
Under review as a conference paper at ICLR 2020

A NEURAL DIRICHLET PROCESS MIXTURE MODEL
FOR TASK-FREE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the growing interest in continual learning, most of its contemporary works
have been studied in a rather restricted setting where tasks are clearly distinguish-
able and task boundaries are known during training. However, if our goal is to
develop an algorithm that learns as humans do, this setting is far from realistic and
it is essential to develop a methodology that works in a task-free manner. Mean-
while, among several branches of continual learning, expansion-based methods
have the advantage of eliminating catastrophic forgetting by allocating new re-
source to learn new data. In this work, we propose an expansion-based approach
for task-free continual learning for the first time. Our model, named Continual
Neural Dirichlet Process Mixture (CN-DPM), consists of a set of neural network
experts that are in charge of a subset of the data. CN-DPM expands the num-
ber of experts in a principled way under the Bayesian nonparametric framework.
With extensive experiments, we show that our model successfully performs task-
free continual learning for both discriminative and generative tasks such as image
classification and image generation.

1 INTRODUCTION

Humans consistently encounter new information throughout their lifetime. The way the information
is provided, however, is vastly different from that of conventional machine learning where each mini-
batch is iid-sampled from the whole dataset. Data points adjacent in time can be highly correlated
and the overall distribution of the data can shift drastically as the training progresses. Continual
learning (CL) aims at imitating incredible human’s ability of learning from a non-iid stream of data
without catastrophically forgetting the previously learned knowledge.

Most CL approaches (Aljundi et al., 2018; 2017; Lopez-Paz & Ranzato, 2017; Kirkpatrick et al.,
2017; Rusu et al., 2016; Shin et al., 2017; Yoon et al., 2018) assume that the data stream is explicitly
divided into a sequence of tasks that are known at training time. Since this assumption is far from
realistic, task-free CL is more practical and demanding but has been largely understudied with only
few exceptions of (Aljundi et al., 2019a;b). In this general CL, not only is explicit task definition
unavailable but also the data distribution gradually shifts without clear task boundary.

Meanwhile, existing CL methods can be classified into three different categories (Parisi et al., 2019):
regularization, replay, and expansion methods. Regularization and replay approaches address the
catastrophic forgetting by regularizing the update of a specific set of weights or replaying the pre-
viously seen data, respectively. On the other hand, the expansion methods are different from the
two approaches in that it can expand the model architecture to accommodate new data instead of
fixing it beforehand. Therefore, the expansion methods can bypass catastrophic forgetting by pre-
venting pre-existing components from being overwritten by the new information. The key limitation
of prior expansion methods, however, is that the decisions of when to expand and which resource to
use heavily rely on explicitly given task definition and heuristics.

In this work, our goal is to propose a novel expansion-based approach for task-free CL which, to the
best of our knowledge, has not been discussed yet. Inspired by Mixture of Experts (MoE) (Jacobs
et al., 1991), our model consists of a set of experts, each of which is in charge of a subset of the
data in a stream. The model expansion (i.e. adding more experts) is governed by the Bayesian
nonparametric framework, which determines the model complexity by the data, as opposed to the
parametric methods that fix the model complexity before training. We formulate the task-free CL

1

Under review as a conference paper at ICLR 2020

as an online variational inference of Dirichlet process mixture models consisting of a set of neural
experts; thus we name our approach as the Continual Neural Dirichlet Process Mixture (CN-DPM)
model.

We highlight the key contributions of this work as follows.

• We are the first to propose an expansion-based approach for task-free CL. Hence, our model
not only prevents catastrophic forgetting but also is applicable to the setting where no task
definition and boundaries are given at both training and test time. Our model named CN-
DPM consists of a set of neural network experts, which are expanded in a principled way
built up on the Bayesian nonparametrics that have not been adopted in general CL research.

• Our model can deal with both generative and discriminative tasks of CL. With several
benchmark experiments of CL literature on MNIST, SVHN and CIFAR 10/100, we show
that our model successfully performs multiple types of CL tasks including image classifi-
cation and generation.

2 BACKGROUND AND RELATED WORK

2.1 CONTINUAL LEARNING

Parisi et al. (2019) classify CL approaches into three branches: regularization (Kirkpatrick et al.,
2017; Aljundi et al., 2018), replay (Shin et al., 2017) and expansion (Aljundi et al., 2017; Rusu
et al., 2016; Yoon et al., 2018) methods. Regularization and replay approaches fix the model archi-
tecture before training, and prevent catastrophic forgetting by regularizing the change of a specific
set of weights or replaying previously learned data. Hybrids of replay and regularization also exist
such as Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a).
On the other hand, methods based on expansion add new network components to learn new data.
Conceptually, such direction has the following advantages compared to the first two: (i) catastrophic
forgetting can be eliminated since new information is not overwritten on pre-existing components
and (ii) the model capacity is determined adaptively depending on the data.

Task-Free Continual Learning. All the works mentioned above heavily rely on explicit task defini-
tion. However, in real-world scenarios, task definition is rarely given at training time. Moreover, the
data domain may gradually shift without any clear task boundary. Despite its importance, task-free
CL has been largely understudied; to the best of our knowledge, there are only two works (Aljundi
et al., 2019a;b), each based on regularization and replay. Specifically, Aljundi et al. (2019a) extend
MAS (Aljundi et al., 2018) by adding heuristics to determine when to update the importance weights
with no task definition. In their following work (Aljundi et al., 2019b), they improve the memory
management algorithm of GEM (Lopez-Paz & Ranzato, 2017) such that the memory elements are
carefully selected to minimize catastrophic forgetting. Compared to the previous research, our work
is the first to propose an expansion-based task-free CL method.

2.2 DIRICHLET PROCESS MIXTURE MODELS

We briefly review the Dirichlet process mixture (DPM) model (Antoniak, 1974; Ferguson, 1983) and
a variational method to approximate the posterior of DPM models in an online setting: Sequential
Variational Approximation (SVA) (Lin, 2013). For a more detailed review, refer to Appendix A.

Dirichlet Process Mixture (DPM). The DPM model is often applied to clustering problems where
the number of clusters is not known in advance. The generative process of a DPM model is

xn ∼ p(x; θn), θn ∼ G, G ∼ DP(α,G0), (1)

where xn is the n-th data, and θn is the n-th latent variable sampled from G, which itself is a
distribution sampled from a Dirichlet process (DP). The DP is parameterized by a concentration
parameter α and a base distribution G0. Since G is discrete with probability 1 (Teh, 2010), same
values can be sampled multiple times for θ. If θn = θm, the two data points xn and xm belong to
the same cluster. An alternative formulation uses the variable zn that indicates to which cluster the
n-th data belongs such that θn = φzn where φk is the parameter of k-th cluster. In the context of
this paper, φk refers to the parameters of k-th expert.

2

Under review as a conference paper at ICLR 2020

Approximation of Posterior of DPM Models. Since the exact inference of the posterior of DPM
models is infeasible, approximate inference methods are applied. Among many approximation
methods, we adopt the Sequential Variational Approximation (SVA) (Lin, 2013). While the data
is given one by one, SVA sequentially determines ρn and νk which are the variational approxima-
tion for the distribution of zn and φk respectively. Since ρn satisfies

∑
k ρn,k = 1 and ρn,k >= 0,

ρn,k can be interpreted as the probability of n-th data belonging to k-th cluster and is often called
responsibility. ρn+1 and ν(n+1) at step n+ 1 are computed as:

ρn+1,k ∝

{
(
∑n
i=1 ρi,k)

∫
φ
p(xn+1|φ)ν

(n)
k (dφ) if 1 ≤ k ≤ K

α
∫
φ
p(xn+1|φ)G0(dφ) if k = K + 1

, (2)

ν
(n+1)
k (dφ) ∝

{
G0(dφ)

∏n+1
i=1 p(xi|φ)ρi,k if 1 ≤ k ≤ K

G0(dφ)p(xn+1|φ)ρn+1,k if k = K + 1
. (3)

In practice, SVA adds a new component only when ρK+1 is greater than a certain threshold ε. If
G0 and p(xi|φ) are not a conjugate pair, stochastic gradient descent (SGD) is used to find the MAP
estimation φ̂ with a learning rate of λ instead of calculating the whole distribution νk:

φ̂
(n+1)
k ← φ̂

(n)
k + λ(∇

φ̂
(n)
k

logG0(φ̂
(n)
k) +∇

φ̂
(n)
k

log p(x|φ̂(n)k)). (4)

DPM for Discriminative Tasks. DPM can be extended to discriminative tasks where each data
point is an input-output pair (x, y) and the goal is to learn the conditional distribution p(y|x). To
use DPM, which is a generative model, for discriminative tasks, we first learn the joint distribution
p(x, y) and induce the conditional distribution from it: p(y|x) = p(x, y)/

∫
y
p(x, y). The joint

distribution modeled by each component can be decomposed as p(x, y|z) = p(y|x, z)p(x|z) (Ras-
mussen & Ghahramani, 2002; Shahbaba & Neal, 2009).

