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ABSTRACT

We propose a new method to train neural networks based on a novel combination
of adversarial training and provable defenses. The key idea is to model train-
ing as a procedure which includes both, the verifier and the adversary. In every
iteration, the verifier aims to certify the network using convex relaxation while
the adversary tries to find inputs inside that convex relaxation which cause ver-
ification to fail. We experimentally show that this training method is promising
and achieves the best of both worlds – it produces a model with state-of-the-art
accuracy (74.8%) and certified robustness (55.9%) on the challenging CIFAR-10
dataset with a 2/255 L∞ perturbation. This is a significant improvement over the
currently known best results of 68.3% accuracy and 53.9% certified robustness,
achieved using a 5 times larger network than our work.

1 INTRODUCTION

The discovery of adversarial examples in deep learning (Szegedy et al., 2013) has increased the
importance of creating new training methods which produce accurate and robust neural networks
with provable guarantees.

Existing work: adversarial and provable defenses Adversarial training (Goodfellow et al.,
2015; Kurakin et al., 2017) provides a basis framework which augments the training procedure with
adversarial inputs produced by an adversarial attack. Madry et al. (2018) instantiated adversarial
training using a strong iterative adversary and showed that their approach can train models which
are highly robust against the strongest known adversarial attacks (Carlini & Wagner, 2017). This
method has also been used to train robust ImageNet models (Xie et al., 2019). While promising,
the main drawback of the method is that when instantiated in practice, via an approximation of an
otherwise intractable optimization problem, it provides no guarantees – it does not produce a cer-
tificate that there are no possible adversarial attacks which could potentially break the model. To
address this lack of guarantees, recent line of work on provable defenses (Wong & Kolter, 2018;
Raghunathan et al., 2018; Mirman et al., 2018) has proposed to train neural networks which are
certifiably robust under a specific attacker threat model. However, these guarantees come at the
cost of a significantly lower standard accuracy than models trained using adversarial training. This
setting raises a natural question – can we leverage ideas from both, adversarial training techniques
and provable defense methods, so to obtain models with high accuracy and certified robustness?

This work: combining adversarial and provable defenses In this work, we take a step towards
addressing this challenge. We show that it is possible to train more accurate and provably robust neu-
ral networks using the same convex relaxations as those used in existing, state-of-the-art provable
defense methods, but with a new, different optimization procedure inspired by adversarial training.
Our optimization works as follows: (i) to certify a property (e.g., robustness) of the network, the ver-
ifier produces a convex relaxation of all possible intermediate vector outputs in the neural network,
then (ii) an adversary now searches over this (intermediate) convex regions in order to find, what we
refer to as a latent adversarial example – a concrete intermediate input contained in the relaxation
that when propagated through the network causes a misclassification that prevents verification, and
finally (iii) the resulting latent adversarial examples are now incorporated into our training scheme
using adversarial training. Overall, we can see this method as bridging the gap between adversarial
training and provable defenses (it can conceptually be instantiated with any convex relaxation).
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We experimentally show that the method is promising and results in a neural network with state-of-
the-art 74.8% accuracy and 55.9% certified robustness on the challenging CIFAR-10 dataset with
2/255 L∞ perturbation (the best known existing results are 68.3% accuracy and 53.9% certified
robustness using 5 times larger network Wong et al. (2018)).

Main Contributions Our key contributions are:

• A new method we refer to as layerwise adversarial training which can train provably robust
neural networks and conceptually bridges the gap between adversarial training and existing
provable defense methods.

• Instantiation of layerwise adversarial training using linear convex relaxations used in prior
work (accomplished by introducing a projection operator).

• Experimental results showing layerwise adversarial training can train neural network mod-
els which achieve both, state-of-the-art accuracy and certified robustness on CIFAR-10 with
2/255 L∞ perturbation.

Overall, we believe the method presented in this work is a promising step towards training models
that enjoy both, higher accuracy and higher certification guarantees. An interesting item for future
work would be to explore instantiations of the method with other convex relaxations than the one
considered here.

