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ABSTRACT

Model-free reinforcement learning (RL) can be used to learn effective policies
for complex tasks, such as Atari games, even from image observations. However,
this typically requires very large amounts of interaction – substantially more, in
fact, than a human would need to learn the same games. How can people learn so
quickly? Part of the answer may be that people can learn how the game works and
predict which actions will lead to desirable outcomes. In this paper, we explore how
video prediction models can similarly enable agents to solve Atari games with fewer
interactions than model-free methods. We describe Simulated Policy Learning
(SimPLe), a complete model-based deep RL algorithm based on video prediction
models and present a comparison of several model architectures, including a novel
architecture that yields the best results in our setting. Our experiments evaluate
SimPLe on a range of Atari games in low data regime of 100k interactions between
the agent and the environment, which corresponds to two hours of real-time play.
In most games SimPLe outperforms state-of-the-art model-free algorithms, in some
games by over an order of magnitude.

1 INTRODUCTION

Human players can learn to play Atari games in minutes (Tsividis et al., 2017). However, our best
model-free reinforcement learning algorithms require tens or hundreds of millions of time steps – the
equivalent of several weeks of training in real time. How is it that humans can learn these games
so much faster? Perhaps part of the puzzle is that humans possess an intuitive understanding of the
physical processes that are represented in the game: we know that planes can fly, balls can roll, and
bullets can destroy aliens. We can therefore predict the outcomes of our actions. In this paper, we
explore how learned video models can enable learning in the Atari Learning Environment (ALE)
benchmark Bellemare et al. (2015); Machado et al. (2017) with a budget restricted to 100K time steps
– roughly to two hours of a play time.

Although prior works have proposed training predictive models for next-frame, future-frame, as well
as combined future-frame and reward predictions in Atari games (Oh et al. (2015); Chiappa et al.
(2017); Leibfried et al. (2016)), no prior work has successfully demonstrated model-based control via
predictive models that achieve competitive results with model-free RL. Indeed, in a recent survey
(Section 7.2 in Machado et al. (2017)) this was formulated as the following challenge: “So far, there
has been no clear demonstration of successful planning with a learned model in the ALE”.

Using models of environments, or informally giving the agent ability to predict its future, has
a fundamental appeal for reinforcement learning. The spectrum of possible applications is vast,
including learning policies from the model (Watter et al., 2015; Finn et al., 2016; Finn & Levine,
2016; Ebert et al., 2017; Hafner et al., 2018; Piergiovanni et al., 2018; Rybkin et al., 2018; Sutton
& Barto, 2017, Chapter 8), capturing important details of the scene (Ha & Schmidhuber, 2018),
encouraging exploration (Oh et al., 2015), creating intrinsic motivation (Schmidhuber, 2010) or
counterfactual reasoning (Buesing et al., 2018). One of the exciting benefits of model-based learning
is the promise to substantially improve sample efficiency of deep reinforcement learning (see Chapter
8 in Sutton & Barto (2017)).

Our work advances the state-of-the-art in model-based reinforcement learning by introducing a
system that, to our knowledge, is the first to successfully handle a variety of challenging games in the
ALE benchmark. To that end, we experiment with several stochastic video prediction techniques,
including a novel model based on discrete latent variables. We present an approach, called Simulated
Policy Learning (SimPLe), that utilizes these video prediction techniques and trains a policy to
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Figure 1: Main loop of SimPLe. 1) the agent starts interacting with the real environment following the latest
policy (initialized to random). 2) the collected observations will be used to train (update) the current world
model. 3) the agent updates the policy by acting inside the world model. The new policy will be evaluated to
measure the performance of the agent as well as collecting more data (back to 1). Note that world model training
is self-supervised for the observed states and supervised for the reward.

play the game within the learned model. With several iterations of dataset aggregation, where
the policy is deployed to collect more data in the original game, we learn a policy that, for many
games, successfully plays the game in the real environment (see videos on the project webpage
https://goo.gl/itykP8).