DPM in Meta-Learning. Recent works (Jerfel et al., 2018; Nagabandi et al., 2019) in online meta-
learning use DPM models to add new components without supervision. Their approach, however,
lacks a generative component which is a crucial element to complete the DPM formulation. As
a consequence, it is hard to extend their methods beyond meta-learning. In contrast, our method
implements a sound DPM model and is applicable to general CL.

3 APPROACH

We aim at general task-free CL where the number of tasks and task description are not available at
both training and test time. We even consider the case where the data stream cannot be split into
separate tasks in Appendix F. All of the existing expansion methods are not task-free since they
require task definition at training (Aljundi et al., 2017) or even at test time (Rusu et al., 2016; Xu
& Zhu, 2018; Li et al., 2019). We propose a novel expansion method that automatically determines
when to expand and which component to use. We first deal with generative tasks and generalize into
discriminative ones.

3.1 CONTINUAL LEARNING AS MODELING OF THE MIXTURE DISTRIBUTION

We can formulate a CL scenario as a stream of data involving different tasks D1,D2, ... where each
task Dk is a set of data sampled from a (possibly) distinct distribution p(x|z = k). If K tasks are
given so far, the overall distribution is expressed as the mixture distribution:

p(x) =

K∑
k=1

p(x|z = k)p(z = k), (5)

where p(z = k) can be approximated byNk/N whereNk = |Dk| andN =
∑
kNk. The goal of CL

is to learn the mixture distribution in an online manner. Regularization and replay methods directly
model the approximate distribution p(x;φ) parameterized by a single component φ and update it
to fit the overall distribution p(x). When updating φ, however, they do not have full access to all
the previous data, and thus the information of previous tasks is at risk of being lost as more tasks
are learned. Another way to solve CL is to use a mixture model: approximating each p(x|z = k)

3

Under review as a conference paper at ICLR 2020

with p(x;φk). If we learn a new task distribution p(x|z = K + 1) with new parameter φK+1

and leave the existing parameters intact, we can preserve the knowledge of the previous tasks. The
expansion-based CL methods follow this idea.

Similarly, in the discriminative task, the goal of CL is to model the overall conditional distribution
which is a mixture of task-wise conditional distribution p(y|x, z = k):

p(y|x) =

K∑
k=1

p(y|x, z = k)p(z = k|x). (6)

Prior expansion methods use expert networks each of which models a task-wise conditional distri-
bution p(y|x;φk)1. However, a new problem arises in expansion methods: choosing the right expert
given x, i.e. p(z|x) in Eq.(6). Existing methods simply assume that explicit task descriptor z is
given, which is generally not true in human-like learning scenarios. That is, we need a gating mech-
anism that can infer p(z|x) only from x (i.e. which expert should process x). With the gating, the
model prediction naturally reduces to the sum of expert outputs weighted by the gate values, which is
the mixture of experts (MoE) (Jacobs et al., 1991) formulation: p(y|x) ≈

∑
k p(y|x;φk)p(z = k|x).

However, it is not possible to use a single gate network as in Shazeer et al. (2017) to model p(z|x) in
CL; since the gate network is a classifier that finds the correct expert for a given data, training it in an
online setting causes catastrophic forgetting. Thus, one possible solution to replace a gating network
is to couple each expert k with a generative model that represents p(x|z = k) as in Rasmussen &
Ghahramani (2002) and Shahbaba & Neal (2009). As a result, we can build a gating mechanism
without catastrophic forgetting as

p(y|x) ≈
∑
k

p(y|x;φDk)p(z = k|x) ≈
∑
k

p(y|x;φDk)
p(x;φGk)p(z = k)∑
k′ p(x;φGk′)p(z = k′)

, (7)

where p(z = k) ≈ Nk/N . We also differentiate the notation for the parameters of discriminative
models for classification and generative models for gating by the superscript D and G.

If we know the true assignment of z, which is the case of task-based CL, we can independently
train a discriminative model (i.e. p(y|x;φDk)) and a generative model (i.e. p(x;φGk)) for each task
k. In task-free CL, however, z is unknown so the model needs to infer the posterior p(z|x, y). Even
worse, the total number of experts is unknown beforehand. Therefore, we propose to employ a
Bayesian nonparametric framework, specifically the Dirichlet process mixture (DPM) model, which
can fit a mixture distribution with no prefixed number of components. We use SVA described in
section 2.2 to approximate the posterior in an online setting. Although SVA is originally designed
for the generative tasks, it is easily applicable to discriminative tasks by making each component k
to model p(x, y|z) = p(y|x, z)p(x|z).

3.2 THE CONTINUAL NEURAL DIRICHLET PROCESS MIXTURE (CN-DPM) MODEL

The proposed approach for task-free CL, named Continual Neural Dirichlet Process Mixture (CN-
DPM) model, consists of a set of experts, each of which is associated with a discriminative model
(classifier) and a generative model (density estimator). More specifically, the classifier models
p(y|x, z = k), for which we can adopt any classifier or regressor using deep neural networks, and
the density estimator describes the marginal likelihood p(x|z = k), for which we can use any ex-
plicit density model such as VAEs (Kingma & Welling, 2014) and PixelRNN (Oord et al., 2016). We
respectively denote the classifier and the density estimator of expert k as p(y|x;φDk) and p(x;φGk),
where φDk and φGk are the parameters of the models. Finally, the prediction p(y|x) can be obtained
from Eq.(7) by plugging in the output of the classifier and the density estimator. Note that the num-
ber of experts is not pre-fixed but expanded via the DPM framework. Figure 1 illustrates the overall
training and inference process of our model.

Training. We assume that a sequence of samples arrive one at a time during training. For a new
sample, we first decide whether the sample should be assigned to an existing expert or a new expert
should be created for it. Suppose that samples up to (xn, yn) are sequentially processed and K

1The models with multiple output heads sharing the same base network (Rusu et al., 2016; Yoon et al.,
2018) can also fall into this category as the expert correspond to each subnetwork connected to an output head.

