 DATA COLLECTION

We use Amazon’s Mechanical Turk crowdsourcing platform to recruit editors to counterfactually
revise each dataset. To ensure high quality of the collected data, we restricted the pool to U.S.
residents that had already completed at least 500 HITs and had an over 97% HIT approval rate. For
each HIT, we conducted pilot tests to identify appropriate compensation per assignment, receive
feedback from workers and revise our instructions accordingly. A total of 713 workers contributed
throughout the whole process, of which 518 contributed edits reflected in the final datasets.

Sentiment Analysis The original IMDb dataset consists of 50000 reviews divided equally across
train and test splits. To keep the task of editing from growing unwieldy, we filter out the longest 20%
of reviews, leaving 20000 reviews in the train split from which we randomly sample 2500 reviews,
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Figure 2: Annotation platform for collecting counterfactually annotated data for sentiment analysis

Table 1: Percentage of inter-editor agreement for counterfactually-revised movie reviews

Number of tokens
Type 0-50 51-100 101-150 151-200 201-250 251-300 301-329 Full

Replacement 35.6 25.7 20.0 17.2 15.0 14.8 11.6 19.3

Insertion 27.7 20.8 14.4 12.2 11.0 11.5 07.6 14.3

Combined 41.6 32.7 26.3 23.4 21.6 20.3 16.2 25.5

enforcing a 50:50 class balance. Following revision by the crowd workers, we partition this dataset
into train/validation/test splits containing 1707, 245 and 488 examples, respectively. We present
each review to two workers, instructing to revise the review such that (a) the document remains
coherent and (b) the new label (given) accurately describes the revised document. Moreover, we
instruct the workers not to make gratuitous modifications.

Over a four week period, we manually inspected each generated review and rejected the ones that
were outright wrong (sentiment was still the same or the review was a spam). After review, we
rejected roughly 2% of revised reviews. For 60 original reviews, we did not approve any among
the counterfactually-revised counterparts supplied by the workers. To construct the new dataset, we
chose one revised review (at random) corresponding to each original review. In qualitative analysis,
we identified eight common patterns among the edits (Table 2).

For each review, having access to its counterfactually-revised counterpart enables us to isolate which
parts the review humans believe are truly indicative of sentiment. These are the parts that were re-
moved, replaced, or inserted into the original review to generate a new review that has the opposite
sentiment. We identify the position indices where such replacements or insertions were made and
create a binary vector representing the edits in each original review. To analyze inter-editor agree-
ment, we compute the Jaccard similarity between the vectors corresponding to each revised review
(Table 1). We observe that there is a higher agreement between two workers on smaller reviews and
it decreases with the length of the review.

Natural Language Inference Unlike sentiment analysis, SNLI is 3-way classification task, with
inputs consisting of two sentences, a premise and a hypothesis and the three possible labels being
entailment, contradiction, and neutral. The label is meant to describe the relationship between
the facts stated in each sentence. We randomly sampled 1750, 250, and 500 pairs from the train,
validation, and test sets of SNLI respectively, constraining the new data to have balanced classes. In
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Table 2: Most prominent categories of edits performed by humans (Original/Revised, in order)

Types of revisions Examples

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fantastic
The world of Atlantis, hidden beneath the earth’s core is supposed
to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and real-
istic view
thoroughly mind numbing “thriller-drama”, taking a “deep”
and “realistic” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis’ landscape and setting
The presentation of Atlantis’ predictable landscape and setting

Replacing modifiers “Election” is a highly fascinating and thoroughly captivating
thriller-drama
“Election” is a highly expected and thoroughly mind numbing
“thriller-drama”

Inserting phrases Although there’s hardly any action, the ending is still shocking.
Although there’s hardly any action (or reason to continue watch-
ing past 10 minutes), the ending is still shocking.

Diminishing via qualifiers which, while usually containing some reminder of harshness, be-
come more and more intriguing.
which, usually containing some reminder of harshness, became
only slightly more intriguing.

Differing perspectives Granted, not all of the story makes full sense, but the film doesn’t
feature any amazing new computer-generated visual effects.
Granted, some of the story makes sense, but the film doesn’t
feature any amazing new computer-generated visual effects.