In our empirical evaluation, we find that SimPLe is significantly more sample-efficient than a highly
tuned version of the state-of-the-art Rainbow algorithm (Hessel et al., 2017) on almost all games. In
particular, in low data regime of 100k samples, on more than half of the games, our method achieves
a score which Rainbow requires at least twice as many samples. In the best case of Freeway, our
method is more than 10x more sample-efficient, see Figure 3.

2 RELATED WORK

Atari games gained prominence as a benchmark for reinforcement learning with the introduction of
the Arcade Learning Environment (ALE) Bellemare et al. (2015). The combination of reinforcement
learning and deep models then enabled RL algorithms to learn to play Atari games directly from
images of the game screen, using variants of the DQN algorithm (Mnih et al., 2013; 2015; Hessel
et al., 2017) and actor-critic algorithms (Mnih et al., 2016; Schulman et al., 2017; Babaeizadeh et al.,
2016; Wu et al., 2017; Espeholt et al., 2018). The most successful methods in this domain remain
model-free algorithms (Hessel et al., 2017; Espeholt et al., 2018). Although the sample complexity of
these methods has substantially improved in recent years, it remains far higher than the amount of
experience required for human players to learn each game (Tsividis et al., 2017). In this work, we aim
to learn Atari games with a budget of just 100K agent steps (400K frames), corresponding to about
two hours of play time. Prior methods are generally not evaluated in this regime, and we therefore
optimized Rainbow (Hessel et al., 2017) for optimal performance on 1M steps, see Appendix E for
details.

Oh et al. (2015) and Chiappa et al. (2017) show that learning predictive models of Atari 2600
environments is possible using appropriately chosen deep learning architectures. Impressively, in
some cases the predictions maintain low L2 error over timespans of hundreds of steps. As learned
simulators of Atari environments are core ingredients of our approach, in many aspects our work is
motivated by Oh et al. (2015) and Chiappa et al. (2017), however we focus on using video prediction
in the context of learning how to play the game well and positively verify that learned simulators
can be used to train a policy useful in original environments. An important step in this direction was
made by Leibfried et al. (2016), which extends the work of Oh et al. (2015) by including reward
prediction, but does not use the model to learn policies that play the games. Perhaps surprisingly,
there is virtually no work on model-based RL in video games from images. Notable exceptions are
the works of Oh et al. (2017), Ha & Schmidhuber (2018), Holland et al. (2018) and Azizzadenesheli
et al. (2018). Oh et al. (2017) use a model of rewards to augment model-free learning with good
results on a number of Atari games. However, this method does not actually aim to model or predict
future frames, and achieves clear but relatively modest gains in efficiency. Ha & Schmidhuber
(2018) present a way to compose a variational autoencoder with a recurrent neural network into an
architecture that is successfully evaluated in the VizDoom environment and on a 2D racing game.
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The training procedure is similar to Algorithm 1, but only one iteration of the loop is needed as the
environments are simple enough to be fully explored with random exploration. Holland et al. (2018)
use a variant of Dyna (Sutton, 1991) to learn a model of the environment and generate experience
for policy training in the context of Atari games. Using six Atari games as a benchmark Holland
et al. (2018) measure the impact of planning shapes on performance of the Dyna-DQN algorithm and
include ablations comparing scores obtained with perfect and imperfect models. Our method achieves
around 330% of the Dyna-DQN score on Asterix, 120% on Q-Bert, 150% on Seaquest and 80% on
Ms. Pac-Man. Azizzadenesheli et al. (2018) propose an algorithm called Generative Adversarial Tree
Search (GATS) and for five Atari games train a GAN-based world model along with a Q-function.
Azizzadenesheli et al. (2018) primarily discuss various failure modes of the GATS algorithm. Our
method achieves around 64 times the score of GATS on Pong and 10 times on Breakout. 1