4

Under review as a conference paper at ICLR 2020

(a) Training (b) Inference

𝑥, 𝑦

𝜙1
𝐷 𝜙1

𝐺𝑁1𝜙1
𝐷 𝜙1

𝐺𝑁1𝜙1
𝐷 𝜙1

𝐺𝑁1

𝜌𝑘 ∝ 𝑁𝑘𝑝 𝑦 𝑥;𝜙𝑘
𝐷 𝑝 𝑥;𝜙𝑘

𝐺

𝜌𝐾+1 ∝ 𝛼𝑝 𝑦 𝑥; 𝜙0
𝐷 𝑝 𝑥;𝜙0

𝐺

𝜙0
𝐷 𝜙0

𝐺𝛼

STM

STM

Train a new expert

Sleep if

STM is full

Wake

𝑁2

𝑁

𝑥

𝑁𝐾

𝑁

𝑝 𝑥, 𝑦

𝑁1

𝑁

𝜙𝐾+1
𝐷 𝜙𝐾+1

𝐺𝑁𝐾+1

𝑝 𝑧 = 𝑘 =
𝑁𝑘
𝑁

𝑝 𝑥, 𝑦; 𝜙1

𝑝 𝑥, 𝑦; 𝜙2

𝑝 𝑥, 𝑦; 𝜙𝐾

𝑝 𝑦|𝑥

Figure 1: Overview of our CN-DPM model. Each expert k (blue boxes) contains a discriminative
component for modeling p(y|x;φDk) and a generative component for modeling p(x;φGk), jointly
representing p(x, y;φk). We also keep the assigned data count Nk per expert. (a) During training,
each sample (x, y) coming in sequence is evaluated by every expert to calculate the responsibility
ρk of each expert. If ρK+1 is high enough, i.e. none of the existing experts is responsible, the data is
stored into short-term memory (STM). Otherwise, it is learned by the corresponding expert. When
STM is full, a new expert is created from the data in STM. (b) Since CN-DPM is a generative model,
we first compute the joint distribution p(x, y) for a given x, from which it is trivial to infer p(y|x).

experts are already created when a new sample (xn+1, yn+1) arrives. We compute the responsibility
ρn+1,k as follows:

ρn+1,k ∝

{
(
∑n
i=1 ρi,k) p(yn+1|xn+1; φ̂Dk)p(xn+1; φ̂Gk) if 1 ≤ k ≤ K

αp(yn+1|xn+1; φ̂D0)p(xn+1; φ̂G0) where φ̂0 ∼ G0(φ) if k = K + 1
(8)

where G0 is a distribution corresponding to the weight initialization. If arg maxk ρn+1,k 6= K + 1,
the sample is assigned to the existing experts proportional to ρn+1,k, and the parameters of the
experts are updated with the new sample by Eq.(4) such that φ̂k is the MAP approximation given
the data assigned up to the current time step. Otherwise, we create a new expert.

Short-Term Memory. However, it is not a good idea to create a new expert immediately and
initialize it to be the MAP estimation given xn+1. Since both classifier and density estimator of
an expert are neural networks, training the new expert with only a single example leads to severe
overfitting. To mitigate this issue, we employ short-term memory (STM) to collect sufficient data
before creating a new expert. When a data point is classified as new, we store it to the STM. Once
the STM reaches its maximum capacity M , we stop the data inflow for a while and train a new
expert with the data in the STM for multiple epochs until convergence. We call this procedure sleep
phase. After sleep, the STM is emptied and the newly trained expert is added to the expert pool.
During the subsequent wake phase, the expert is learned from the data assigned to it. This STM trick
assumes that the data in the STM belong to the same expert. We empirically find that this assumption
is acceptable in many CL settings where adjacent data are highly correlated. The overall training
procedure is described in Algorithm 1. Note that we use ρn,0 instead of ρn,K+1 in the algorithm for
brevity.

Inference. At test time, we infer p(y|x) from the collaboration of the learned experts as in Eq.(7).

Techniques for Practicality. Naively adding a new expert has two major problems: (i) the number
of parameters grows unnecessarily large as the experts redundantly learn common features and (ii)
there is no positive transfer of knowledge between experts. Therefore, we propose a simple method
to share parameters between experts. When creating a new expert, we add lateral connections to the
features of the previous experts similar to Rusu et al. (2016). To prevent catastrophic forgetting in
the existing experts, we block the gradient from the new expert. In this way, we can greatly reduce
the number of parameters while allowing positive knowledge transfer. More techniques such as
sparse regularization in Yoon et al. (2018) can be employed to further reduce redundant parameters.
As they are orthogonal to our approach, we do not use such techniques in our experiments. Another
effective technique that we use in the classification experiments is adding a temperature parameter to

5

Under review as a conference paper at ICLR 2020

the classifier. Since the range of log p(x|z) is far broader than log p(y|x, z), the classifier has almost
no effect without proper scaling. Thus, we can increase overall accuracy by adjusting the relative
importances of images and labels. We also introduce an algorithm to prune redundant experts in
Appendix D, and discuss further practical issues of CN-DPM in Appendix B.

Algorithm 1 Training of the Continual Neural Dirichlet Process Mixture (CD-NDP) Model

Require: Data (x1, y1), ..., (xN , yN), concen-
tration α, base measure G0, short-term
memory capacity M , learning rate λ

1: M← ∅ {Short-term memory}
2: K ← 0 {Number of experts}
3: N0 ← α; φ̂0 ← Sample(G0)
4: for n = 1 to N do
5: for k = 0 to K do
6: lk ← p(yn|xn; φ̂Dk)p(xn; φ̂Gk)
7: ρn,k ← Nklk
8: end for
9: ρn,0:K ← ρn,0:K/

∑K
k=0 ρn,k

10: if arg maxk ρn,k = 0 then
11: {Save xn to short-term memory}

12: M← {xn} ∪M
13: if |M| ≥M then {Add new expert}
14: φ̂K+1 ← FindMAP(M, G0)
15: NK+1 ← |M|;M← ∅
16: K ← K + 1
17: end if
18: else {Update existing experts}
19: ρn,1:K ← ρn,1:K/

∑K
k=1 ρn,k

20: for k = 1 to K do
21: Nk ← Nk + ρn,k
22: φ̂k ← φ̂k + ρn,kλ∇φ̂k

log lk
23: end for
24: end if
25: end for

4 EXPERIMENTS

We evaluate the proposed CN-DPM model in task-free CL with four benchmark datasets. Appen-
dices include more detailed model architecture, additional experiments and analyses.

4.1 CONTINUAL LEARNING SCENARIOS

A CL scenario defines a sequence of tasks where the data distribution for each task is assumed to
be different from others. Below we describe the task-free CL scenarios used in the experiments. At
both train and test time, the model cannot access the task information. Unless stated otherwise, each
task is presented for a single epoch (i.e. a complete online setting) with a batch size of 10.

Split-MNIST (Zenke et al., 2017). The MNIST dataset (LeCun et al., 1998) is split into five tasks,
each containing approximately 12K images of two classes, namely (0/1, 2/3, 4/5, 6/7, 8/9). We
conduct both classification and generation experiments in this scenario.

MNIST-SVHN (Shin et al., 2017). It is a two-stage scenario where the first consists of MNIST and
the second contains SVHN (Netzer et al., 2011). This scenario is different from Split-MNIST; in
Split-MNIST, new classes are introduced when transitioning into a new task, whereas the two stages
in MNIST-SVHN share the same set of class labels and have different input domains.

Split-CIFAR10 and Split-CIFAR100. In Split-CIFAR10, we split CIFAR10 (Krizhevsky & Hin-
ton, 2009) into five tasks in the same manner as Split-MNIST. For Split-CIFAR100, we build 20
tasks each containing 5 classes according to the pre-defined superclasses in CIFAR100. The train-
ing sets of CIFAR10 and CIFAR100 consist of 50K examples each. To the best of our knowledge,
we are first to report Split-CIFAR100 performance without using task information at test time. In
Split-CIFAR100 experiments of all previous works (Rebuffi et al., 2017; Zenke et al., 2017; Lopez-
Paz & Ranzato, 2017; Aljundi et al., 2019c; Chaudhry et al., 2019a) a distinct output head is used
for each task, and the task information to select the corresponding output head is given at both
training and test time. Knowing the right output head, however, the task reduces to 5-way classifica-
tion. Therefore, our setting is far more difficult than the prior works since the model has to perform
100-way classification only from the given input.

4.2 COMPARED METHODS

All the following baselines use the same base network that will be discussed in section 4.3.

6

Under review as a conference paper at ICLR 2020

Table 1: Test scores and the numbers of parameters in task-free CL on Split-MNIST, MNIST-SVHN,
and Split-CIFAR100 scenarios. Note that iid-∗ baselines are not CL methods.