Changing ratings one of the worst ever scenes in a sports movie. 3 stars out of 10.
one of the wildest ever scenes in a sports movie. 8 stars out of 10.

one HIT, we asked workers to revise the hypothesis while keeping the premise intact, seeking edits
corresponding to each of the two counterfactual classes. We refer to this data as Revised Hypothesis
(RH). In another HIT, we asked workers to revise the original premise, while leaving the original
hypothesis intact, seeking similar edits, calling it Revised Premise (RP).

Following data collection, we employed a different set of workers to verify whether the given label
accurately described the relationship between each premise-hypothesis pair. We presented each pair
to three workers and performed a majority vote. When all three reviewers were in agreement, we
approved or rejected the pair based on their decision, else, we verified the data ourselves. Finally,
we only kept premise-hypothesis pairs for which we had valid revised data in both RP and RH,
corresponding to both counterfactual labels. As a result, we discarded ≈ 9% data. RP and RH, each
comprised of 3332 pairs in train, 400 in validation, and 800 in test, leading to a total of 6664 pairs
in train, 800 in validation, and 1600 in test in the revised dataset.

We collected all data after IRB approval and measured the time taken to complete each HIT to ensure
that all workers were paid more than the federal minimum wage. During our pilot studies, workers
spent roughly 5 minutes per revised review, and 4 minutes per revised sentence (for NLI). We paid
workers $0.65 per revision, and $0.15 per verification, totalling $10778.14 for the study.

4 MODELS

Our experiments rely on the following five models: Support Vector Machines (SVMs), Naı̈ve Bayes
(NB) classifiers, Random Forests (RF), Bidirectional Long Short-Term Memory Networks (Bi-
LSTMs; Graves & Schmidhuber, 2005), and fine-tuned BERT models (Devlin et al., 2019). For
brevity, we discuss only implementation details necessary for reproducibility.
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Standard Methods We use scikit-learn (Pedregosa et al., 2011) implementations of SVMs,
Naı̈ve Bayes and Random Forests for sentiment analysis. We train these models on TF-IDF bag of
words feature representations of the reviews. We use 100 trees for Random Forests and identify
parameters for all classifiers using grid search conducted over the validation set.

Bi-LSTM When training Bi-LSTMs for sentiment analysis, we restrict the vocabulary to the most
frequent 20000 tokens, replacing out of vocabulary tokens by UNK. We fix the maximum input
length at 300 tokens and pad smaller reviews. Each token is represented by a randomly-initialized
50-dimensional embedding. Our model consists of a bidirectional LSTM (hidden size 50) with
recurrent dropout (probability 0.5) and global max-pooling following the embedding layer. To gen-
erate output, we feed this (fixed-length) representation through a fully-connected hidden layer with
ReLU (Nair & Hinton, 2010) activation (hidden size 50), and then a fully-connected output layer
with softmax activation. We train all models for a maximum of 20 epochs using Adam (Kingma
& Ba, 2015), with a learning rate of 1e − 3 and a batch size of 32. We apply early stopping when
validation loss does not decrease for 5 epochs. We use the architecture described in Poliak et al.
(2018) to evaluate hypothesis-only baselines.1

BERT We use an off-the-shelf uncased BERT Base model, fine-tuning for each task.2 To account
for BERT’s sub-word tokenization, we set the maximum token length is set at 350 for sentiment
analysis and 50 for NLI. We fine-tune BERT up to 20 epochs with same early stopping criteria as
for Bi-LSTM, using the Adam optimizer with a batch size of 16 (to fit on a Tesla V-100 GPU). We
found learning rates of 5e-5 and 1e-5 to work best for sentiment analysis and NLI respectively.

5 EXPERIMENTAL RESULTS

Sentiment Analysis We find that for sentiment analysis, linear models trained on the original 1.7k
reviews achieve 80% accuracy when evaluated on original reviews but only 51% (level of random
guessing) on revised reviews (Table 3). Linear models trained on revised reviews achieve 91%
accuracy on revised reviews but only 58.3% on the original test set. We see similar pattern for
Bi-LSTMs where accuracy drops substantially in both directions. Interestingly, while BERT models
suffer drops too, they are less pronounced, perhaps a benefit of the exposure to a larger dataset where
the spurious patterns may not have held. Classifiers trained on combined datasets perform well on
both, often within ≈ 3 pts of models trained on the same amount of data taken only from the original
data. Thus, there may be a price to pay for breaking the reliance on spurious associations, but it may
not be substantial.