Outside of games, model-based reinforcement learning has been investigated at length for applications
such as robotics (Deisenroth et al., 2013). Though most of such works do not use image observations,
several recent works have incorporated images into real-world (Finn et al., 2016; Finn & Levine,
2016; Babaeizadeh et al., 2017; Ebert et al., 2017; Piergiovanni et al., 2018; Paxton et al., 2018;
Rybkin et al., 2018; Ebert et al., 2018) and simulated (Watter et al., 2015; Hafner et al., 2018) robotic
control. Our video models of Atari environments described in Section 4 are motivated by models
developed in the context of robotics. Another source of inspiration are discrete autoencoders proposed
by van den Oord et al. (2017) and Kaiser & Bengio (2018).

The structure of the model-based RL algorithm that we employ consists of alternating between
learning a model, and then using this model to optimize a policy with model-free reinforcement
learning. Variants of this basic algorithm have been proposed in a number of prior works, starting
from Dyna Q Sutton (1991) to more recent methods that incorporate deep networks Heess et al.
(2015); Feinberg et al. (2018); Kalweit & Boedecker (2017); Kurutach et al. (2018).

3 SIMULATED POLICY LEARNING (SIMPLE)

Algorithm 1: Pseudocode for SimPLe
Initialize policy π
Initialize model parameters θ of env′
Initialize empty set D
while not done do
. collect observations from real env.
D← D ∪ COLLECT(env, π)
. update model using collected data.
θ ← TRAIN_SUPERVISED(env′,D)
. update policy using world model.
π ← TRAIN_RL(π, env′)

end while

Reinforcement learning is formalized in Markov de-
cision processes (MDP). An MDP is defined as a
tuple (S,A, P, r, γ), where S is a state space, A is
a set of actions available to an agent, P is the un-
known transition kernel, r is the reward function and
γ ∈ (0, 1) is the discount factor. In this work we
refer to MDPs as environments and assume that en-
vironments do not provide direct access to the state
(i.e., the RAM of Atari 2600 emulator). Instead we
use visual observations, typically 210 × 160 RGB
images. A single image does not determine the state.
In order to reduce environment’s partial observabil-
ity, we stack four consecutive frames and use it as
the observation. A reinforcement learning agent in-
teracts with the MDP by issuing actions according
to a policy. Formally, policy π is a mapping from
states to probability distributions over A. The quality of a policy is measured by the value function
Eπ
(∑+∞

t=0 γ
trt+1|s0 = s

)
, which for a starting state s estimates the total discounted reward gath-

ered by the agent. In Atari 2600 games our goal is to find a policy which maximizes the value function
from the beginning of the game. Crucially, apart from an Atari 2600 emulator environment env we
will use a neural network simulated environment env′ which we call a world model and describe in
detail in Section 4. The environment env′ shares the action space and reward space with env and
produces visual observations in the same format, as it will be trained to mimic env. Our principal
aim is to train a policy π using a simulated environment env′ so that π achieves good performance in
the original environment env. In this training process we aim to use as few interactions with env
as possible. The initial data to train env′ comes from random rollouts of env. As this is unlikely to
capture all aspects of env, we use the iterative method presented in Algorithm 1.

1Comparison with Dyna-DQN and GATS is based on random-normalized scores achieved at 100K interac-
tions. Those are approximate, as the authors Dyna-DQN and GATS have not provided tabular results. Authors
of Dyna-DQN also report scores on two games which we do not consider: Beam Rider and Space Invaders. For
both games the reported scores are close to random scores, as are GATS scores on Asterix.
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Figure 2: Architecture of the proposed stochastic model with discrete latent. The input to the model is four
stacked frames (as well as the action selected by the agent) while the output is the next predicted frame and
expected reward. Input pixels and action are embedded using fully connected layers, and there is per-pixel
softmax (256 colors) in the output. This model has two main components. First, the bottom part of the network
which consists of a skip-connected convolutional encoder and decoder. To condition the output on the actions
of the agent, the output of each layer in the decoder is multiplied with the (learned) embedded action. Second
part of the model is a convolutional inference network which approximates the posterior given the next frame,
similarly to Babaeizadeh et al. (2017). At training time, the sampled latent values from the approximated
posterior will be discretized into bits. To keep the model differentiable, the backpropagation bypasses the
discretization following Kaiser & Bengio (2018). A third LSTM based network is trained to approximate each
bit given the previous ones. At inference time, the latent bits are predicted auto-regressively using this network.
The deterministic model has the same architecture as this figure but without the inference network.