Method Split-MNIST Split-MNIST (Gen.) MNIST-SVHN Split-CIFAR100
Acc. (%) Param. bits/dim Param. Acc. (%) Param. Acc. (%) Param.

iid-offline 98.63 478K 0.1806 988K 96.69 11.2M 73.80 11.2M
iid-online 96.18 478K 0.2156 988K 95.24 11.2M 20.46 11.2M

Fine-tune 19.43 478K 0.2817 988K 83.35 11.2M 2.43 11.2M
Reservoir 85.69 478K 0.2234 988K 94.12 11.2M 10.01 11.2M

CN-DPM 93.23 524K 0.2110 970K 94.46 7.80M 20.10 19.2M

Table 2: Performance comparison on Split-CIFAR10
with various scenario length.

Method Split-CIFAR10 Acc. (%) Param.0.2 Epoch 1 Epoch 10 Epochs

iid-offline 93.17 93.17 93.17 11.2M
iid-online 36.65 62.79 83.19 11.2M

Fine-tune 12.68 18.08 19.31 11.2M
Reservoir 37.09 44.00 43.82 11.2M
GSS 33.56 − − 11.2M

CN-DPM 41.78 45.21 46.98 4.60M

Table 3: Dissecting the performance of CN-DPM.

Acc. Type Split-CIFAR10 Split-CIFAR100

Classifier (init) 88.20 55.42
Classifier (final) 88.20 55.24
VAE 48.18 31.14

0K 2K 4K 6K 8K 10K
Learned examples

10
15
20
25
30
35
40
45

Ac
cu

ra
cy

 (%
)

iid-online
Fine-tune
GSS
Reservoir
CN-DPM

Figure 2: Split-CIFAR10 (0.2 Epoch).

0K 10K 20K 30K 40K 50K
Learned examples

0

5

10

15

20
Ac

cu
ra

cy
 (%

)

Figure 3: Split-CIFAR100.

iid-offline and iid-online. iid-offline shows the maximum performance achieved by combining
standard training techniques such as data augmentation, learning rate decay, multiple iteration (up
to 100 epochs), and larger batch size. iid-online is the model trained with the same number of epoch
and batch size with other CL baselines.

Fine-tune. As a popular baseline in the previous works, the base model is naively trained as data
enters.

Reservoir. As Chaudhry et al. (2019b) show that simple experience replay (ER) can outperform
most CL methods, we test ER with reservoir sampling as a strong baseline. Reservoir sampling
randomly chooses a fixed amount of samples with a uniform probability from an indefinitely long
stream of data, and thus it is suitable for managing the replay memory in task-free CL. At each
training step, the model is trained using a mini-batch from the data stream and another one of the
same size from the memory.

Gradient-Based Sample Selection (GSS). Aljundi et al. (2019b) propose a sampling method called
GSS that diversifies the gradients of the samples in the replay memory. Since it is designed to work
in task-free settings, we report the scores in their paper for comparison.

4.3 MODEL ARCHITECTURE

Split-MNIST. Following Hsu et al. (2018), we use a simple two-hidden-layer MLP classifier with
ReLU activation as the base model for classification. The dimension of each layer is 400. For gen-
eration experiments, we use VAE whose encoder and decoder have the same hidden layer configu-
ration with the classifier. Each expert in CN-DPM has the similar classifier and VAE with smaller

7

Under review as a conference paper at ICLR 2020

hidden dimensions. The first expert starts with 64 hidden units per layer, and add 16 units when a
new expert is added. For classification, we adjust hyperparameter α such that 5 experts are created.
For generation, we set α to produce 12 experts since more experts produce better score. We set the
memory size in both Reservoir and CN-DPM to 500 for classification and 1000 for generation.

MNIST-SVHN and Split-CIFAR10/100. We use ResNet-18 (He et al., 2016) as the base model. In
CN-DPM, we use a 10-layer ResNet for the classifier and a CNN-based VAE. The encoder and the
decoder of VAE have two CONV layers and two FC layers. We set α such that 2, 5, and 20 experts
are created for each scenario. The memory sizes in Reservoir, GSS and CN-DPM are set to 500 for
MNIST-SVHN and 1000 for Split-CIFAR10/100. More details can be found in Appendix C.

4.4 RESULTS OF TASK-FREE CONTINUAL LEARNING

All reported numbers in our experiments are the average of 10 runs. Table 1 and 2 show our main
experimental results. In every setting, CN-DPM outperforms the baselines by significant margins
with reasonable parameter usage. Table 2 and Figure 2 shows the results of Split-CIFAR10 exper-
iments. Since Aljundi et al. (2019b) test GSS using only 10K examples of CIFAR10, which is 1/5
of the whole train set, we follow their setting (denoted by 0.2 Epoch) for fair comparison. We also
test a Split-CIFAR10 variant where each task is presented for 10 epochs. The accuracy and the
training graph of GSS are excerpted from the original paper where the accuracy is the average of
three runs and the graph is from one of the runs. In Figure 2, the bold line represents the average of
10 runs (except GSS which is a single run), and the faint lines are the individual runs. Surprisingly,
Reservoir even surpasses the accuracy of GSS and proves to be a simple but powerful CL method.

One interesting observation in Table 2 is that the performance of Reservoir degrades as each task is
extended up to 10 epochs. This is due to the nature of replay methods; since the same samples are
replayed repeatedly as representatives of the previous tasks, the model tends to be overfitted to the
replay memory as training continues. This degradation is more severe when the memory size is small
as presented in Appendix I. Our CN-DPM, on the other hand, uses the memory to temporarily buffer
recent examples, so there is no such overfitting problem. This is also confirmed by the CN-DPM’s
accuracy consistently increasing as learning progresses.

In addition, CN-DPM is particularly strong compared to other baselines when the number of tasks
increases. For example, Reservoir, which performs reasonably well in other tasks, scores poorly
in Split-CIFAR100, which involves 20 tasks and 100 classes. Even with the large replay memory
of size 1000, the Reservoir suffers from the shortage of memory (e.g. only 50 slots per task). In
contrast, CN-DPM’s accuracy is more than double of Reservoir and comparable to that of iid-online.

Table 3 analyzes the accuracy of CN-DPM in Split-CIFAR10/100. We assess the performance and
the amount of forgetting of individual components. We compute the test accuracy of the task at the
end of each task using only the classifier of the responsible expert as Classifier (init). We also report
the accuracy of each classifier after learning all tasks as Classifier (final). With little difference
between the two scores, we can see that forgetting barely occurs in the classifiers. In addition, we
report the gating accuracy at the end of training as VAE, which is the accuracy of task identification
performed jointly by the VAEs. Overall, CN-DPM does not suffer from catastrophic forgetting
which is a major problem in regularization and replay methods. As a trade-off, however, choosing
the right expert arises as another problem in CN-DPM. Nonetheless, the results show that this new
direction is especially promising when the number of tasks is very large.

5 CONCLUSION

In this work, we formulated expansion-based task-free CL as learning of a Dirichlet process mix-
ture model with neural experts. We demonstrated that the proposed CN-DPM model achieves great
performance in multiple task-free settings, better than the existing methods. We believe there are
several interesting research directions beyond this work: (i) improving the accuracy of expert selec-
tion, which is the main bottleneck of our method, and (ii) applying our method to different domains
such as natural language processing and reinforcement learning.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In CVPR, 2017.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-Free continual learning. In CVPR,
2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. arXiv, (1903.08671v4), 2019b.

Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. In ICLR,
2019c.

Charles E. Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric
problems. Ann. Stat., 2(6):1152–1174, 1974.

David Blei and Michael Jordan. Variational inference for dirichlet process mixtures. Bayesian Anal.,
1(1):121–143, 2006.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In ICLR,
2015.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv, (1902.10486v4), 2019b.

Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures. J.
Am. Stat. Assoc., 90(430):577–588, 1995.

Thomas S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In Recent
advances in statistics, pp. 287–302. Academic Press, 1983.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learn-
ing scenarios: A categorization and case for strong baselines. In NeurIPS, Continual Learning
Workshop, 2018.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Comput., 3:79–87, 1991.

Ghassen Jerfel, Erin Grant, Thomas Griffiths, and Katherine Heller. Reconciling meta-learning and
continual learning with online mixtures of tasks. arXiv, (1812.06080v3), 2018.

