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ABSTRACT

The vulnerabilities of deep neural networks against adversarial examples have be-
come a significant concern for deploying these models in sensitive domains. De-
vising a definitive defense against such attacks is proven to be challenging, and the
methods relying on detecting adversarial samples are only valid when the attacker
is oblivious to the detection mechanism. In this paper, we consider the adver-
sarial detection problem under the robust optimization framework. We partition
the input space into subspaces and train adversarial robust subspace detectors us-
ing asymmetrical adversarial training (AAT). The integration of the classifier and
detectors presents a detection mechanism that provides a performance guarantee
to the adversary it considered. We demonstrate that AAT promotes the learn-
ing of class-conditional distributions, which further gives rise to generative de-
tection/classification approaches that are both robust and more interpretable. We
provide comprehensive evaluations of the above methods, and demonstrate their
competitive performances and compelling properties on adversarial detection and
robust classification problems.

1 INTRODUCTION

Deep neural networks have become the staple of modern machine learning pipelines, achieving state-
of-the-art performance on extremely difficult tasks in various applications such as computer vision
(He et al., 2016), speech recognition (Amodei et al., 2016), machine translation (Vaswani et al.,
2017), robotics (Levine et al., 2016), and biomedical image analysis (Shen et al., 2017). Despite
their outstanding performance, these networks are shown to be vulnerable against various types of
adversarial attacks, including evasion attacks (aka, inference or perturbation attacks) (Szegedy et al.,
2013; Goodfellow et al., 2014b; Carlini & Wagner, 2017b; Su et al., 2019) and poisoning attacks
(Liu et al., 2017; Shafahi et al., 2018). These vulnerabilities in deep neural networks hinder their
deployment in sensitive domains including, but not limited to, health care, finances, autonomous
driving, and defense-related applications and have become a major security concern.

Due to the mentioned vulnerabilities, there has been a recent surge toward designing defense mech-
anisms against adversarial attacks (Gu & Rigazio, 2014; Jin et al., 2015; Papernot et al., 2016b;
Bastani et al., 2016; Madry et al., 2017; Sinha et al., 2018), which has in turn motivated the de-
sign of stronger attacks that defeat the proposed defenses (Goodfellow et al., 2014b; Kurakin et al.,
2016b;a; Carlini & Wagner, 2017b; Xiao et al., 2018; Athalye et al., 2018; Chen et al., 2018; He
et al., 2018). Besides, the proposed defenses have been shown to be limited and often not effective
and easy to overcome (Athalye et al., 2018). Alternatively, a large body of work has focused on
detection of adversarial examples (Bhagoji et al., 2017; Feinman et al., 2017; Gong et al., 2017;
Grosse et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017; Li & Li, 2017; Xu et al., 2017;
Pang et al., 2018; Roth et al., 2019; Bahat et al., 2019; Ma et al., 2018; Zheng & Hong, 2018; Tian
et al., 2018). While training robust classifiers focuses on maintaining performance in presence of
adversarial examples, adversarial detection only cares for detecting these examples.

The majority of the current detection mechanisms focus on non-adaptive threats, for which the
attacks are not specifically tuned/tailored to bypass the detection mechanism, and the attacker is
oblivious to the detection mechanism. In fact, Carlini & Wagner (2017a) and Athalye et al. (2018)
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showed that the detection methods presented in (Bhagoji et al., 2017; Feinman et al., 2017; Gong
et al., 2017; Grosse et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017; Li & Li, 2017; Ma
et al., 2018), are significantly less effective than their claimed performances under adaptive attacks.
The current solutions are mostly heuristic approaches that cannot provide performance guarantees
to the adversary they considered.

Decision 

boundary

of the classifier

Decision 

boundaries 

of detectors

Natural data

Perturbed data

Subspaces

Figure 1: A conceptual visualization
of our integrated adversarial detection
mechanism.

In this paper, we are interested in detection mechanisms
for adversarial examples that can withstand adaptive at-
tacks. Unlike previous approaches that assume adver-
sarial and natural samples coming from different distri-
butions, thus rely on using a single classifier to distin-
guish between them, we instead partition the input space
into subspaces based on the classification system’s out-
put and perform adversarial/natural sample classification
in these subspaces. Importantly, the mentioned partitions
allow us to drop the adversarial constrain and employ a
novel asymmetrical adversarial training (AAT) objective
to train robust binary classifiers in the subspaces. Figure 1
demonstrates our idea of space partitioning and robust de-
tector training. Our qualitative results show that AAT supports detectors to learn class-conditional
distributions, which further motivates generative detection/classification solutions that are both ro-
bust and interpretable.

Our specific contributions are:

• We develop adversarial example detection techniques that provide performance guarantees
to norm constrained adversaries. Empirically, our best models improve previous state-of-
the-art mean L2 distortion from 3.68 to 4.47 on the MNIST dataset, and from 1.1 to 1.5 on
the CIFAR10 dataset.

• We study powerful and versatile generative classification models derived from our detection
framework and demonstrate their competitive performances over discriminatively robust
classifiers. While defense mechanisms based on ordinary adversarial training are vulner-
able to unrecognizable inputs (e.g., rubbish examples), inputs that cause confident predic-
tions of our models have human-understandable semantic meanings.

• We demonstrate that asymmetrical adversarial training (ATT) not only induces model ro-
bustness as ordinary adversarial training methods do but also promotes the learning of
class-conditional distributions. The proposed objective does not require auxiliary network
and is stable to train. On CIFAR10 and ImageNet, our models can generate realistic images
with qualities comparable to state-of-the-art generative models.

2 RELATED WORKS

Adversarial attacks. Since the pioneering work of Szegedy et al. (2013), a large body of work has
focused on designing algorithms that achieve successful attacks on neural networks (Goodfellow
et al., 2014b; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016b; Chen et al., 2018; Papernot
et al., 2016a; Carlini & Wagner, 2017b). More recently, iterative projected gradient descent (PGD),
initially proposed by Kurakin et al. (2016b), has been empirically identified as the most effective
approach for performing norm ball constrained attacks, and the attack reasonably approximates the
optimal attack (Madry et al., 2017).