4 WORLD MODELS

In search for an effective world model we experimented with various architectures, both new and
modified versions of existing ones. This search resulted in a novel stochastic video prediction model
(visualized in Figure 2) which achieved superior results compared to other previously proposed
models. In this section, we describe the details of this architecture and the rationale behind our design
decisions. In Section 6 we compare the performance of these models.

Deterministic Model. Our basic architecture, presented as part of Figure 2, resembles the con-
volutional feedforward network from Oh et al. (2015). The input X consists of four consecutive
game frames and an action a. Stacked convolution layers process the visual input. The actions are
one-hot-encoded and embedded in a vector which is multiplied channel-wise with the output of the
convolutional layers. The network outputs the next frame of the game and the value of the reward.

In our experiments, we varied details of the architecture above. In most cases, we use a stack of four
convolutional layers with 64 filters followed by three dense layers (the first two have 1024 neurons).
The dense layers are concatenated with 64 dimensional vector with a learnable action embedding.
Next, three deconvolutional layers of 64 filters follow. An additional deconvolutional layer outputs an
image of the original 105× 80 size. The number of filters is either 3 or 3× 256. In the first case, the
output is a real-valued approximation of pixel’s RGB value. In the second case, filters are followed by
softmax producing a probability distribution on the color space. The reward is predicted by a softmax
attached to the last fully connected layer. We used dropout equal to 0.2 and layer normalization.

Loss functions. The visual output of our networks is either one float per pixel/channel or the
categorical 256-dimensional softmax. In both cases, we used the clipped loss max(Loss, C) for a
constant C. We found that clipping was crucial for improving the models (measured with the correct
reward predictions per sequence metric and successful training using Algorithm 1). We conjecture
that clipping substantially decreases the magnitude of gradients stemming from fine-tuning of big
areas of background consequently letting the optimization process concentrate on small but important
areas (e.g. the ball in Pong). In our experiments, we set C = 10 for L2 loss on pixel values and to
C = 0.03 for softmax loss. Note that this means that when the level of confidence about the correct
pixel value exceeds 97% (as − ln(0.97) ≈ 0.03) we get no gradients from that pixel any longer.

Scheduled sampling. The model env′ consumes its own predictions from previous steps and due to
compounding errors, the model may drift out of the area of its applicability. Following Bengio et al.
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(2015); Venkatraman et al. (2016), we mitigate this problem by randomly replacing in training some
frames of the input X by the prediction from the previous step while linearly increasing the mixing
probability to 100% around the middle of the first iteration of the training loop.

Stochastic Models. A stochastic model can be used to deal with limited horizon of past observed
frames as well as sprites occlusion and flickering which results to higher quality predictions. Inspired
by Babaeizadeh et al. (2017), we tried a variational autoencoder (Kingma & Welling, 2013) to model
the stochasticity of the environment. In this model, an additional network receives the input frames
as well as the future target frame as input and approximates the distribution of the posterior. At
each timestep, a latent value zt is sampled from this distribution and passed as input to the original
predictive model. At test time, the latent values are sampled from an assumed prior N (0, I). To
match the assumed prior and the approximate, we use the Kullback–Leibler divergence term as an
additional loss term (Babaeizadeh et al., 2017).