Diederik P. Kingma and Max Welling. Auto-Encoding variational bayes. In ICLR, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. PNAS, 2017.

A Krizhevsky and G Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In ICML, 2019.

9

Under review as a conference paper at ICLR 2020

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE TPAMI, 40(12):2935–2947,
2017.

Dahua Lin. Online learning of nonparametric mixture models via sequential variational approxima-
tion. In NeurIPS, 2013.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
NeurIPS, 2017.

Steven Maceachern. Estimating normal means with a conjugate style dirichlet process prior. Com-
mun. Stat. - Simul. Comput., 23(3):727–741, 1994.

Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via Meta-Learning:
continual adaptation for Model-Based RL. In ICLR, 2019.

Radford M. Neal. Markov chain sampling methods for dirichlet process mixture models. J. Comput.
Graph. Stat., 2000.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NeurIPS, Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Aaron Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In ICML,
2016.

German I. Parisi, Ronald Kemker, Jose L. Part, and Christopher Kanan. Continual lifelong learning
with neural networks: A review. Neural Networks, 113:54–71, 2019.

Carl Edward Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian process experts. In
NeurIPS, 2002.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph Lampert. iCaRL: in-
cremental classifier and representation learning. In CVPR, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In NeurIPS,
2016.

Jonathan Schwarz, Jelena Luketina, Wojciech Czarnecki, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In ICML, 2018.

Babak Shahbaba and Radford Neal. Nonlinear models using dirichlet process mixtures. J. Mach.
Learn. Res., 2009.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The Sparsely-Gated Mixture-of-Experts layer. In
ICLR, 2017.

Hanul Shin, Jung Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NeurIPS, 2017.

Yee Whye Teh. Dirichlet process. Springer, Encyclopedia of Machine Learning:280–287, 2010.

Gido M. van de Ven and Andreas S. Tolias. Generative replay with feedback connections as a general
strategy for continual learning. arXiv, (1809.10635v2), 2018.

Lianming Wang and David Dunson. Fast bayesian inference in dirichlet process mixture models. J.
Comput. Graph. Stat., 20(1):196–216, 2011.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In ICLR, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

10

Under review as a conference paper at ICLR 2020

A REVIEW OF DIRICHLET PROCESS MIXTURE MODEL

We review the Dirichlet process mixture (DPM) model and a variational method to approximate the
posterior of DPM models in an online setting: Sequential Variational Approximation (SVA) (Lin,
2013).

Dirichlet Process. Dirichlet process (DP) is a distribution over distributions that is defined over
infinitely many dimensions. DP is parameterized by a concentration parameter α ∈ R+ and a base
distribution G0. For a distribution G sampled from DP(α,G0), the following holds for any finite
measurable partition {A1, A2, ..., AK} of probability space Θ (Teh, 2010):

(G(A1), ..., G(AK)) ∼ Dir(αG0(A1), ..., αG0(AK)). (9)
The stick-breaking process is often used as a more intuitive construction of DP:

G =

∞∑
k=1

(
vk

k−1∏
l=1

(1− vl)

)
δφk

, vk ∼ Beta(1, α), φk ∼ G0. (10)

Initially, we start with a stick of length one, which represents the total probability. At each step k, we
cut a proportion vk off from the remaining stick (probability) and assign it to the atom φk sampled
from the base distributionG0. This formulation shows DP is discrete with probability 1 (Teh, 2010).
In our problem setting, G is a distribution over expert’s parameter space and has positive probability
only at the countably many φk which are independently sampled from the base distribution.

Dirichlet Process Mixture (DPM) Model. The DPM model is often applied to clustering problems
where the number of clusters is not known in advance. The generative process of DPM model is

xn ∼ p(θn), θn ∼ G, G ∼ DP(α,G0), (11)
where xn is the n-th data, and θn is the n-th latent variable sampled from G, which itself is a
distribution sampled from a Dirichlet process (DP). Since G is discrete with probability 1, same
values can be sampled multiple times for θ. If θn = θm, the two data points xn and xm belong to
the same cluster. An alternative formulation uses the indicator variable zn that indicates to which
cluster the n-th data belongs such that θn = φzn where φk is the parameter of k-th cluster. The data
xn is sampled from a distribution parameterized by θn. For a DP Gaussian mixture model as an
example, each θ = {µ, σ2} parameterizes a Gaussian distribution.

The Posterior of DPM Models. The posterior of a DPM model for given θ1, ..., θn is also a DP
(Teh, 2010):

G|θ1, ..., θn ∼ DP

(
α+ n,

α

α+ n
G0 +

1

α+ n

n∑
i=1

δ(θi)

)
. (12)

The base distribution of the posterior, which is a weighted average of G0 and the empirical distribu-
tion 1

n

∑n
i=1 δ(θi), is in fact the predictive distribution of θn+1 given θ1:n (Teh, 2010):

θn+1|θ1, ..., θn ∼
α

α+ n
G0 +

1

α+ n

n∑
i=1

δ(θi). (13)

If we additionally condition xn and reflect the likelihood, we obtain (Neal, 2000):

θn+1|θ1, ..., θn, xn+1 ∼
1

Z

(
α

α+ n

∫
p(xn+1|θ)dG0(θ) +

1

α+ n

n∑
i=1

p(xn+1|θi)δ(θi)

)
, (14)

where Z is the normalizing constant. Note that θn+1 is independent from x1:n given θ1:n.

Approximation of the Posterior of DPM Models. Since the exact inference of the posterior of
DPM models is infeasible, approximate inference methods are adopted such as Markov chain Monte
Carlo (MCMC) (Maceachern, 1994; Escobar & West, 1995; Neal, 2000) or variational inference
(Blei & Jordan, 2006; Wang & Dunson, 2011; Lin, 2013). Among many variational methods, the
Sequential Variational Approximation (SVA) (Lin, 2013) approximates the posterior as

p(G|x1:n) =
∑
z1:n

p(z1:n|x1:n)p(G|x1:n, z1:n) ≈ q(G|ρ, ν) =
∑
z1:n

(n∏
i=1

ρi,zi

)
q(z)ν (G|z1:n),

(15)

11

Under review as a conference paper at ICLR 2020

where p(z1:n|x1:n) is represented by the product of individual variational probabilities ρzi for zi,
which greatly simplifies the distribution. Moreover, p(G|x1:n, z1:n) is approximated by a stochastic
process q(z)ν (G|z1:n). Sampling from q

(z)
ν (G|z1:n) is equivalent to constructing a distribution as

β0D
′ +

K∑
k=1

βkδφk
, D′ ∼ DP(αG0), (β0, . . . , βK) ∼ Dir(α, |C(z)

1 |, . . . , |C
(z)
K |), φk ∼ νk, (16)

where {C(z)
1 , C

(z)
2 , ..., C

(z)
K } is the partition of x1:n characterized by z.

The approximation yields the following tractable predictive distribution:

q(θ′|ρ, ν) = Eq(G|ρ,ν)[p(θ′|G)] =
α

α+ n
G0(θ′) +

K∑
k=1

∑n
i=1 ρi,k
α+ n

νk(θ′). (17)

SVA uses this predictive distribution for sequential approximation of the posterior of z and φ.

p(zn+1, φ
(n+1)|x1:n+1) ∝ p(xn+1|zn+1, φ

(n+1))p(zn+1, φ
(n+1)|x1:n) (18)

≈ p(xn+1|zn+1, φ
(n+1))q(zn+1, φ

(n+1)|ρ1:n, ν(n)). (19)

While the data is given one by one, SVA sequentially updates the variational parame-
ters; the following ρn+1 and ν(n+1) at step n + 1 minimizes the KL divergence between
q(zn+1, φ

(n+1)|ρ1:n+1, ν
(n+1)) and the posterior:

ρn+1,k ∝

{
(
∑n
i=1 ρi,k)

∫
θ
p(xn+1|θ)ν(n)k (dθ) if 1 ≤ k ≤ K

α
∫
θ
p(xn+1|θ)G0(dθ) if k = K + 1

, (20)

ν
(n+1)
k (dθ) ∝

{
G0(dθ)

∏n+1
i=1 p(xi|θ)ρi,k if 1 ≤ k ≤ K

G0(dθ)p(xn+1|θ)ρn+1,k if k = K + 1
. (21)

In practice, SVA adds a new component only when ρn+1,K+1 is greater than a threshold ε. It
uses stochastic gradient descent to find and maintain the MAP estimation of parameters instead of
calculating the whole distribution νk:

φ̂
(n+1)
k ← φ̂

(n)
k + λn(∇

φ̂
(n)
k

logG0(φ̂
(n)
k) +∇

φ̂
(n)
k

log p(x|φ̂(n)k)), (22)

where λ(n)k is a learning rate of component k at step n, which decreases as in the Robbins-Monro
algorithm.