Adversarial detection techniques. The majority of the methods developed for detecting adversarial
attacks are based on the following core idea: given a trained K-class classifier, f : Rd → {1...K},
and its corresponding natural training samples, D = {xi ∈ Rd}Ni=1, generate a set of adversarially
attacked samples D′ = {x′j ∈ Rd}Mj=1, and devise a mechanism to discriminate D from D′. For
instance, Gong et al. (2017) use this exact idea and learn a binary classifier to distinguish the natural
and adversarially perturbed sets. Similarly, Grosse et al. (2017) append a new “attacked” class to the
classifier, f , and re-train a secured network that classifies natural images, x ∈ D, into the K classes
and all attacked images, x′ ∈ D′, to the (K + 1)-th class. In contrast to Gong et al. (2017); Grosse
et al. (2017), which aim at detecting adversarial examples directly from the image content, Metzen

2



Under review as a conference paper at ICLR 2020

et al. (2017) trained a binary classifier that receives as input the intermediate layer features extracted
from the classifier network f , and distinguished D from D′ based on such input features. More
importantly, Metzen et al. (2017) considered the so-called case of adaptive/dynamic adversary and
proposed to harden the detector against such attacks using a similar adversarial training approach
as in Goodfellow et al. (2014b). Unfortunately, the mentioned detection methods are significantly
less effective under an adaptive adversary equipped with a strong attack (Carlini & Wagner, 2017a;
Athalye et al., 2018).

3 ADVERSARIAL DETECTION METHODS

3.1 INTEGRATED ADVERSARIAL DETECTION

For a K(K ≥ 2) class classification problem, given a dataset of natural samples D = {xi}Ni=1, xi ∈
Rd, along with labels {yi}Ni=1, yi ∈ {1...K}, let f : Rd → {1...K} be the classifier that is used to do
classification on D. With the labels and predicted labels the dataset respectively forms the partition
D =

⋃
Dk and Df =

⋃
Dfk , where Dk = {x : y = k, x ∈ D}, and Dfk = {x : f(x) = k, x ∈ D}.

LetH = {hk}Kk=1, hk : Rd → {0, 1} be a set of binary classifiers (detectors), in which hk is trained
to discriminate natural samples classified as k, from adversarial samples that fool the network, f(·),
to be classified as k. Also, let D′ be a set of `p norm bounded adversarial examples crafted from D:
D′ = {x + δ : f(x + δ) 6= y, f(x) = y, x ∈ D, δ ∈ S}, S = {δ ∈ Rd | ‖δ‖p ≤ ε}. Consider the
following procedure to determine whether a sample x in D ∪D′ is an adversarial example:

First obtain the estimated class label k := f(x), then use the k-th detector to
predict: if hk(x) = 1 then x a natural sample, otherwise it’s an adversarial
sample.

The detection accuracy of the algorithm is given by∑K
k=1 |{x : hk(x) = 1, x ∈ Dfk}|+ |{x : hk(x) = 0, x ∈ D′fk}|

|D|+ |D′|
, (1)

where D′fk = {x : f(x) = k, x ∈ D′}. Thus minimizing the algorithm’s classification error
is equivalent to minimizing classification error of individual detectors. Employing empirical risk
minimization, detector k, parameterized by θk, is trained by

θ∗k = argmin
θk

Ex∼D′f
k

[
L(hk(x; θk), 0)

]
+ Ex∼Df

k

[
L(hk(x; θk), 1)

]
, (2)

where L is a loss function that measures the distance between hk’s output and the supplied label
(e.g., the binary cross-entropy loss).

In the case of adaptive attacks, when the adversary aims to fool both the classifier and detectors,
the accuracy of a naively trained detector could be significantly reduced. In order to be robust to
adaptive attacks, inspired by the idea of robust optimization (Madry et al., 2017), we incorporate the
attack into the training objective:

min
θk

ρ(θk), where ρ(θk) = Ex∼Df
\k

[
max

δ∈S,f(x+δ)=k
L(hk(x+δ; θk), 0)

]
+Ex∼Df

k

[
L(hk(x; θk), 1)

]
,

(3)
where Df\k = {x : f(x) 6= k, y 6= k, x ∈ D}, and we assume that perturbation budget is large

enough such that ∀x ∈ Df\k , ∃δ ∈ S , s.t. f(x + δ) = k. Now by dropping the f(x + δ) = k

constrain we could derive an upper bound for the first loss term:

max
δ∈S,f(x+δ)=k

L(hk(x+ δ; θk), 0) ≤ max
δ∈S

L(hk(x+ δ; θk), 0).

The detector could instead be trained by minimizing this upper bound using the following uncon-
strained objective,

ρ(θk) = Ex∼Df
\k

[
max
δ∈S

L(hk(x+ δ; θk), 0)
]
+ Ex∼Df

k

[
L(hk(x; θk), 1)

]
. (4)
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Further, we use the fact that when D is used as the training set, f could overfit on D such that
D\k = {xi : yi 6= k} and Dk are respectively good approximations of Df\k and Dfk . This leads to
our proposed asymmetrical adversarial training (AAT) objective:

min
θk

ρ(θk), where ρ(θk) = Ex∼D\k

[
max
δ∈S

L(hk(x+ δ; θk), 0)
]
+ Ex∼Dk

[
L(hk(x; θk), 1)

]
.

(5)
In a nutshell, each detector is trained using in-class natural samples and detector-adversarial exam-
ples crafted from out-of-class samples. We use iterative PGD attack (Madry et al., 2017) to solve
the inner maximization.