We noticed two major issues with the above model. First, the weight of the KL divergence loss
term is game dependent, which is not practical if one wants to deal with a broad portfolio of Atari
games. Second, this weight is usually a very small number in the range of [10−3, 10−5] which means
that the approximated posterior can diverge significantly from the assumed prior. This can result
in previously unseen latent values at inference time that lead to poor predictions. We address these
issues by utilizing a discrete latent variable similar to Kaiser & Bengio (2018).

As visualized in Figure 2, the proposed stochastic model with discrete latent variables discretizes
the latent values into bits (zeros and ones) while training an auxiliary LSTM-based Hochreiter &
Schmidhuber (1997) recurrent network to predict these bits autoregressively. At inference time, the
latent bits will be generated by this auxiliary network in contrast to sampling from a prior. To make
the predictive model more robust to unseen latent bits, we add uniform noise to approximated latent
values before discretization and apply dropout (Srivastava et al., 2014) on bits after discretization.

5 POLICY TRAINING

We will now describe the details of SimPLe, outlined in Algorithm 1. In step 6 we use the proximal
policy optimization (PPO) algorithm (Schulman et al., 2017) with γ = 0.95. The algorithm generates
rollouts in the simulated environment env′ and uses them to improve policy π. The fundamental
difficulty lays in imperfections of the model compounding over time. To mitigate this problem we use
short rollouts of env′. Typically every N = 50 steps we uniformly sample the starting state from the
ground-truth buffer D and restart env′ (for experiments with the value of γ and N see Section 6.3).
Using short rollouts may have a degrading effect as the PPO algorithm does not have a way to infer
effects longer than the rollout length. To ease this problem, in the last step of a rollout we add to
the reward the evaluation of the value function. Training with multiple iterations re-starting from
trajectories gathered in the real environment is new to our knowledge. It was inspired by the classical
Dyna-Q algorithm and, notably, in the Atari domain no comparable results have been achieved.

The main loop in Algorithm 1 is iterated 15 times (cf. Section 6.3). The world model is trained for
45K steps in the first iteration and for 15K steps in each of the following ones. Shorter training in
later iterations does not degrade the performance because the world model after first iteration captures
already part of the game dynamics and only needs to be extended to novel situations.

In each of the iterations, the agent is trained inside the latest world model using PPO. In every PPO
epoch we used 16 parallel agents collecting 25, 50 or 100 steps from the simulated environment env′
(see Section 6.3 for ablations). The number of PPO epochs is z · 1000, where z equals to 1 in all
passes except last one (where z = 3) and two passes number 8 and 12 (where z = 2). This gives
800K·z interactions with the simulated environment in each of the loop passes. In the process of
training the agent performs 15.2M interactions with the simulated environment env′.

6 EXPERIMENTS

We evaluate SimPLe on a suite of Atari games from Atari Learning Environment (ALE) benchmark.
In our experiments, the training loop is repeated for 15 iterations, with 6400 interactions with the
environment collected in each iteration. We apply a standard pre-processing for Atari games: a frame
skip equal to 4, that is every action is repeated 4 times. The frames are down-scaled by a factor of 2.

Because some data is collected before the first iteration of the loop, altogether 6400 · 16 = 102, 400
interactions with the Atari environment are used during training. This is equivalent to 409, 600 frames
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Figure 3: Comparison with Rainbow and PPO. Each bar illustrates the number of interactions with environment
required by Rainbow (left) or PPO (right) to achieve the same score as our method (SimPLe). The red line
indicates the 100K interactions threshold which is used by the our method.

from the Atari game (114 minutes in NTCS, 60 FPS). At every iteration, the latest policy trained
under the learned model is used to collect data in the real environment env. Due to vast difference
between number of training data from simulated environment and real environment (15M vs 100K)
the impact of the latter on policy is negligible.