B PRACTICAL ISSUES OF CN-DPM

CN-DPN is designed based on strong theoretical foundations including the nonparametric Bayesian
framework. In this section, we further discuss some practical issues of CN-DPM with intuitive
explanations.

Bounded expansion of CN-DPM. The number of components in DPM model is determined by the
data distribution and the concentration parameter. If the true distribution consists of K clusters, the
number of effective components converges to K under appropriate concentration parameter α. Typ-
ically, the number of components is bounded by O(α logN) (Teh, 2010). Experiments in Appendix
H empirically show that CN-DPM does not blindly increase the number of experts.

Continued increase of model capacity. Our model capacity keeps increasing as it learns more
tasks. However, we believe this is one of the strengths of our method, since it may not make sense to
use a fixed-capacity neural network to learn an indefinitely long sequence of tasks. The underlying
assumption of using a fixed-capacity model is that the pre-set model capacity is adequate (at least
not insufficient) to learn the incoming tasks. On the other hand, CN-DPM approaches the problem
in a different direction: start small and add more as needed. This property is essential in task-free
settings where the total number of tasks are not known. If there are too many tasks than expected,
a fixed-capacity model would not be able to successfully learn them. Conversely, if there are less

12

Under review as a conference paper at ICLR 2020

tasks than expected, resources would be wasted. We argue that the expansion is a promising direc-
tion since it does not need to fix the model capacity beforehand. Moreover, we also introduce an
algorithm to prune redundant experts in Appendix D,

Generality of the concentration parameter. The concentration parameter controls how sensitive
the model is to new data. In other words, it determines the level of discrepancy between tasks that
makes them modeled by distinct components. As an example, suppose that we are designing a hand-
written alphabet classifier that continually learns in the real world. In the development, we only have
the character images for a half of alphabets, i.e. from ‘a’ to ‘m’. If we can find a good concentration
parameter α for the data from ‘a’ to ‘m’, the same α can work well with novel alphabets (i.e. from
‘n’ to ‘z’) because the alphabets would have similar level of discrepancies between tasks. Therefore,
we do not need to access the whole data to determine α if the discrepancy between tasks is steady.

C MODEL ARCHITECTURES AND EXPERIMENTAL DETAILS

C.1 BASE MODELS

C.1.1 SPLIT-MNIST

Following Hsu et al. (2018), we use two-hidden-layer MLP classifier with 400 hidden units per
layer. For generation tasks, we use a simple VAE with the two-hidden-layer MLP encoder and
decoder where each layer contains 400 units. The dimension of latent code is set to 32. We use
ReLU for all intermediate activation functions.

C.1.2 MNIST-SVHN AND SPLIT-CIFAR10/100

We use ResNet-18 (He et al., 2016). The input images are transformed to 32×32 RGB images.

C.2 CN-DPM

C.2.1 SPLIT-MNIST

For the classifiers in experts we use a smaller version of the base MLP classifier. In the first expert,
we set the number of hidden units per layer to 64. In the second or later experts, we introduce 16
new units per layer which are connected to the lower layers of the existing experts. For the encoder
and decoder of VAEs, we use a two-layer MLP. The encoder is expanded in the same manner as
the classifier. However, we do not share the parameters beyond the encoders; with a latent code of
dimension 16, we use the two-hidden-layer MLP decoder as done in the classifier. For generation
tasks, we double the size; for example, we set the size of initial and additional hiden units to 128
and 32, respectively.

C.2.2 SPLIT-CIFAR10/100

The ResNet-18 base network has 8 residual blocks. After passing through 2 residual blocks, the
width and height of the feature are halved and the number of channels is doubled. The initial number
of channels is set to 64.

For the classifiers in CN-DPM, we use a smaller version of ResNet that has only four residual blocks
and resizes the feature every block. The initial number of channels is set to 20 in the first expert,
and 4 initial channels are added with a new expert. Thus, 4, 8, 16, and 32 channels are added for the
four blocks. The first layer of each block is connected to the last layer of the previous block of prior
experts.

For the VAEs, we use a simple CNN-based VAEs. The encoder has two 3×3 convolutions followed
by two fully connected layers. Each convolution is followed by 2×2 max-pool and ReLU activation.
The number of channels and hidden units are doubled after each layer. In the first expert, the first
convolution outputs 32 channels, while four new channels are added with each new expert.

As done for the VAE in Split-MNIST, each expert’s VAE has an unshared decoder with a 64-
dimensional latent code. The decoder is the mirrored encoder where 3×3 convolution is replaced by
4×4 transposed convolution with a stride of 2.

13

Under review as a conference paper at ICLR 2020

C.2.3 MNIST-SVHN

For the classifier, we use ResNet-18 with 32 channels for the first expert and additional 32 channels
for each new expert. We use the same VAE as in Split-CIFAR10.

C.3 EXPERIMENTAL DETAILS

We use the classifier temperature parameter of 0.01 for Split-MNIST, Split-CIFAR10/100, and no
temperature parameter on MNIST-SVHN. Weight decay 0.00001 has been used for every model in
the paper. Gradients are clipped by value with threshold 0.5. All the CN-DPM models are trained
by the Adam optimizer. During the sleep phase, we train the new expert for multiple epochs with a
batch size of 50. In classification tasks, we improve the density estimation of VAEs by sampling 16
latent codes and averaging the ELBOs, following Burda et al. (2015).

C.3.1 SPLIT-MNIST

Learning rate of 0.0001 and 0.0004 has been used for the classifier and VAE of each expert in the
classification task. We use learning rate 0.003 for the VAE of each expert in generation task. In
the generation task, we decay the learning rate of the expert by 0.003 before it enters the wake
phase. Following the existing works in VAE literature, we use binarized MNIST for the generation
experiments. VAEs are trained to maximize Bernoulli log-likelihood in the generation task while
Gaussian log-likelihood is used for the classification task.

C.3.2 SPLIT-CIFAR10

Learning rate of 0.005 and 0.0002 has been used for the classifier and VAE of each expert in CI-
FAR10. We decay the learning rate of the expert by 0.1 before it enters the wake phase. VAEs are
trained to maximize Gaussian log-likelihood.

C.3.3 SPLIT-CIFAR100

Learning rate of 0.0002 and 0.0001 has been used for the classifier and VAE of each expert in
CIFAR10. We decay the learning rate of the expert by 0.2 before it enters the wake phase. VAEs are
trained to maximize Gaussian log-likelihood.

C.3.4 MNIST-SVHN

Learning rate of 0.0001 and 0.0003 has been used for the classifier and VAE of each expert in
CIFAR10. We decay the learning rates of classifier and VAE of each expert by 0.5 and 0.1 before it
enters the wake phase. VAEs are trained to maximize Gaussian log-likelihood.

D PRUNING REDUNDANT EXPERTS

Lin (2013) propose a simple algorithm to prune and merge redundant components in DPM models.
Following the basic principle of the algorithm, we provide a pruning algorithm for CN-DPM. First,
we need to measure the similarities between experts to choose which expert to prune. We compute
the log-likelihood lnk = p(xn, yn|φ̂k) of each expert k for data (x1:N , y1:N). As a result, we can
obtainK vectors withN dimensions. We define the similarity s(k, k′) between two experts k and k′

as the cosine similarity between the two corresponding vectors l·k and l·k′ , i.e. s(k, k′) = l·k·l·k′
|l·k||l·k′ |

.
If the similarity is greater than a certain threshold ε, we remove one of the experts with smaller
Nk =

∑
n ρn,k. The Nk data of the removed expert are added to the remaining experts.