3.2 GENERATIVE ADVERSARIAL DETECTION/CLASSIFICATION

Because of the integrated adversary, objective 5 is no longer a straightforward discriminative objec-
tive. Our investigations showed that AAT promotes detectors to learn conditional data distributions.
Similar to GANs’ objective (Goodfellow et al., 2014a), the AAT objective presents a min-max prob-
lem, where the adversary tries to generate perturbed samples that look like the target class data, and
the detector is trained by discriminating between target class data and perturbed data.

We now assume that through properly configured adversary and training procedure, the k’th detector
could be trained to model the class-conditional distribution P (X|Ck). An application of the Bayes
classification rule leads to the generative classifier:

H(x) = argmax
k

p(Ck)p(x|Ck), (6)

where conditional density p(x|Ck) is given by the sigmoid output of the k-th detector, and prior
p(Ck) could be simply estimated from the fraction of training data of class k. Because we explicitly
model class-conditional distributions, we could use the model to detect and reject low probability
inputs. We provide the reject option by thresholding the predicted class k̂’s likelihood p(x|Ck̂) (or
equivalently, by thresholding the logit output of the k̂-th detector). In the context of adversarial
example detection, rejected samples are considered as adversarial examples.

4 EVALUATION METHODOLOGY

4.1 ROBUSTNESS TEST

We first test the robustness of individual detectors. We show that, once we train a detector with an
adequately configured PGD attack, its performance cannot be significantly reduced by an adversary
with much stronger configurations (stronger in terms of steps and step-size). Although the PGD
attack (Madry et al., 2017) can reasonably solve the inner maximization in objective 5, it is not clear
whether the optimization landscape of the asymmetrical objective is the same as its symmetrical
counterparts. For instance, we found that the step-size used by Madry et al. (2017) to train their
CIFAR10 robust classifier would not induce robustness to our detectors (see Appendix C.2.2). We
also face a unique challenge when training with objective 5: the number of positive and negative
samples are highly imbalanced. Our solution is to use re-sampling to balance positive and negative
classes. Furthermore, we use adversarial finetuning on CIFAR10 and ImageNet to speed up the
training of our detectors. With the robustness test, we show that robust optimization also introduces
robustness within this new training paradigm.

We use AUC (area under the ROC Curve) to measure detection performances. The metric could be
interpreted as the probability that the detector assigns a higher score to a random positive sample
than to a random negative example. While the true-positive and the false-positive rates are the
commonly used metrics for measuring the detection performance, they require a detection threshold
to be specified. AUC, however, is an aggregated measurement of detection performance across a
range of thresholds, and we found it to be a more stable and reliable metric. For the k-th detector
hk, its AUC is computed on the set {(x, 0) : x ∈ D′f\k} ∪ {(x, 1) : x ∈ Dfk}, where D′f\k =

{argmaxx+δ L(hk(x+ δ; θk), 0) : x ∈ Df\k)} (refer to loss 4).
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4.2 DETECTION PERFORMANCE

Having validated the robustness of individual detectors, we evaluate the overall performance of our
integrated detection system. Recalling our detection rule, we first obtain the estimated class label
k := f(x), then use the k-th detector’s logit output z(hk(x)) to predict: if z(hk(x)) ≥ Tk, then x is
a natural sample, otherwise it is an adversarially perturbed sample. For the sake of this evaluation,
we use a universal threshold for all the detectors: ∀k ∈ {1...K}Tk = T , and report detection
performance at a range of universal thresholds. In practice, however, the optimal value of each
detector’s detection threshold Tk should be determined by optimizing a utility function.

We use D = {(xi, yi)}Ni=1 to denote the test set that contains natural samples, and D′ = {(xi +
δi, yi)}Ni=1 to denote the corresponding perturbed test set. For a given threshold T , we compute the
true positive rate (TPR) onD and false positive rate (FPR) onD′. These two metrics are respectively
defined as

TPR =
1

N
|{x : z(hk(x)) ≥ T, k := f(x), x ∈ D}|, (7)

and
FPR =

1

N
|{x : z(hk(x)) ≥ T, k := f(x), f(x) 6= y, (x, y) ∈ D′}|. (8)

In the FPR definition we use f(x) 6= y to constrain that only true adversarial examples are counted
as false positives. This constraint is necessary, as we found that for the norm ball constraint we
considered in the experiments, not all perturbed samples are adversarial examples that cause mis-
classification on f .

In order to craft the perturbed dataset D′, we consider three attacking scenarios.

Classifier attack. This attack corresponds to the scenario where the adversary is oblivious to the
detection mechanism. For a given natural sample x and its label y, the perturbed sample x′ is
computed by minimizing the loss,

L(x′) = z(f(x′))y −max
i 6=y

z(f(x′))i, (9)

where z(f(x′)) is the classifier’s logit outputs. This objective is derived from the CW attack (Carlini
& Wagner, 2017b) and used in MadryLab (b) and MadryLab (a) to perform untargeted attacks.

Detectors attack. In this scenario adversarial examples are produced by attacking only the detectors.
We construct a single detection function H by using the i-th detector’s logit output as its i-th logit
output: z(H(x))i := z(hi(x)). H is then treated as a single network, and the perturbed sample x′
for a given input (x, y) is computed by minimizing the loss

L(x′) = −max
i 6=y

z(H(x′))i. (10)

Note that, according to our detection rule, a low value of the detector’s logit output indicates detec-
tion of an adversarial example, thus by minimizing the negative of logit output we make the per-
turbed example harder to detect. H could also be fed directly to the CW loss 9 or to cross-entropy
loss, but we found the attack based on the loss in 10 to be significantly more effective.

Combined attack. With the goal of fooling both the classifier and detectors, perturbed samples are
produced by attacking the integrated detection system. We consider two loss functions for realizing
the combined attack. The first is based on the combined loss function (Carlini & Wagner, 2017a)
that has been shown to be effective against an array of detection methods. Given a natural example
x and its label y, same as the detectors-attack scenario, we first construct a single detection function
H by aggregating the logit outputs of individual detectors: z(H(x))i := z(hi(x)). We then use the
aggregated detector’s largest logit output maxk 6=y z(H(x))k (low value of this quantity indicates
detection of an adversarial example) and the classifier logit outputs z(f(x)) to construct a surrogate
classifier g, with its logit outputs being

z(g(x))i =

{
z(f(x))i if i ≤ K,
(−maxj 6=y z(H(x))j + 1) ·maxj z(f(x))j if i = K + 1.