2 RELATED WORK

We now discuss some of the closely related work on robustness of neural networks.

Heuristic adversarial defenses After the first introduction of adversarial examples (Szegedy
et al., 2013; Biggio et al., 2013), defense mechanisms to train robust neural networks were built
based on the inclusion of adversarial examples to the training set (Kurakin et al., 2017; Goodfel-
low et al., 2015). Models trained using adversarial training with projected gradient descent (PGD)
(Madry et al., 2018) were shown to be robust against the strongest known attacks (Carlini & Wag-
ner, 2017). This is in contrast to other defense mechanisms which have been broken by new attack
techniques (Athalye et al., 2018). While models trained using adversarial training achieve robust-
ness against strong adversaries, there are no guarantees that model is robust against any kind of
adversarial attack under the threat model considered.

Provable adversarial defenses Another line of work proposes to learn classifiers which come
with robustness guarantees. These approaches are based on linear (Wong & Kolter, 2018) or
semidefinite (Raghunathan et al., 2018; Dvijotham et al., 2018a) relaxations, hybrid zonotope (Mir-
man et al., 2018) or interval bound propagation (Gowal et al., 2018). While these approaches
currently obtain robustness guarantees, accuracy of these networks is relatively small and limits
practical use of these methods. There has also been recent work on certification of general neural
networks, not necessarily trained in a special way. These methods are based on SMT solvers (Katz
et al., 2017), mixed-integer linear programs (Tjeng et al., 2019), abstract interpretation (Gehr et al.,
2018), restricted polyhedra (Singh et al., 2019b) or combinations of those (Singh et al., 2019a).

Another line of work proposes to replace neural networks with a randomized classifier (Lecuyer
et al., 2018; Cohen et al., 2019; Salman et al., 2019a) which comes with probabilistic guarantees
on its robustness. While these approaches scale to larger datasets such as ImageNet (although with
probabilistc instead of exact guarantees), their bounds come from the relationship between L2 ro-
bustness and Gaussian distribution. In this paper, we consider general verification problem (Qin
et al., 2019) where input is not necessarily limited to an Lp ball, but arbitrary convex set.

3 BACKGROUND

In this work we consider a threat model where an adversary is allowed to transform an input x ∈ Rd0
into any point from a convex set S0(x) ⊆ Rd0 . For example, for a threat model based on L∞
perturbations, the convex set will be defined as S0(x) = {x′ ∈ Rd0 , ||x− x′||∞ < ε}.
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A neural network consisting of k layers and parameters θ is represented as a function hθ where
hθ = hkθ ◦ h

k−1
θ · · · ◦ h1θ and hiθ : Rdi−1 → Rdi denotes a transformation applied at hidden layer i.

We also denote the function representing part of the neural network from layer i to the final layer k
as hi:kθ = hkθ ◦ h

k−1
θ · · · ◦ hiθ.

Our goal will be to prove a property on the output of the neural network, encoded via a linear
constraint:

cThθ(x
′) + d < 0,∀x′ ∈ S0(x) (1)

where c and d are property specific vector and scalar values. This formulation is general enough
to capture many interesting safety properties (Dvijotham et al., 2018b; Qin et al., 2019), including
robustness to Lp perturbations. The standard approach to train neural networks which satisfy this
constraint is to define a surrogate loss L and solve the following min-max optimization problem:

min
θ

E(x,y)∼D max
x′∈S0(x)

L(hθ(x
′), y) (2)

Because inner maximization is intractable, most existing approaches replace it with an approxima-
tion. Depending on the used approximation, we distinguish two families of techniques.