To gain intuition about what is learnable absent the edited spans, we tried training several models
on passages where the edited spans have been removed from training set sentences (but not test set).
SVM, Naı̈ve Bayes, and Bi-LSTM achieve 57.8%, 59.1%, 60.2% accuracy, respectively, on this
task, suggesting that there is substantial signal in these potentially immaterial sections. However,
BERT performs worse than random guessing.

In one simple demonstration of the benefits of our approach, we note that seemingly irrelevant
words such as genre names are picked up by linear models trained on either original or revised
reviews as top predictors. However, because humans never edit the genre during revision owing to
its lack of semantic relevance, combining the original and revised datasets breaks these associations
and genre ceases to be predictive of sentiment (Fig 3). Models trained on original data but at the
same scale as combined data are able to perform slightly better on the original test set but still
fail on the revised reviews. All models trained on 19k original reviews receive a slight boost in
accuracy on revised data (except Naı̈ve Bayes), yet their performance significantly worse compared
to specialised models. Retraining models on a combination of the original 19k reviews with revised
1.7k reviews leads to significant increases in accuracy for all models on classifying revised reviews,
while slightly improving the accuracy on classifying the original reviews. This underscores the
importance of including counterfactually-revised examples in training data.

1https://github.com/azpoliak/hypothesis-only-NLI
2https://github.com/huggingface/pytorch-transformers
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(a) Trained on the original dataset (b) Trained on the revised dataset (c) Trained on combined dataset

Figure 3: Most important features learned by an SVM classifier trained on TF-IDF bag of words.

Table 3: Accuracy of various models for sentiment analysis trained with various datasets.

Training data SVM NB RF Bi-LSTM BERT

Accuracy on original reviews

Original (1.7k) 80.0 74.9 75.4 79.3 87.4

Revised (1.7k) 58.3 50.9 58.5 62.5 80.4

Original & Revised (3.4k) 83.7 86.1 81.7 81.5 88.5

Original (3.4k) 85.1 82.4 80.6 80.4 90.2

Original (19k) 87.8 84.3 83.6 86.3 93.2

Original (19k) & Revised (1.7k) 87.8 85.2 84.9 88.7 93.2

Original w/o Edited Spans (1.7k) 57.8 59.1 54.7 60.2 49.2

Accuracy on revised reviews

Original (1.7k) 51.0 47.3 58.8 55.7 82.2

Revised (1.7k) 91.2 88.7 87.9 89.1 90.8

Original & Revised (3.4k) 87.3 91.2 89.1 92.0 95.1

Original (3.4k) 54.3 48.2 59.6 59.6 86.1

Original (19k) 60.9 42.8 63.5 68.0 88.3

Original (19k) & Revised (1.7k) 76.2 48.4 70.7 79.5 93.9

Table 4: Accuracy of BERT on NLI with various train and eval sets.

Train/Eval Original RP RH RP & RH

Original (1.67k) 72.2 39.7 59.5 49.6

Revised Premise (RP; 3.3k) 50.6 66.3 50.1 58.2

Revised Hypothesis (RH; 3.3k) 71.9 47.4 67.0 57.2

RP & RH (6.6k) 64.7 64.6 67.8 66.2

Original w/ RP & RH (8.3k) 73.5 64.6 69.6 67.1

Original (8.3k) 77.8 44.6 66.1 55.4

Original (500k) 90.4 54.3 74.3 64.3

Natural Language Inference Fine-tuned on 1.67k original sentence pairs, BERT achieves 72.2%
accuracy on SNLI dataset but it is only able to accurately classify 39.7% sentence pairs from the
RP set (Table 4). Fine-tuning BERT on the full SNLI training set (500k sentence pairs) results in
similar behavior. Fine-tuning it on RP sentence pairs improves its accuracy to 66.3% on RP but
causes a drop of roughly 20 pts on SNLI. On RH sentence pairs, this results in an accuracy of 67%
on RH and 71.9% on SNLI test set but 47.4% on the RP set. To put these numbers in context, each
individual hypothesis sentence in RP is associated with two labels, each in the presence of a different
premise. A model that relies on hypotheses only would at best perform slightly better than choosing
the majority class when evaluated on this dataset. However, fine-tuning BERT on a combination of
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Table 5: Accuracy of Bi-LSTM classifier trained on hypotheses only