(11)

A perturbed example x′ is then computed by minimizing the loss function

L(x′) = max
i
z(g(x′))i −max

i 6=y
z(f(x′))i. (12)
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In practice we observe that the optimization of this loss tends to stuck at the point where
maxi6=y z(f(x

′))i keeps changing signs while maxj 6=y z(H(x))j stays as a large negative num-
ber (which indicates detection). To derive a more effective attack we consider a simple combination
of loss 9 and loss 10:

L(x′) =

{
z(f(x′))y −maxi 6=y z(f(x

′))i if z(f(x′))y ≥ maxi 6=y z(f(x
′))i,

−maxi 6=y z(H(x′))i else.
(13)

The objective is straightforward: if x′ is not yet an adversarial example on f , optimize it for that
goal; otherwise optimize it for fooling the aggregated detector.

We mention briefly here that we perform the same performance analysis of our generative detection
method (as detailed in Section 3.2) by computing TPR on D and FPR on D′. We use the loss 10 to
perform attacks against the generative detection method, but also provide results of attacks based on
cross-entropy loss and CW loss 9.

4.3 ROBUST CLASSIFICATION PERFORMANCE

Integrated classification. In addition to the generative classifier proposed in Section 3.2, we intro-
duce another classification scheme that provides a reject option. The scheme is based an integration
of the naive classifier f and the detectors: for a given input x and its prediction label k := f(x), if
z(hk(x)) < T , x is rejected, otherwise it’s classified as k. We respectively use loss 13 and 10 to
attack the integrated classifier and the generative classifier.

Performance metric. In the context of robust classification, the performance of a robust classifier is
measured using standard accuracy and robust accuracy — accuracies respectively computed on the
natural dataset and perturbed dataset. We provide a similar performance analysis of the above classi-
fication models. On the natural dataset D = {(xi, yi)}Ni=1, we compute the accuracy as the fraction
of samples that are correctly classified (f(x) = y) and at the same time not rejected (z(hk(x)) ≥ T ):

Accuracy =
1

N
|{x : z(hk(x)) ≥ T, k := f(x), f(x) = y, (x, y) ∈ D}|. (14)

On the perturbed dataset D′ = {(xi + δi, yi)}Ni=1 we compute the error as the fraction of samples
that are misclassified (f(x) 6= y) and at the same time not rejected:

Error =
1

N
|{x : z(hk(x)) ≥ T, k := f(x), f(x) 6= y, (x, y) ∈ D′}|. (15)

Note that in this case the error is no longer a complement of the accuracy. For a classification
system with a reject option, any perturbed samples that are rejected should be considered as properly
handled, regardless of whether they are misclassified. Thus on the perturbed dataset, the error, which
is the fraction of misclassified and not rejected samples, is a more proper notion of such system’s
performance. For a standard robust classifier, its perturbed set error is computed as the complement
of its accuracy on the perturbed set.

5 EXPERIMENTS

5.1 MNIST

Table 1: PGD attack steps and step-sizes for
base detector training and validation.

L2 models L∞ models

ε = 2.5 ε = 5.0 ε = 0.3 ε = 0.5

Train 100, 0.1 200, 0.1 100, 0.01 100, 0.01
Validation 200, 0.1 200, 0.1 200, 0.01 200, 0.01

Using different p-norm and maximum perturbation
ε constrains we trained four detection systems (each
has 10 base detectors), with training and validation
adversarial examples optimized using PGD attacks
of different steps and step-size (see Table 1). At
each step of PGD attack we use the Adam optimizer
to perform gradient descent, both for L2 and L∞
constrained scenarios. Appendix A.1 provides more
training details.

Robustness results. The robustness test results in Table 2 confirm that the base detectors trained
with objective 5 are able to withstand much stronger PGD attacks, for both L2 and L∞ scenarios.
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Normalized steepest descent is another popular choice for performing PGD attack (Madry et al.,
2017; MadryLab, b;a), for which we got similar robustness results (Table 8). Further results on the
complete list of performances of the L∞ ε = 0.3 and L∞ ε = 0.5 trained detectors, cross-norm and
cross-perturbation test results, and random restart test results are included in Appendix C.1.

Table 2: AUC scores of the first two detectors (k = 0, 1) tested with different strengths of PGD
attacks using Adam optimizer.

PGD attack
steps, step-size

L∞ ε = 0.3 detectors L∞ ε = 0.5 detectors
k = 0 k = 1 k = 0 k = 1

200, 0.01 0.99959 0.99971 0.99830 0.99869
2000, 0.005 0.99958 0.99971 0.99796 0.99861

PGD attack
steps, step-size

L2 ε = 2.5 detectors L2 ε = 5.0 detectors
k = 0 k = 1 k = 0 k = 1

200, 0.1 0.99962 0.99968 0.99578 0.99987
2000, 0.05 0.99927 0.99900 0.99529 0.99918

Table 3: MNIST mean L2 distortion (higher is better) of perturbed samples when the detection
method has 1.0 FPR on perturbed set and 0.95 TPR on natural set.

Detection method Mean L2 distortion

State-of-the-art (Carlini & Wagner, 2017a) 3.68
Ours (use L∞ ε = 0.3 trained base detectors) 3.80
Ours (use L∞ ε = 0.5 trained base detectors) 4.47

Detection results. Figure 2a shows that the combined attack is the most effective attack against
integrated detection. Generative detection (attacked using loss 10) outperforms integrated detec-
tion, especially when the detection threshold is low (the region where TPR is high). In Figure 7
we confirm that loss 10 is more effective than CW loss and cross-entropy loss for attacking gener-
ative detection. Notably, the red curve that overlaps the y-axis shows that integrated detection can
perfectly detect adversarial examples crafted by attacking only the classifier (using objective 9).