Adversarial training One family of methods, referred to as adversarial training (Goodfellow
et al., 2015; Kurakin et al., 2017), replaces the maximum loss with a lower bound which is ob-
tained using an adversarial attack. Madry et al. (2018) maximized the inner loss using a projected
gradient descent (PGD) attack and found that, perhaps surprisingly, this optimization procedure suc-
ceeds in training deep architectures which are robust against the strongest known adversaries. While
this provides strong empirical evidence that the resulting models are indeed robust, the approach
offers no guarantees. Thus, it remains unclear whether there exist even stronger attacks that could
break a model trained in this manner.

Provable defenses A second family of methods to train certified neural networks is based on the
computation of an upper bound to the inner loss, as opposed to a lower bound computed for adversar-
ial training. These methods are typically referred to as provable defenses as they provide guarantees
on the robustness of the resulting network, under any kind of attack inside the threat model. An up-
per bound is typically computed using linear relaxations (Wong & Kolter, 2018), intervals (Gowal
et al., 2018) or methods combining interval bounds and linear relaxations (Mirman et al., 2018;
Zhang et al., 2019). However, these methods suffer from two disadvantages. First, due to the convex
relaxations, an upper bound on the loss is typically not tight and can be quite loose. However, we
believe this is less of an issue due to the fact that interval relaxations were shown to experimentally
be able to train more provably robust models than methods based on linear relaxations (which usu-
ally produce tighter bounds than intervals). For example, Mirman et al. (2018); Zhang et al. (2019)
report ∼ 28% robust error using pure interval training on CIFAR-10 with perturbation 8/255 while
Wong et al. (2018) achieve 21% using linear relaxations. Second, the way these methods construct
the loss makes the relationship between the loss and the network parameters significantly more com-
plex than in standard training. This causes the resulting optimization problem to be more difficult,
meaning these training methods often converge to a suboptimal solution. Our experimental results
confirm this – we substantially outperform existing methods both in terms of accuracy and certified
robustness using the same linear relaxation, but a different optimization procedure.

Certification via convex relaxations We now formally describe how provable defenses perform
certification. We denote the set of possible intermediate concrete vectors at layer i that can be
obtained by propagating vector x′ ∈ S0(x) through the network as Si(x) = hiθ(Si−1(x)) ⊆ Rdi .
As it is difficult to explicitly compute the set Si(x), a standard approach is to approximate it via
a convex relaxation Ci(x). As the input set is already convex, there is no need to introduce a
relaxation, and thus we set C0(x) = S0(x). Given a neural network layer hiθ which transforms one
set of vectors into another, we represent its corresponding convex relaxation transformer as giθ. That
is, giθ will transform one convex set into another convex set. More formally, for any set D ⊆ Rdi−1 ,
giθ(D) is convex and hiθ(D) ⊆ giθ(D). Then, we recursively define the effect of giθ on a convex
relaxation as Ci(x) = giθ(Ci−1(x)) ⊆ Rdi . Finally, to certify robustness using the obtained convex
relaxation, it is enough to check whether all output vectors in Ck(x) satisfy the linear constraint in
Equation 1. If this is true, then all output vectors in Sk(x) satisfy the constraint as well due to the
fact that Sk(x) ⊆ Ck(x).
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Figure 1: An iteration of layerwise adversarial training. Latent adversarial example x′1 is found in
the convex region C1(x) and propagated through the rest of the layers in a forward pass which is
shown with the blue line. During backward pass, gradients are propagated through the same layers,
shown with the red line. Note that the first convolutional layer does not receive any gradients.

4 PROVABLE DEFENSE VIA LAYERWISE ADVERSARIAL TRAINING

We now describe our layerwise adversarial training approach which yields a provable defense that
bridges the gap between standard adversarial training and existing provable defenses.