Figure 4 shows an example of expert pruning. We test CN-DPM on Split-MNIST with an α higher
than the optimal value such that more than 5 experts are created. In this case, seven experts are
created. If we build a similarity matrix as shown in Figure 4b, we can see which pair of experts
are similar. We then threshold the matrix at 0.9 in Figure 4c and choose expert pairs (2/3) and (5/6)
for pruning. Comparing Nk within each pair, we can finally choose to prune expert 3 and 6. After
pruning, the test accuracy marginally drops from 87.07% to 86.01%.

14

Under review as a conference paper at ICLR 2020

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

0K 12K 24K 36K 48K 60K
Learned examples

0
2
4
6

Ex
pe

rts

(a) Training curve

1 2 3 4 5 6 7
1
2
3
4
5
6
7

(b) Similarity matrix

1 2 3 4 5 6 7
1
2
3
4
5
6
7

(c) Thresholded similarity
matrix

Figure 4: An example of the expert pruning in the Split-MNIST scenario.

E COMPARISON WITH TASK-BASED METHODS ON SPLIT-MNIST

Table 4 compares our method with task-based methods for Split-MNIST classification. All the
numbers except for our CN-DPM are excerpted from Hsu et al. (2018), in which all methods are
trained for 4 epochs per task with a batch size of 128. Our method is trained for 4 epochs per task
with a batch size of 10. The model architecture used in compared methods is the same with our
baselines: a two-hidden-layer MLP with 400 hidden units per layer. All compared methods use
single output head, and the task information is given at training time but not at test time. For CN-
DPM, on the other hand, task information is given neither at training time nor at test time. Notice that
regularization methods often suffer from catastrophic forgetting while replay methods yield decent
accuracies. Even though the task-free condition is a far more difficult setting, the performance of
our method is significantly better than regularization and replay methods which exploit the task
description.

Table 4: Comparison with task-based methods on Split-MNIST classification. We report the average
of 10 runs with ± standard error of the mean. The numbers except ours are from Hsu et al. (2018).

Type Method Task labels Accuracy (%)

Regularization

EWC (Kirkpatrick et al., 2017) 3 19.80 ± 0.05
Online EWC (Schwarz et al., 2018) 3 19.77 ± 0.04
SI (Zenke et al., 2017) 3 19.67 ± 0.09
MAS (Aljundi et al., 2018) 3 19.52 ± 0.04
LwF (Li & Hoiem, 2017) 3 24.17 ± 0.33

Replay
GEM (Lopez-Paz & Ranzato, 2017) 3 92.20 ± 0.12
DGR (Shin et al., 2017) 3 91.24 ± 0.33
RtF (van de Ven & Tolias, 2018) 3 92.56 ± 0.21

Expansion CN-DPM 7 93.70 ± 0.07

Upper bound (iid) 97.53 ± 0.30

F FUZZY SPLIT-MNIST

In addition, we experiment the case where the task boundaries are not clearly defined, which we
call Fuzzy-Split-MNIST. Instead of discrete task boundaries, we have transition stages between tasks
where the data of existing and new tasks are mixed but the proportion of the new task linearly
increases. This condition adds another level of difficulty since it makes the methods unable to rely
on clear task boundaries. The scenario is visualized in Figure 5. As shown in Table 5, CN-DPM can
perform continual learning without task boundaries.

15

Under review as a conference paper at ICLR 2020

Table 5: Fuzzy Split-MNIST

Method Acc. (%) Param.

Fine-tune 28.41± 0.52 478K
Reservoir 88.64± 0.48 478K

CN-DPM 93.22 ± 0.07 524K
0K 12K 24K 36K 48K 60K

Learned examples

Cu
m

ul
at

iv
e

ta
sk

 p
ro

po
rti

on

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 5

Figure 5: Scenario configuration of
Fuzzy Split-MNIST

Label: 0 Label: 0 Label: 1 Label: 0 Label: 0 Label: 1 Label: 1 Label: 0 Label: 0 Label: 0

Label: 1 Label: 0 Label: 1 Label: 3 Label: 2 Label: 2 Label: 2 Label: 3 Label: 2 Label: 3

Label: 5 Label: 5 Label: 5 Label: 4 Label: 5 Label: 4 Label: 5 Label: 4 Label: 4 Label: 6

Label: 7 Label: 7 Label: 7 Label: 7 Label: 6 Label: 6 Label: 6 Label: 6 Label: 8 Label: 8

Label: 9 Label: 8 Label: 8 Label: 8 Label: 8 Label: 9 Label: 9 Label: 8 Label: 8 Label: 8

Figure 6: Examples of generation samples by CN-DPM trained on Split-MNIST.

G GENERATION OF SAMPLES

Even in discriminative tasks where the goal is to model p(y|x), CN-DPM learns the joint distri-
bution p(x, y). Since CN-DPM is a complete generative model, it can generate (x, y) pairs. To
generate a sample, we first sample z from p(z) which is modeled by the categorical distribution
Cat(N1

N , N2

N , ..., NK

N), i.e. choose an expert. Given z = k, we first sample x from the generator
p(x;φGk), and then sample y from the discriminator p(y|x;φDk). Figure 6 presents 50 sample ex-
amples generated from a CN-DPM trained on Split-MNIST for a single epoch. We observe that
CN-DPM successfully generates examples of all tasks with no catastrophic forgetting.

H EXPERIMENTS WITH LONGER CONTINUAL LEARNING SCENARIOS

We present experiments with much longer continual learning scenarios on Split-MNIST, Split-
CIFAR10 and Split-CIFAR100 in Table 6, 7 and 8, respectively. We report the average of 10 runs
with ± standard error of the mean. To compare with the default 1-epoch scenario, we carry out ex-
periments that repeat each task 10 times, which are denoted 10 Epochs. In addition, we also present
the results of repeating the whole scenario 10 times which are denoted 1 Epoch ×10. For example,
in Split-MNIST, the 10 Epochs scenario consists of 10-epoch 0/1, 10-epoch 2/3, ..., 10-epoch 8/9
tasks. On the other hand, the 1 Epoch ×10 scenario revisits each task multiple times, i.e. 1-epoch
0/1, 1-epoch 2/3, ..., 1-epoch 8/9, 1-epoch 0/1, ..., 1-epoch 8/9. We use the same hyperparameters
tuned for the 1-epoch scenario.

We find that the accuracy of Reservoir drops as the length of each task increases. As mentioned in
the main text, this phenomenon seems to be caused by the overfitting on the samples in the replay
memory. Since only a small amount of examples in the memory represents each task, replaying them

16

Under review as a conference paper at ICLR 2020

for a long period degrades the performance. On the other hand, the performance of our CN-DPM
improves as the learning process is extended.

In the 1 Epoch ×10 setting, CN-DPM shows similar performance with 10 Epoch since the model
sees each data point 10 times in both scenarios. On the other hand, Reservoir’s scores in the 1 Epoch
×10 largely increase compared to both 1 Epoch and 10 Epoch This difference can be explained by
how the replay memory changes as training progresses. In the 10 Epoch setting, if a task is finished,
it is not visited again. Therefore, the examples of the task in the replay memory monotonically
decreases, and the remaining examples are replayed repeatedly. As the training progresses, the
model is overfitted to the old examples in the memory and fails to generalize in the old tasks. In
contrast, in 1 Epoch ×10 setting, each task is revisited multiple times, and each time a task is
revisited, the replay memory is also updated with the new examples of the task. Therefore, the
overfitting problem in the old tasks is greatly relieved.

Another important remark is that CN-DPM does not blindly increase the number of experts. If
we add a new expert at every constant steps, we would have 10 times more experts in the longer
scenarios. However, this is not the case. CN-DPM determines whether it needs a new expert on a
data-by-data basis such that the number of experts is determined by the task distribution, not by the
length of training.