In Table 3 we compare the performances of our generative detection method with the state-of-the-art
detection method as identified by Carlini & Wagner (2017a). Our method using L∞ ε = 0.5 trained
base detectors is able to outperform the state-of-the-art method by a large margin. Appendix B
describes the procedure we used to compute the mean L2 distortion of our method.

Classification results. In Figure 2b, we compare the robust classification performance of our meth-
ods and a state-of-the-art robust classifier. While the performance of the robust classifier is fixed, by
using different rejection thresholds, our classification methods provide the option to balance stan-
dard accuracy and robust error. The generative classifier outperforms the integrated classifier when
the rejection threshold is low (i.e., when the perturbed set error is high). We observe that a stronger
attack (ε = 0.4) breaks the robust classifier, while the generative classifier still exhibits robustness,
even though both systems are trained with the same L∞ ε = 0.3 constrain.
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Figure 2: (a) Performances of integrated detection and generative detection under L∞ ε = 0.3 con-
strained attack. (b) Performances of the integrated classifier (discussed in Section 4.3) and generative
classifier under L∞ ε = 0.3 constrained and L∞ ε = 0.4 constrained attacks. The performances of
the robust classifier (Madry et al., 2017) (accuracy 0.984, error 0.08 at ε = 0.3, and accuracy 0.984,
error 0.941 at ε = 0.4) are annotated. PGD attack steps 100, step-size 0.01.
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Figure 3 shows perturbed samples by performing targeted attacks against the generative classifier
and robust classifier. We observe that perturbed samples produced by attacking the generative clas-
sifier have distinguishably visible features of the target class, indicating that the base detectors, from
which the generative classifier is built, have successfully learned the class-conditional distributions,
and the perturbation has to change the semantics of the underlying sample for a successful attack.
In contrast, perturbations introduced by attacking the robust classifier are not interpretable, even
though they could cause high logit output of the target classes (see Figure 8 for the logit outputs
distribution). Following this path and use a larger perturbation limit, it is straightforward to generate
unrecognizable images that cause highly confident predictions of the robust classifier.

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 3: Natural samples and corresponding perturbed samples produced by performing a targeted
attack against the generative classifier and robust classifier (Madry et al., 2017). Targets from top
row to bottom row are digit class from 0 to 9. We perform the targeted attack by maximizing the logit
output of the targeted class, using L∞ ε = 0.4 constrained PGD attack of steps 100 and step-size
0.01. We note that both classifiers use L∞ ε = 0.3 for their training constraint.

5.2 CIFAR10

On CIFAR10 we train the base detectors using L∞ ε = 8 constrain PGD attack of steps 40 and
step size 0.5. Note that the scale of ε and step-size here is 0-255 (rather than 0-1 as in the case of
MNIST). The robust classifier (Madry et al., 2017) that we will compare with is trained with the
same L∞ ε = 8 constraint but with a different step-size (see Appendix C.2.2 for a discussion of
step-sizes). Appendix A.2 provides the training details.

Robustness results. Table 4 shows that the base detector models can withstand attacks that are sig-
nificantly stronger than the training attack. In Appendix C.2.1 we present random restart test results,
cross-norm and cross-perturbation test results, and robustness test result for L2 based models.

Table 4: AUC scores of the first two L∞ ε = 8 base detectors under different strengths of the
L∞ ε = 8 constrained PGD attack.

L∞ ε = 8 detectors L∞ attack steps and step-size

20, 2.0 40, 0.5 200, 0.1 200, 0.5 500, 0.5

Base detector k = 0 0.9224 0.9234 0.9231 0.9205 0.9203
Base detector k = 1 0.9533 0.9553 0.9550 0.9504 0.9500

Detection results. Consistent with the MNIST results, in Figure 4a combined attack is the most
effective method against integrated detection. Similarly, the generative detection outperforms inte-
grated detection when the detection threshold is low (i.e., where TPR is high). In this figure we use
loss 10 to attack generative detection, and in Figure 9 we show that it’s more effective than attack
based on cross-entropy loss and CW loss. In Table 5 our method outperforms the state-of-the-art
adversarial detection method.

Classification results. In Figure 4b, we did not observe a dramatic decrease in the robust classi-
fier’s performance when we increase the perturbation limit to ε = 12. Integrated classification can
reach the standard accuracy of a regular classifier, but at the cost of significantly increasing error
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Table 5: CIFAR10 mean L2 distortion (higher is better) of perturbed samples when the detection
method has 1.0 FPR on perturbed set and 0.95 TPR on natural set. Appendix B provides details
about how the mean L2 distances are computed.

Detection method Mean L2 distortion (0-1 scale)

State-of-the-art (Carlini & Wagner, 2017a) 1.1
Ours (use L∞ ε = 8.0 trained models) 1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Integrated detection (combined attack)
Integrated detection (combined attack cw loss)
Integrated detection (detector attack)
Integrated detection (classifier attack)
Generative detection

(a)

0.0 0.2 0.4 0.6 0.8
Error on perturbed CIFAR10 test set

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
n 

CI
FA

R1
0 

te
st

 se
t

robust classifier

robust classifier (eps=12)

Integrated classifier
Generative classifier
Generative classifier (eps=12)

(b)

Figure 4: (a) Performances of generative detection and integrated detection under L∞ ε = 8 attack.
(b) Performances of integrated classifier (discussed in Section 4.3) and generative classifier under
L∞ ε = 8 constrained and L∞ ε = 12 constrained attacks. The performances of the robust classi-
fier (Madry et al., 2017) (accuracy 0.8735, error 0.5311 at ε = 8, and accuracy 0.8735, error 0.7087
at ε = 12) are annotated. PGD attack step-size 2.0, steps 20 for ε = 8, and 30 for ε = 12.

on the perturbed set. Figure 5 shows some perturbed samples produced by attacking the generative
classifier and robust classifier. While these two classifiers have similar errors on the perturbed set,
samples produced by attacking the generative classifier have more visible features of the targets,
which indicates that the adversary has to change more semantic in order to cause the same error.