Motivation: latent adversarial examples Consider an already trained neural network model hθ
which we would like to certify using convex relaxations. A fundamental issue here is that certifica-
tion methods based on convex relaxations can struggle to prove the target property (e.g., robustness)
due to the iterative accumulation of errors introduced by the relaxation. More precisely, assume
the neural network actually satisfies the property from Equation 1 for an input x, meaning that
cThθ(x

′) + d < 0,∀x′ ∈ S0(x). Naturally, this also implies that the neural network behaves
correctly in the latent space of its first hidden layer in the region S1(x). Formally, this means that
cTh2:kθ (x′1)+d < 0,∀x′1 ∈ S1(x). However, if one would use a certification method which replaces
the region S1(x) by its convex relaxation C1(x), then it is possible that we would fail to certify our
desired property. This is due to the fact that there may exist an input x′1 ∈ C1(x) \ S1(x) such that
cTh2:kθ (x′1) + d ≥ 0. Of course, we could repeat the above thought experiment and possibly find
more violating latent inputs in the set Ci(x) \ Si(x) of any hidden layer i. The existence of points
found in the difference between a convex relaxation and the true region is a fundamental reason
for the failure of certification methods based on convex approximations. For convenience, we refer
to such points as latent adversarial examples. Next, we describe a method which trains the neural
network in a way that aims to minimize the number of latent adversarial examples.

Layerwise provable optimization via convex relaxations Our key observation is that the two
families of defense methods described earlier are in fact different ends of the same spectrum: meth-
ods based on adversarial training maximize the cross-entropy loss in the first convex region C0(x)
while provable defenses maximize the same loss, but in the last convex region Ck(x). Both methods
then backpropagate the loss through the network and update the parameters using SGD. However,
as explained previously, certification methods may fail even before the last layer due to the presence
of latent adversarial examples in the difference of the regions Ci(x) and Si(x). A natural question
then is – can we leverage adversarial training so to eliminate latent adversarial examples from hidden
layers and obtain a provable network?

To this end, we propose adversarial training in layerwise fashion. The initial phase of training is
equivalent to adversarial training as used by Madry et al. (2018). In this phase in the inner loop we
repeatedly find an input in C0(x) which maximizes the cross-entropy loss and update the parameters
of the neural network so to minimize this loss using SGD. Note that the outcome of this phase is
a model which is highly robust against strong multi-step adversaries. However, certification of this
fact often fails due to the previously mentioned accumulation of errors in the particular convex
relaxation being used.

The next step of our training method is visually illustrated in Figure 1. Here, we propagate the initial
convex region through the first layer of the network and obtain the convex relaxation C1(x). We
then solve the optimization problem to find a concrete point x′1 inside of C1(x) which produces

4



Under review as a conference paper at ICLR 2020

Algorithm 1: Layerwise adversarial training via convex relaxations
Data: k-layer neural network hθ, training set (X ,Y), learning rate η, step size α, inner

steps n
Result: Certifiably robust neural network hθ

1 for l ≤ k do
2 for i ≤ nepochs do
3 Sample mini-batch {(x1, y1), (x2, y2), ..., (xb, yb)} ∼ (X ,Y);
4 Compute convex relaxations Cl(x1),Cl(x2), ...,Cl(xk);
5 Initialize x′1 ∼ Cl(x1),x′2 ∼ Cl(x2), ...,x′b ∼ Cl(xb);
6 for j ≤ b do
7 Update in parallel x′j ← ΠCl(xj)(x

′
j + α∇x′jL(hj+1:k

θ (x′j), yj));
8 end
9 Update parameters θ ← θ − η 1

M

∑b
j=1∇θL(hj+1:k

θ (x′j), yj);
10 end
11 Freeze parameters θl of layer l;
12 end

the maximum loss when this point is propagated further through the network (this forward pass
is shown with the blue line). Finally, we backpropagate the final loss (red line) and update the
parameters of the network so to minimize the loss. Critically, we do not backpropagate through the
convex relaxation in the first layer as standard provable defenses do (Wong & Kolter, 2018; Mirman
et al., 2018; Gowal et al., 2018). We instead freeze the first layer and stop backpropagation after the
update of the second layer. Because of this, our optimization problem is significantly easier – the
neural network only has to learn to behave well on the concrete points that were found in the convex
region Cl(x). This can be viewed as an extension of the robust optimization method that Madry
et al. (2018) found to work well in practice.