Train/Test Original RP RH RP & RH

Majority class 34.7 34.6 34.6 34.6

RP & RH (6.6k) 32.4 35.1 33.4 34.2

Original w/ RP & RH (8.3k) 44.0 25.8 43.2 34.5

Original (8.3k) 60.2 20.5 46.6 33.6

Original (500k) 69.0 15.4 53.2 34.3

Table 6: Accuracy of models trained to differentiate between original and revised data

Model IMDb SNLI/RP SNLI/RH

Majority class 50.0 66.7 66.7

SVM 67.4 46.6 51.0

NB 69.2 66.7 66.6

BERT 77.3 64.8 69.7

RP and RH leads to consistent performance on all datasets as the dataset design forces models to
look at both premise and hypothesis. Combining original sentences with RP and RH improves these
numbers even further. We compare this with the performance obtained by fine-tuning it on 8.3k
sentence pairs sampled from SNLI training set, and show that while the two perform roughly within
4 pts of each other when evaluated on SNLI, the former outperforms latter on both RP and RH.

To further isolate this effect, Bi-LSTM trained on SNLI hypotheses only achieves 69% accuracy
on SNLI test set, which drops to 44% if it is retrained on combination of original, RP and RH
data (Table 5). Note that this combined dataset consists of five variants of each original premise-
hypothesis pair. Of these five pairs, three consist of the same hypothesis sentence, each associated
with different truth value given the respective premise. Using these hypotheses only would provide
conflicting feedback to a classifier during training, thus causing the drop in performance. Further,
we notice that the gain of the latter over majority class baseline comes primarily from the original
data, as the same model retrained only on RP and RH data experiences a further drop of 11.6% in
accuracy, performing worse than just choosing the majority class at all times.

One reasonable concern might be that our models would simply distinguish whether an example
were from the original or revised dataset and thereafter treat them differently. The fear might be
that our models would exhibit a hypersensitivity (rather than insensitivity) to domain. To test the
potential for this behavior, we train several models to distinguish between original and revised data
(Table 6). BERT identifies original reviews from revised reviews with 77.3% accuracy. In case of
NLI, BERT and Naı̈ve Bayes perform roughly within 3 pts of the majority class baseline (66.7%)
whereas SVM performs substantially worse.

6 CONCLUSION

By leveraging humans not only to provide labels but also to intervene upon the data, revising docu-
ments to alter the applicability of various labels, we are able to derive insights about the underlying
semantic concepts. Moreover we can leverage the augmented data to train classifiers less depen-
dent on spurious associations. Our study demonstrates the promise of leveraging human-in-the-loop
feedback to disentangle the spurious and non-spurious associations, yielding classifiers that hold up
better when spurious associations do not transport out of sample. Our methods appear useful on
both sentiment analysis and NLI, two contrasting tasks. In sentiment analysis, expressions of opin-
ion matter more than stated facts, while in NLI this is reversed. SNLI poses another challenge in that
it is a 3-class classification task using two input sentences. In future work, we plan to extend these
techniques, finding ways to leverage humans in the loop to build more robust systems for question
answering and summarization (among others).
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APPENDIX

Table 7: Most frequent insertions/deletions by human annotators for sentiment analysis.

Revision Removed words Inserted words

Positive to Negative movie, film, great, like, good, re-
ally, would, see, story, love

movie, film, one, like, bad, would,
really, even, story, see

Negative to Positive bad, even, worst, waste, nothing,
never, much, would, like, little

great, good, best, even, well, amaz-
ing, much, many, watch, better
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Table 8: Most frequent insertions/deletions by human annotators for SNLI.