Table 6: Experiments with longer training episodes on Split-MNIST

Method 1 Epoch 10 Epochs 1 Epoch ×10
Acc. (%) Param. Acc. (%) Param. Acc. (%) Param.

iid-offline 98.63± 0.01 478K 98.63± 0.01 478K 98.63± 0.01 478K
iid-online 96.18± 0.19 478K 97.67± 0.05 478K 97.67± 0.05 478K

Fine-tune 19.43± 0.02 478K 19.68± 0.01 478K 20.27± 0.26 478K
Reservoir 85.69± 0.48 478K 78.82± 0.71 478K 92.06± 0.11 478K

CN-DPM 93.23 ± 0.09 524K 94.39 ± 0.04 524K 94.15 ± 0.04 616K

Table 7: Experiments with longer training episodes on Split-CIFAR10

Method 1 Epoch 10 Epochs 1 Epoch ×10
Acc. (%) Param. Acc. (%) Param. Acc. (%) Param.

iid-offline 93.17± 0.03 11.2M 93.17± 0.03 11.2M 93.17± 0.03 11.2M
iid-online 62.79± 1.30 11.2M 83.19± 0.27 11.2M 83.19± 0.27 11.2M

Fine-tune 18.08± 0.13 11.2M 19.31± 0.03 11.2M 19.33± 0.03 11.2M
Reservoir 44.00± 0.92 11.2M 43.82± 0.53 11.2M 51.44 ± 0.42 11.2M

CN-DPM 45.21 ± 0.18 4.60M 46.98 ± 0.18 4.60M 47.10± 0.16 4.60M

Table 8: Experiments with longer training episodes on Split-CIFAR100

Method 1 Epoch 10 Epochs 1 Epoch ×10
Acc. (%) Param. Acc. (%) Param. Acc. (%) Param.

iid-offline 73.80± 0.11 11.2M 73.80± 0.11 11.2M 73.80± 0.11 11.2M
iid-online 20.46± 0.30 11.2M 54.58± 0.27 11.2M 54.58± 0.27 11.2M

Fine-tune 2.43± 0.05 11.2M 3.99± 0.03 11.2M 4.30± 0.02 11.2M
Reservoir 10.01± 0.35 11.2M 6.61± 0.20 11.2M 14.53± 0.35 11.2M

CN-DPM 20.10 ± 0.12 19.2M 20.95 ± 0.09 19.2M 20.67 ± 0.13 19.2M

I EXPERIMENTS WITH DIFFERENT MEMORY SIZES

In Split-CIFAR10/100 experiments in the main text, we set the memory size of Reservoir and CN-
DPM to 1000, following Aljundi et al. (2019b). Table 9 compares the experimental results with

17

Under review as a conference paper at ICLR 2020

different memory sizes of 500 and 1000 on Split-CIFAR10/100. Compared to Reservoir, whose
performance drops significantly with a smaller memory, CN-DPM’s accuracy drop is relatively
marginal.

Table 9: Experiments with different memory sizes.

Method Memory Split-CIFAR10 Acc. (%) Split-CIFAR100 Acc. (%)
1 Epoch 10 Epoch 1 Epoch 10 Epoch

Reservoir 500 33.53± 1.03 34.46± 0.49 6.24± 0.25 4.99± 0.09
CN-DPM 500 43.07 ± 0.16 47.01 ± 0.22 19.17 ± 0.13 20.77 ± 0.11

Reservoir 1000 44.00± 0.92 43.82± 0.53 10.01± 0.35 6.61± 0.20
CN-DPM 1000 45.21 ± 0.18 46.98 ± 0.18 20.10 ± 0.12 20.95 ± 0.09

J THE EFFECT OF CONCENTRATION PARAMETER

Table 10 shows the results of CN-DPM on Split-MNIST classification according to the concentration
parameter α, which defines the prior of how sensitive CN-DPM is to new data. With a higher α,
an expert tends to be created more easily. In the experiment reported in the prior sections, we set
logα = −400. At logα = −600, too few experts are created and the accuracy is rather low. As
α increases, the number of experts grows along with the accuracy. Although the CN-DPM model
is task-free and automatically decides the task assignments to experts, we still need to tune the
concentration parameter to find the best balance point between performance and model capacity, as
all Bayesian nonparametric models require.

Table 10: The effects of concentration parameter
α.

logα Acc. (%) Experts Param.

−600 54.04± 7.39 3.20± 0.13 362K
−400 93.23± 0.09 5.00± 0.00 524K

80 93.54± 0.21 14.4± 1.35 1.44M

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

0.0
0.5
1.0
1.5

Pa
ra

m
. (

M
)

0K 12K 24K 36K 48K 60K
Learned examples

0
5

10
15

Ex
pe

rts

CN-DPM (log = 600)
CN-DPM (log = 400)
CN-DPM (log = 80)

Figure 7: The effects of concentration pa-
rameter α.

K THE EFFECT OF PARAMETER SHARING

Table 11 compares when the parameters are shared between experts and when they are not shared.
By sharing the parameters, we could reduce the number of parameters approximately 38% without
sacrificing the accuracy.

Table 11: The effects of parameter sharing.

Model Acc. (%) Experts Param.

CN-DPM 93.23± 0.09 5 524K
CN-DPM w/o PS 93.30± 0.24 5 839K

18

Under review as a conference paper at ICLR 2020

L TRAINING GRAPHS

Figure 8 shows the training graphs of our experiments. In addition to the performance metrics,
we present the number of experts in CN-DPM and compare the total number of parameters with
the baselines. The bold lines represent the average of the 10 runs while the faint lines represent
individual runs.

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

0

250

500

Pa
ra

m
. (

K)

0K 12K 24K 36K 48K 60K
Learned examples

0
2
4

Ex
pe

rts

iid-online
Fine-tune
Reservoir
CN-DPM

(a) Split-MNIST

0.20

0.25

0.30

0.35

0.40

bi
ts

/d
im

0.0

0.5

1.0

Pa
ra

m
. (

M
)

0K 12K 24K 36K 48K 60K
Learned examples

0
4
8

12

Ex
pe

rts
(b) Split-MNIST (Gen.)

30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

0
3
6
9

12

Pa
ra

m
. (

M
)

0K 20K 40K 60K 80K 100K 120K
Learned examples

0

1

2

Ex
pe

rts

(c) MNIST-SVHN

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

0
5

10

Pa
ra

m
. (

M
)

0K 10K 20K 30K 40K 50K
Learned examples

0
2
4
6

Ex
pe

rts

(d) Split-CIFAR10

0

5

10

15

20

Ac
cu

ra
cy

 (%
)

0
5

10
15
20

Pa
ra

m
. (

M
)

0K 10K 20K 30K 40K 50K
Learned examples

0
5

10
15
20

Ex
pe

rts

(e) Split-CIFAR100

Figure 8: Full training graphs.

19

	Introduction
	Background and Related Work
	Continual Learning
	Dirichlet Process Mixture Models

	Approach
	Continual Learning as Modeling of the Mixture Distribution
	The Continual Neural Dirichlet Process Mixture (CN-DPM) Model

	Experiments
	Continual Learning Scenarios
	Compared Methods
	Model Architecture
	Results of Task-Free Continual Learning

	Conclusion
	Review of Dirichlet Process Mixture Model
	Practical Issues of CN-DPM
	Model Architectures and Experimental Details
	Base Models
	Split-MNIST
	MNIST-SVHN and Split-CIFAR10/100

	CN-DPM
	Split-MNIST
	Split-CIFAR10/100
	MNIST-SVHN

	Experimental Details
	Split-MNIST
	Split-CIFAR10
	Split-CIFAR100
	MNIST-SVHN

	Pruning Redundant Experts
	Comparison with Task-Based Methods on Split-MNIST
	Fuzzy Split-MNIST
	Generation of Samples
	Experiments with Longer Continual Learning Scenarios
	Experiments with Different Memory Sizes
	The Effect of Concentration Parameter
	The Effect of Parameter Sharing
	Training Graphs