We then proceed with the above process for later layers. Formally, this training process amounts to
(approximately) solving the following min-max optimization problem at the l-th step:

min
θl+1:k

E(x,y)∼D max
x′l∈Cl(x)

L(hl+1:k
θ (x′l), y, θ) (3)

Note that for l = 0 this formulation is equivalent to the standard min-max formulation in Equation 2
because C0(x) = S0(x). Our approach to solve this min-max optimization problem for every layer
l is shown in Algorithm 1. We initialize every batch by random sampling from the corresponding
convex region. Then, in every iteration we use projected gradient descent (PGD) to maximize the
inner loss in 3. We first update x′j in the direction of the gradient of the loss and then project it
back to Cl(xj) using the projection operator Π. Note that this approach assumes the existence of
an efficient projection method to the particular convex relaxation the method is instantiated with. In
the next section, we show how to instantiate the training algorithm described above to a particular
convex relaxation which is generally tighter than a hyperrectangle and where we derive an efficient
projection operation.

5 LAYERWISE ADVERSARIAL TRAINING USING LINEAR RELAXATIONS

So far we described the general approach of layerwise adversarial training. Now we show how to
instantiate it for a particular convex relaxation based on linear approximations. If instead one would
use interval approximation (Mirman et al., 2018; Gowal et al., 2018) as the convex relaxation, then
all regions Cl(x) will be hyperrectangles and projection to these sets is fast and simple. However,
the interval relaxation provides a coarse approximation which motivates the need to train with relax-
ations that provide tighter bounds. Thus, we consider linear relaxations which are generally tighter
than those based on intervals.

In particular we leverage the same relaxation which was previously proposed in Wong & Kolter
(2018); Weng et al. (2018); Singh et al. (2018) as an effective way to certify neural networks. Here,
each convex region is represented as a set Cl(x) = {al +Ale | e ∈ [−1, 1]ml}. Vector al repre-
sents the center of the set and the matrix Al represents the affine transformation of the hypercube
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Figure 2: Projection to a region based on linear relaxation using change of variables.

[−1, 1]ml . The initial convex region C0(x) is represented using a0 = x and A0 = εId0 is a diago-
nal matrix. Propagation of these convex regions through the network is out of the scope of this paper
– a full description can be found in Wong & Kolter (2018) or Singh et al. (2018). At a high level, the
convolutional and fully connected layers are handled by multiplying Al and al by appropriate ma-
trices. To handle the ReLU activation, for ReLU units which cross 0, we apply a convex relaxation
which amounts to multiplying Al and al by appropriately chosen scalar values, depending whether
the ReLU is activated or not. Using this relaxation of ReLU, we can recursively obtain all convex
regions Cl(x). We provide more detailed description of this propagation in Appendix A.1.

Projection to linear convex regions To use our training method we now need to instantiate Algo-
rithm 1 with a suitable projection operator ΠCl(x). The key insight here is that the vector x′ ∈ Cl(x)
is uniquely determined by auxiliary vector e ∈ [−1, 1]ml where x′ = al +Ale. Then instead of
directly solving for x′ which requires projecting to Cl(x), we can solve for e instead which would
uniquely determine x. Crucially, the domain of e is a hyperrectangle [−1, 1]ml which is easy to
project to. To visualize this further we provide an example in Figure 2. The goal is to project the
red point x′ in the right picture to the convex region Cl(x). To project, we first perform change of
variables to substitute x′ with e and then project e to the square [−1, 1]× [−1, 1] to obtain the blue
point Π(e) on the left. Then, we again perform change of variables to obtain the blue point Π(x′)
on the right, the projection of x′ we were looking for.