Figures 6 and 10 demonstrate that hard to recognize images are able to cause high logit outputs of
the robust classifier. Such examples highlight a major defect of the defense mechanisms based on
ordinary adversary training: they could be easily fooled by unrecognizable inputs (Nguyen et al.,
2015; Goodfellow et al., 2014b; Schott et al., 2018). In contrast, samples that cause high logit outputs
of the generative classifier all have clear semantic meaning. Since both classifiers are trained with
L∞ ε = 8 constrain, these results indicate that AAT significantly improves robust and interpretable
feature learning. The visual similarity between generated samples in Figure 6 and real samples
further suggests that detectors have successfully learned the conditional data distributions.

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 5: Natural samples and corresponding perturbed samples by performing targeted attack
against the generative classifier and robust classifier (Madry et al., 2017). The targeted attack is
performed by maximizing the logit output of the targeted class. We use L∞ ε = 12 constrained
PGD attack of steps 30 and step-size 2.0 to produce these samples.
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Generated by attacking generative classifier Generated by attacking robust classifier

Figure 6: Images generated from class-conditional Gaussian noise by performing targeted attack
against the generative classifier and robust classier. we use PGD attack of steps 60 and step-size
0.5 × 255 to perform L2 ε = 30 × 255 constrained attack (same as Santurkar et al. (2019). The
Gaussian noise inputs from which these two plots are generated are the same. Samples not selected.

5.3 IMAGENET

Similarly, on ImageNet, we show asymmetrical adversarial training induces detection robustness and
supports the learning of class-conditional distributions. We use the Restricted ImageNet (Tsipras
et al., 2018) in our experiment, which is a subset of ImageNet that has its samples reorganized into
customized categories. The dog category contains images of different dog breeds collected from
ImageNet class between 151 and 268. We trained a dog class detector by finetuning a pre-trained
ResNet50 model. The dog category covers a range of ImageNet classes, with each one having
its logit output. We use the subnetwork defined by the logit output of class 151 as the detector
(in principle logit output of other classes in the range should also work). Due to computational
constraints, we only validated the robustness of a L∞ ε = 0.02 trained detector (trained with PGD
attack of steps 40 and step-size 0.001), and we present the result in Table 6. (On Restricted ImageNet
in the case of L∞ scenario Tsipras et al. (2018) only demonstrates the robustness of a ε = 0.005
constrained model). Please refer to Appendix C.3 for more results, including perturbed samples and
generated samples.

Table 6: AUC of the dog detector under different strengths of L∞ ε = 0.02 constrained PGD attacks

Attack steps, step-size 40, 0.001 100, 0.001 200, 0.001 40, 0.002 200, 0.002 200, 0.0005

AUC 0.9720 0.9698 0.9692 0.9703 0.9690 0.9698

6 CONCLUSION

In this paper, we studied the problem of adversarial detection under the robust optimization frame-
work and proposed a novel adversarial detection scheme based on input space partitioning. Our
formulation leads to a new generative modeling technique which we called asymmetrical adver-
sarial training (AAT). AAT’s capability to learn class-conditional distributions further gives rise to
generative detection/classification methods that show competitive performance and improved inter-
pretability. In particular, our generative classifier is more resistant to “rubbish examples”, a signif-
icant threat to even the most successful defense mechanisms. High computational cost is a major
drawback of our methods, and in the future, we will explore the idea of shared computation between
detectors.
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A TRAINING DETAILS

A.1 MNIST TRAINING

We use 50K samples from the original training set for training and the rest 10K samples for valida-
tion, and report test performances based on the epoch-saved checkpoint that gives the best validation
performance. All base detectors are trained using a network consisting of two max-pooled convolu-
tional layers each with 32 and 64 filters, and a fully connected layer of size 1024, same as the one
used in Madry et al. (2017). At each iteration we sample a batch of 320 samples, from which in-class
samples are used as positive samples, and out-of-class samples are used as the source for adversarial
examples that will be used as negative samples. To balance positive and negative examples at each
batch, we resample the out-of-class set to have same number of samples as in-class set. All base
detectors are trained for 100 epochs.
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A.2 CIFAR10 TRAINING

We train our CIFAR10 base detectors using the ResNet50 model (He et al., 2016; Madry et al.,
2017). To speedup training, we take advantage of a natural trained classifier: the subnetwork of
f that defines the output logit z(f(·))k is essentially a “detector”, that would output high values
for samples of class k, and low values for others. Our detector is then trained by finetuning the
subnetwork using objective 5. Our pretrained classifier has a test accuracy of 95.01% (fetched from
the CIFAR10 adversarial challenge (MadryLab, a)).

At each iteration of training we sample a batch of 300 samples, from which in-class samples are
used as positive samples, while an equal number of out-of-class samples are used as sources for
adversarial examples. Adversarial examples for training L2 and L∞ models are both optimized
using PGD attack with normalized steepest descent (MadryLab, b). We report results based on
the best performances on the CIFAR10 test set (thus don’t claim generalization performance of the
proposed method).

B COMPUTING MEAN L2 DISTANCE

We first find the detection threshold T with which the detection system has 0.95 TPR. We construct
a new loss function by adding a weighted loss term that measures perturbation size to objective 10

L(x′) = −max
i6=y

z(H(x′))i + c · ‖x′ − x‖22. (16)

We then use unconstrained PGD attack to optimize L(x′). We use binary search to find the
optimal c, where in each bsearch attempt if x′ is a false positive (maxi z(H(x′))i 6= y and
maxi6=y z(H(x′))i > T ) we consider the current c as effective and continue with a larger c. The
configurations for performing binary search and PGD attack are detailed in Table 7. The c upper
bound is established such that with this upper bound, no samples except those that are inherently
misclassified by the generative classifier, could be perturbed as a false positive. With these settings,
our MNIST generative detector with L∞ ε = 0.3 base detectors reached 0.9962 FPR, generative
detector with L∞ ε = 0.5 base detectors reached 0.9936 FPR, and CIFAR10 generative detector
reached 0.9995 FPR.