Revision Removed words Inserted words

Revising Premise

Entailment to Neutral woman, walking, man, blue,
sitting, men, girl, standing,
looking, running

person, near, child, something,
together, people, tall, vehicle,
wall, holding

Neutral to Entailment man, street, black, water, little,
front, young, playing, woman,
two

waiting, couple, playing, run-
ning, getting, making, tall,
game, black, happily

Entailment to Contradiction blue, people, standing, girl,
front, street, red, young, sit-
ting, band

sitting, standing, inside,
young, women, child, red,
men, sits, one

Contradiction to Entailment sitting, man, walking, black,
blue, people, red, standing,
white, street

man, sitting, sleeping, woman,
sits, eating, playing, park, two,
standing

Neutral to Contradiction man, woman, people, boy,
black, red, standing, young,
two, water

man, woman, boy, men, alone,
sitting, girl, dog, three, one

Contradiction to Neutral man, sitting, black, blue, walk-
ing, red, standing, street,
white, street

man, sitting, woman, peo-
ple, person, near, something,
something, sits, black

Revising Hypothesis

Entailment to Neutral man, wearing, white, blue,
black, shirt, one, young, peo-
ple, woman

people, there, playing, man,
person, wearing, outside, two,
old, near

Neutral to Entailment white, wearing, shirt, black,
blue, man, two, standing,
young, red

playing, wearing, man, two,
there, woman, people, men,
near, person

Entailment to Contradiction man, wearing, white, blue,
black, two, shirt, one, young,
people

people, man, woman, playing,
no, inside, person, two, wear-
ing, women

Contradiction to Entailment wearing, blue, black, man,
white, two, red, shirt, young,
one

people, there, man, two, wear-
ing, playing, people, men,
woman, outside

Neutral to Contradiction white, man, wearing, shirt,
black, blue, two, standing,
woman, red

woman, man, there, playing,
two, wearing, one, men, girl,
no

Contradiction to Neutral wearing, blue, black, man,
white, two, red, sitting, young,
standing

people, playing, man, woman,
two, wearing, near, tall, men,
old
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(a) Trained on the original dataset

(b) Trained on the revised dataset

(c) Trained on combined dataset

Figure 4: Thirty most important features learned by an SVM classifier trained on TF-IDF bag of
words.
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The blue box contains a text passage and a label. Please edit this text in the textbox below, making
a small number of changes such that:

(a) the document remains coherent and
(b) the new label (colored) accurately describes the revised passage.

Do not change any portions of the passage unnecessarily.
After modifying the passage and checking it over to make sure that is coherent and matches the
label.

(a) Revising IMDb movie reviews

The upper blue box contains Sentence 1. The lower blue box contains Sentence 2.
Given that Sentence 1 is True, Sentence 2 (by implication), must either be
(a) definitely True, (b) definitely False, or (c) May be True.

You are presented with an initial Sentence 1 and Sentence 2 and the correct initial relationship label
(True, False, or May be True).

Please edit Sentence 2 in the textboxes, making a small number of changes such that:

(a) The new sentences are coherent and
(b) The target labels (in red) accurately describe the truthfulness of the modified Sentence 2 given
the original Sentence 1.

Do not change any portions of the sentence unnecessarily.
After modifying the text and checking it over to make sure that it is coherent and matches the target
label.

(b) Revising hypothesis in SNLI

The upper blue box contains Sentence 1. The lower blue box contains Sentence 2.
Given that Sentence 1 is True, Sentence 2 (by implication), must either be
(a) definitely True, (b) definitely False, or (c) May be True.

You are presented with an initial Sentence 1 and Sentence 2 and the correct initial relationship label
(True, False, or May be True).

Please edit Sentence 1 in the textboxes, making a small number of changes such that:

(a) The new sentences are coherent and
(b) The target labels (in red) accurately describe the truthfulness of the original Sentence 2 given the
modified Sentence 1.

Do not change any portions of the sentence unnecessarily.
After modifying the text and checking it over to make sure that it is coherent and matches the target
label.

(c) Revising premise in SNLI

Figure 5: Instructions used on Amazon Mechanical Turk for data collection
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