Based on these observations, we modify Line 7 of Algorithm 1 to first update the coefficients ej
using the following update rule: ej ← clip(ej + αAT

l ∇x′jL(x′j , yj),−1, 1). Here clip is function
which thresholds its argument between -1 and 1, formally clip(x,−1, 1) = min(max(x,−1), 1).
This is followed by an update to x′j via x′j ← al +Alej , completing the update step.

Sparse representation While our representation of convex regions with matrix Al and vector al
has clean mathematical properties, in practice, a possible issue is that the matrix Al can grow to
be quite large. Because of this, propagating it through the network can be memory intensive and
prohibit the use of larger batches. To overcome this difficulty, we first observe thatAl is quite sparse.
We start with a very sparse, diagonal matrix A0 at the input. After each convolution, an element
of matrix Al+1 is non-zero only if there is a non-zero element inside of its convolutional kernel in
matrix Al. We can leverage this observation to precompute positions of all non-zero elements in
matrix Al+1 and compute their values using matrix multiplication. This optimization is critical to
enabling training to take place altogether. An interesting item for future work is further optimizing
the current relaxation (via a specialized GPU implementation) or developing more memory friendly
relaxations, so to scale the training to larger networks.

6 CERTIFICATION OF NEURAL NETWORKS

After training a neural network via layerwise adversarial training, our goal is to certify the target
property (e.g., robustness). Here we leverage certification techniques which are not fast enough
to be incorporated into the training procedure, but which can significantly boost the certification
performance.
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Refinement of the linear approximation The linear relaxation of ReLU that we are using is
parameterized by slopesλ of the linear relaxation. Prior work which employed this relaxation (Wong
& Kolter, 2018; Weng et al., 2018; Singh et al., 2018) chose these slopes in a greedy manner by
minimizing the area of the relaxation. During training we also choose λ in the same way. However,
during certification, we can also optimize for the values of λ that give rise to the convex region
inside of which the maximum loss is minimized. This optimization problem can be written as:

min
λ∈[0,1]dl

max
x′∈Cl(x;λ)

L(hl+1:k
θ (x′), y)

Solving this is computationally too expensive inside the training loop, but during certification it is
feasible to approximate the solution. We solve for λ using the Adam optimizer and clipping the
elements between 0 and 1 after each update. We remark that the idea of learning the slope is similar
to Dvijotham et al. (2018b) who propose to optimize dual variables in a dual formulation, however
here we stay in the primal formulation.

Combining convex relaxations with exact bound propagation During layerwise adversarial
training we essentially train the network to be certified on all regions C0(x), ...,Ck(x). While
computing exact regions Sl(x) ⊆ Cl(x) is not feasible during training, we can afford it to some
extent during certification. The idea is to first propagate the bounds using convex relaxations until
one of the hidden layers l and obtain a region Cl(x). If training was successful, there should not
exist a concrete point x′l ∈ Cl(x) which, if propagated through the network, violates the correctness
property in Equation 1. We can encode both, the property and the propagation of the exact bounds
Sl(x) using a Mixed-Integer Linear Programming (MILP) solver. Note that we can achieve this
because we represent the region Cl(x) using a set of linear constraints, however, for general convex
shapes this may not be possible. We perform the MILP encoding using the formulation from Tjeng
et al. (2019). It is usually possible to encode only the last two layers using MILP due to the poor
scalability of these solvers for realistic network sizes. One further improvement we also include is
to tighten the convex regions Cl(x) using refinement via linear programming as described in Singh
et al. (2019a). We remark that this combination of convex relaxation and exact bound propagation
does not fall under the recently introduced convex barrier to certification Salman et al. (2019b).

7 EXPERIMENTAL EVALUATION

We now present an evaluation of our training method on the challenging CIFAR-10 dataset.

Experimental setup We evaluate on a desktop PC with 2 GeForce RTX 2080 Ti GPU-s and 16-
core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz. We use Gurobi as a MILP solver. Our method
is implemented in PyTorch and we plan to release both, the code and the trained models.