We note that it’s very difficult to find the optimal c in loss 16 using binary search, hence performance
based on mean L2 distortion is not precise, and we encourage future work to measure detection
performances based on norm constrained attacks (as in Figure 2a).

Table 7: Binary search and PGD attack configurations on MNIST and CIFAR10 dataset

Dataset Initial c c lower bound c upper bound bsearch depth PGD steps PGD step-size Threshold PGD optimizer

MNIST 0.0 0.0 8.0 20 500 0.1 3.6 Adam
CIFAR10 0.0 0.0 1.0 20 100 2.56 (0-255 scale) -5.0 L2 normalized steepest descent

C MORE EXPERIMENTAL RESULTS

C.1 MORE MNIST RESULTS

Table 8: AUC scores of the first two base detectors under different strengths of PGD attacks using
normalized steepest descent. The gradient descent rules for L2 and L∞ constrained attacks are
respectively xn+1 = xn − γ ∇f(xn)

‖∇f(xn)‖2 and xn+1 = xn − γ · sign(∇f(xn)).

PGD attack
steps, step-size

L∞ ε = 0.3 base detector L∞ ε = 0.5 base detector

k = 0 k = 1 k = 0 k = 1

200, 0.01 0.99962 0.99973 0.99820 0.99901
2000, 0.005 0.99959 0.99971 0.99795 0.99872

PGD attack
steps, step-size

L2 ε = 2.5 base detector L2 ε = 5.0 base detector

k = 0 k = 1 k = 0 k = 1

200, 0.1 0.99906 0.99916 0.99960 0.99997
2000, 0.05 0.99855 0.99883 0.99237 0.99994
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Table 9: AUC scores of the first two base detectors under cross-norm and cross-perturbation attacks.
L∞ based attacks use steps 200 and step-size 0.01, and L2 based attacks uses steps 200 and step-size
0.1.

k = 0 base detector k = 1 base detector

Attack L∞ ε = 0.3 L∞ ε = 0.5 L2 ε = 2.5 L2 ε = 5.0 L∞ ε = 0.3 L∞ ε = 0.5 L2 ε = 2.5 L2 ε = 5.0

L∞ ε = 0.3 0.99959 0.99966 0.99927 0.99925 0.99971 0.99967 0.99949 0.99984
L∞ ε = 0.5 0.99436 0.9983 0.99339 0.99767 0.99778 0.99869 0.99397 0.99961

L2 ε = 2.5 0.99974 0.99969 0.99962 0.99944 0.99965 0.99955 0.99968 0.99987
L2 ε = 5.0 0.96421 0.98816 0.97747 0.99577 0.98268 0.98687 0.98117 0.99986

Table 10: AUC scores of the first MNIST base detector under fixed start and multiple random restarts
attacks. These two tests use the same attack configuration: the L∞ ε = 0.5 trained base detector
is attacked using L∞ ε = 0.5 constrained PGD attack of steps 200 and step-size 0.01, and the
L2 ε = 5.0 trained base detector is attacked using L2 ε = 5.0 constrained PGD attack of steps 200
and step-size 0.1.

MNIST k = 0 base detector

Attack L∞ ε = 0.5 trained L2 ε = 5.0 trained

fixed start 0.99830 0.99578
50 random restarts 0.99776 0.99501

Table 11: AUC scores of all L∞ ε = 0.3 trained base detectors. Tested with L∞ ε = 0.3 constrained
PGD attacks of steps 200 and step-size 0.01.

Base detector k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

AUC 0.99959 0.99971 0.99876 0.99861 0.99859 0.99861 0.99795 0.99863 0.99687 0.99418

Table 12: AUC scores of all L∞ ε = 0.5 trained base detectors. Tested with L∞ ε = 0.5 constrained
PGD attacks of steps 200 and step-size 0.01.

Base detector k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

AUC 0.99830 0.99869 0.99327 0.99355 0.99314 0.99228 0.99424 0.99439 0.97875 0.9769
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Figure 7: Performance of generative detection (a) and generative classification (b) on MNIST dataset
under attacks with different loss functions. Please refer to MadryLab (b) for the implementations of
cross-entropy loss and CW loss based attacks.
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Figure 8: Distributions of class 1’s logit outputs of natural samples from class 1 and perturbed
samples from the first row of Figure 3 (MNIST dataset).
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C.2 MORE CIFAR10 RESULTS

C.2.1 MORE ROBUSTNESS TEST RESULTS

Table 13: AUC scores of the first CIFAR10 base detector under fixed start and multiple random
restarts attacks. The L∞ ε = 2.0 base detector is attacked using PGD attack of steps 10 and step-
size 0.5, and the L∞ ε = 8.0 base detector is attacked using PGD attack of steps 40 and step-size
0.5.

CIFAR10 k = 0 base detector

Attack L∞ ε = 2.0 trained L∞ ε = 8.0 trained

fixed start 0.9866 0.9234
10 random starts 0.9866 0.9233

Table 14: AUC scores of the first (k = 0) L∞ ε = 8 trained CIFAR10 base detector under cross-
norm and cross-perturbation attack.

Attack AUC

L2 ε = 80, steps 20, step-size 10 0.9814
L∞ ε = 2, steps 10, step-size 0.5 0.9841

Table 15: AUC scores of the first two CIFAR10 L2 ε = 80 trained base detectors under different
strengths of L2 based PGD attacks. These two models are trained with L2 based PGD attack of
steps 20 and step-size 10.

L2 attack steps, step-size L2 ε = 80 models

k = 0 k = 1

20, 10 0.9839 0.9924
50, 5.0 0.9837 0.9922

Table 16: AUC scores of L∞ ε = 2.0 trained base detectors under L∞ ε = 2.0 constrained PGD
attack of steps 10 and step-size 0.5.