Neural network architecture All presented results are on a 3-layer convolutional network with
16 544 neurons: first 2 layers are convolutional layers with 32 and 128 filters, and both have kernel
size 4 and stride 2. These are followed by a fully connected layer with 150 hidden units. After each
of these layers, there is a ReLU activation.

Training We use batch size 50 and L1 regularization 0.00001 for training. We perform optimiza-
tion using Adam (Kingma & Ba, 2014) with initial learning rate 0.001 which is decreased by 10×
every 100 epochs. During layerwise training we start with ε perturbation which is 10% higher than
the one we certify and we decrease it by 5% when the training progresses to the next layer.

Certification After training completes, we perform certification as follows: for every image, we
first try to certify it using only linear relaxations (with the improvement of learned slopes, Section 6).
If this fails, we encode the last layer as MILP and try again. Finally, if this fails we encode the
ReLU activation after the last convolution using additional 300 binary variables and the rest using
the triangle formulation Ehlers (2017). We consider an image to be not certifiable if we fail to verify
it using these methods. We always evaluate on the first 1 000 images from the test set.

Comparison to prior work We first train and certify using our method for the L∞ perturbation
2/255. Results are shown in Table 1. We always compare to the best reported and reproducible
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Table 1: Evaluation on CIFAR-10 dataset with L∞ perturbation 2/255
Method Accuracy(%) Certified Robustness(%)

Our work 74.8 55.9
Wong et al. (2018) 68.3 53.9
Gowal et al. (2018) 70.1 50.0
Zhang et al. (2019) 59.9 46.1
Mirman et al. (2018) 62.3 45.5
Xiao et al. (2019) 61.1 45.9

Table 2: Evaluation on CIFAR-10 dataset with L∞ perturbation 8/255
Method Accuracy(%) Certified Robustness(%)

Our work 46.2 24.4
Wong et al. (2018) 28.7 21.8
Zhang et al. (2019) 41.3 28.8
Mirman et al. (2018) 46.2 27.2
Xiao et al. (2019) 40.5 20.3

results in the literature on any architecture. We do not compare to smoothing-based approaches
Cohen et al. (2019), as these provide probabilistic instead of exact guarantees. Extensions to Cohen
et al. (2019) such as Salman et al. (2019a) also use additional existing techniques such as pre-training
on ImageNet and unlabeled data which are orthogonal. We also do not compare to using cascades
from Wong et al. (2018), as this improvement is also orthogonal to the method here. Thus, we only
consider their best single network architecture (inline with prior work Zhang et al. (2019) which
compares to a single architecture). We believe all methods listed in Table 1, including ours, would
benefit from additional techniques such as cascades, pre-training and leveraging unlabeled data.

Experimentally, we find that the neural network trained using our method substantially outperforms
all existing approaches, both in terms of standard accuracy and certified robustness for 2/255. Note
that here we are using the same linear relaxation as Wong et al. (2018), but our optimization proce-
dure is different and shows significant improvements over the one used in their work. We also run the
same experiment for L∞ perturbation 8/255. Here we do not include comparison with Gowal et al.
(2018) as their results were found to be not reproducible (Zhang et al., 2019; Mirman et al., 2019;
Xu, 2019). These results are presented in Table 2. Here we match state-of-the-art accuracy 46.2%
reported by Mirman et al. (2018) and substantially outperform all other approaches. However, in
terms of certified robustness we are not able to achieve similar results to Zhang et al. (2019) whose
method is based on a combination of interval approximation and linear relaxation. The main issue
is that our 3-layer network lacks capacity to solve this task – even if training only using standard
adversarial training our empirical robustness does not go above ∼ 32%. We remark that capacity
was found to be one of the key components necessary to obtain a robust classifier (Madry et al.,
2018). Indeed, prior work achieves best results using significantly larger networks, e.g. Mirman
et al. (2018) achieve these results on a network with ∼ 170000 neurons, more than 10 times larger
than ours. Due to promising results for 2/255, we believe achieving state-of-the-art results for 8/255
is very likely an issue of instantiating our method with a convex relaxation that is more memory
efficient, which we believe is an interesting item for future work.

8 CONCLUSION

We presented a new method to train certified neural networks. The key concept was to combine
techniques from provable defenses using convex relaxations with those of adversarial training. Our
method achieves state-of-the-art 74.8% accuracy and 55.9% certified robustness on CIFAR-10 with
a 2/255 L∞ perturbation, significantly outperforming prior work when considering a single network
(it also achieves competitive results on 8/255 L∞). The method is general and can be instantiated
with any convex relaxation. A promising future work item is scaling to larger networks: this will
require tight convex relaxations with a low memory footprint that allow for efficient projection.
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A APPENDIX

Here we provide additional details that were omitted in the main body of the paper.

A.1 CONVEX RELAXATION USING LINEAR APPROXIMATIONS

Here we describe how we propagate convex relaxations of the form Cl(x) = {al + Ale | e ∈
[−1, 1]ml} through the network. As explained before, these relaxations were previously proposed
in Wong & Kolter (2018); Weng et al. (2018); Singh et al. (2018). For the sake of completeness we
describe them here using our notation. The initial convex region C0(x) is represented using a0 = x
and A0 = εId0 is a diagonal matrix. Now we describe how to propagate these regions through
different operations in the neural network. Depending on the form of function hiθ representing
operation applied at layer i we distinguish different cases. Here we assume we have obtained region
Ci(x) and our goal is to compute the region Ci+1(x) using convex relaxation giθ of the function hiθ.

Convolutional layers Consider the case where hiθ is a convolution parametrized by kernel matrix
Wθ and bias bθ meaning that hiθ(x

′) = conv(x,Wθ) + bθ. Recall that x′ = al + Ale where
e ∈ [−1, 1]ml . We can then compute:

hiθ(x
′) = conv(x′,Wθ) + bθ

= conv(al +Ale,Wθ) + bθ

= conv(al,Wθ) + conv(Ale,Wθ) + bθ

= conv(al,Wθ) + conv(Al,Wθ)e+ bθ

Using this formula, we can define region Cl+1(x) = {al+1 +Al+1e | e ∈ [−1, 1]ml+1} where:
ml+1 = ml

al+1 = conv(al,Wθ) + bθ

Al+1 = conv(Al,Wθ)

Fully-connected layers Consider the case where hiθ is a fully connected layer parametrized by
weight matrix Wθ and bias bθ meaning that hiθ(x

′) = Wθx
′ + bθ. Recall that x′ = al + Ale

where e ∈ [−1, 1]ml . We can then compute:

hiθ(x
′) = Wθx

′ + bθ

= Wθ(al +Ale) + bθ

= Wθal +WθAle+ bθ

Using this formula, we can define region Cl+1(x) = {al+1 +Al+1e | e ∈ [−1, 1]ml+1} where:
ml+1 = ml

al+1 = Wθal + bθ

Al+1 = WθAl

ReLU activation In this case we can assume that hiθ is ReLU function, hiθ(x
′) = max(x′, 0)

applied componentwise. We will explain the transformation of a single element x′i = al +Al,ie.
We first compute lower and upper bound li, ui that this element can take in the convex region Cl(x):

li = al +

ml∑
j=1

Al,i,j

ui = al −
ml∑
j=1

Al,i,j
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If ui < 0 then ReLu(x′) = 0 and if li > 0 then ReLU(x′) = x′. In the other case where 0
is between li and ui we define ReLU(x′) = λix

′ + µeml+1 where eml+1 ∈ [−1, 1] is a new
coefficient. Formulas for λ and µ are the following:

λ = ui/(ui − li)

µ = −1

2
uili/(ui − li)

This computation can be written also in the matrix form to obtain matrix Λ and vector b which
would update:

Al+1 = ΛAl

al+1 = al + b
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