Base detector k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

AUC 0.9866 0.9926 0.9721 0.9501 0.9773 0.9636 0.9859 0.9908 0.9930 0.9916

Table 17: AUC scores of L∞ ε = 8.0 trained base detectors under L∞ ε = 8.0 constrained PGD
attack of steps 40 and step-size 0.5.

Base detector k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

AUC 0.9234 0.9553 0.8393 0.7893 0.8494 0.8557 0.9071 0.9276 0.9548 0.9370
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Figure 9: Performance of generative detection (a) and generative classification (b) on CIFAR10
dataset under attacks with different loss function. Cross-entropy and CW loss is only able to outper-
forms loss 10 when detection threshold is low (over 0.9 TPR). Please refer to MadryLab (a) for the
implementations of cross-entropy loss and CW loss based attacks.
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Figure 10: Distributions of class 1’s logit outputs of natural samples of class 1 and generated samples
from the first row of Figure 6 (CIFAR10 dataset).
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C.2.2 TRAINING STEP-SIZE AND ROBUSTNESS

We found training with adversarial examples optimized with a sufficiently small step-size to be
essential for detection robustness. In table 18 we tested two L∞ ε = 2.0 base detectors respectively
trained with 0.5 and 1.0 step-size. The step-size 1.0 model is not robust when tested with a much
smaller step-size. We observe that when training the step-size 1.0 model, training set adv AUC
reached 1.0 in less than one hundred iterations, but test set natural AUC plummeted to around 0.95
and couldn’t recover thereafter. (Please refer to Figure 11 for the definitions of adv AUC and nat
AUC.) This suggests that naturally occurring data samples, and adversarial examples produced using
a large step-size, live in two quite different data spaces — training a classifier to separate these two
kinds of data is easy, but the performance won’t generalize to real attacks. While Madry et al.
(2017) was able to train their CIFAR10 robust classifier using step-size 2, we found this step-size
not working in our case.

Table 18: AUC scores of two L∞ ε = 2.0 base detectors trained with different steps and step-sizes.

Attack steps, stepsize Training steps, stepsize

10, 0.5 10, 1.0

10, 0.5 0.9866 0.9965
40, 0.1 0.9892 0.8848

C.2.3 EFFECTS OF PERTURBATION LIMIT

To study the effects of perturbation limit on asymmetrical adversarial training, we compare one
L∞ ε = 2.0 trained and oneL∞ ε = 8.0 trained base detector. In Figure 11 we show the training and
testing history of these two models. The ε = 2.0 model history show that by adversarial finetuning
the model reach robustness in just a few thousands of iterations, and the performance on natural
samples is preserved (test natural AUC begins at 0.9971, and ends at 0.9981). Adversarial finetuning
on the ε = 8.0 model didn’t converge after an extended 20K iterations of training. The gap between
train adv AUC and test adv AUC of the ε = 8.0 model is more pronounced, and we observed a
decrease of test natural AUC from 0.9971 to 0.9909.

The comparison shows that training with larger perturbation limit is more difficult and time-
consuming, and could lead to performance decrease on natural samples. The benefit is that the
model learns more interpretable features. In Figure 12, perturbations generated by attacking the nat-
urally trained classifier (corresponds to 0 perturbation limit) don’t have clear semantic. In contrast,
perturbed samples of the L∞ ε = 8 model are completely legible.
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Figure 11: Training and testing AUC histories of two base detectors. Adv AUC is the AUC score
computed on {(x, 0) : x ∈ D′f\k} ∪ {(x, 1) : x ∈ Dfk}, and nat AUC is the score computed on

{(x, 0) : x ∈ Df\k} ∪ {(x, 1) : x ∈ D
f
k}.
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Figure 12: Perturbed samples produced by attacking the k = 0 (airplane) detectors and the natural
trained classifier’s 1st logit output. All samples reached the same L2 perturbation of 1200 (produced
using PGD attacks of step-size 10.0).
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C.3 MORE IMAGENET RESULTS

(a) L2 ε = 3.5 trained robust classifier with L2 ε = 40 constrained PGD attack of steps 60 and step-size
1.0 (Santurkar et al., 2019).

(b) L∞ ε = 0.02 trained detector with L2 ε = 40 constrained PGD attack of steps 60 and step-size 1.0.

(c) L∞ ε = 0.05 trained detector with L2 ε = 40 constrained PGD attack of steps 60 and step-size 1.0.

(d) L∞ ε = 0.1 trained detector with L2 ε = 40 constrained PGD attack of steps 60 and step-size 1.0.

(e) L∞ ε = 0.1 trained detector with L2 ε = 100 constrained PGD attack of steps 10 and step-size 10.0.

(f) L∞ ε = 0.3 trained detector with L2 ε = 100 constrained PGD attack of steps 10 and step-size 10.0.

Figure 13: ImageNet 224×224×3 random samples generated from class-conditional Gaussian noise
by attacking robust classifier and detector models trained with different constrains. Note than large
perturbation models are still under training and haven’t reached robustness. Please refer to Santurkar
et al. (2019) for the detail about how the class-conditional Gaussian is estimated.
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(a)

(b)

Figure 14: Perturbed samples produced by attacking the L∞ ε = 0.3 trained dog detector using
L2 ε = 30 constrained PGD attack of steps 100 and step-size 5. Top rows are original images, and
second rows are attacked images.

(a)

(b)

Figure 15: Dog image retouching by attacking the L∞ ε = 0.3 trained dog detector using L2 ε = 30
constrained PGD attack of steps 100 and step-size 5. Top rows are original images, and second rows
are attacked images.
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Figure 16

Figure 17: More 224 × 224 × 3 random samples generated by attacking the L∞ ε = 0.3 trained
detector with L2 ε = 100 constrained PGD attack of steps 10 and step-size 10.0.
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