We evaluate our method on 26 games selected on the basis of being solvable with existing state-of-
the-art model-free deep RL algorithms2, which in our comparisons are Rainbow Hessel et al. (2017)
and PPO Schulman et al. (2017). For Rainbow, we used the implementation from the Dopamine
package and spent considerable time tuning it for sample efficiency (see Appendix E).

For visualization of all experiments see https://goo.gl/itykP8 and for a summary see
Figure 3. It can be seen that our method is more sample-efficient than a highly tuned Rainbow
baseline on almost all games, requires less than half of the samples on more than half of the games
and, on Freeway, is more than 10x more sample-efficient. Our method outperforms PPO by an
even larger margin. We also compare our method with fixed score baselines (for different baselines)
rather than counting how many steps are required to match our score, see Figure 4 for the results. For
the qualitative analysis of performance on different games see Appendix B.

6.1 SAMPLE EFFICIENCY

The primary evaluation in our experiments studies the sample efficiency of SimPLe, in comparison
with state-of-the-art model-free deep RL methods in the literature. To that end, we compare with
Rainbow (Hessel et al., 2017; Castro et al., 2018), which represents the state-of-the-art Q-learning
method for Atari games, and PPO (Schulman et al., 2017), a model-free policy gradient algorithm (see
Appendix E for details of tuning of Rainbow and PPO). The results of the comparison are presented
in Figure 3. For each game, we plot the number of time steps needed for either Rainbow or PPO to
reach the same score that our method reaches after 100K interaction steps. The red line indicates
100K steps: any bar larger than this indicates a game where the model-free method required more
steps. SimPLe outperforms the model-free algorithms in terms of learning speed on nearly all of the
games, and in the case of a few games, does so by over an order of magnitude. For some games, it
reaches the same performance that our PPO implementation reaches at 10M steps. This indicates
that model-based reinforcement learning provides an effective approach to learning Atari games, at a
fraction of the sample complexity.

2Specifically, for the final evaluation we selected games which achieved non-random results using our method
or the Rainbow algorithm using 100K interactions.
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Figure 4: Fractions of Rainbow and PPO scores at different numbers of interactions calculated with the formula
(SimPLe_score@100K− random_score)/(baseline_score− random_score); if denominator is smaller
than 0, both nominator and denominator are increased by 1. From left to right, the baselines are: Rainbow at
100K, Rainbow at 200K, PPO at 100K, PPO at 200K. SimPLe outperforms Rainbow and PPO even when those
are given twice as many interactions, see Appendix D for more details.

The results in these figures are generated by averaging 5 runs for each game. The model-based agent
is better than a random policy for all the games except Bank Heist. Interestingly, we observed
that the best of the 5 runs was often significantly better. For 6 of the games, it exceeds the average
human score (as reported in Table 3 of Pohlen et al. (2018)). This suggests that further stabilizing
SimPLe should improve its performance, indicating an important direction for future work. In some
cases during training we observed high variance of the results during each step of the loop. There are
a number of possible reasons, such as mutual interactions of the policy training and the supervised
training or domain mismatch between the model and the real environment. We present detailed
numerical results, including best scores and standard deviations, in Appendix C.

Figure 5: Impact of the environment stochasticity.
The graphs are in the same format as Figure 3:
each bar illustrates the number of interactions with
environment required by Rainbow to achieve the
same score as SimPLe (with stochastic discrete
world model) using 100k steps in an environment
with and without sticky actions.

Number of frames. We focused our work on learn-
ing games with 100K interaction steps with the en-
vironment, but we also studied settings with 20K,
50K, 200K, 500K and 1M interactions. Our results
are poor with 20K interactions, but already almost
as good with 50K as with 100K interactions. From
there they improve with more interactions but above
200K it becomes competitive to model-free RL start-
ing from a policy pre-trained with SimPLe, see Ap-
pendix D for details.

6.2 ENVIRONMENT STOCHASTICITY

A crucial decision in the design of world models is the
inclusion of stochasticity. Although Atari is known
to be a deterministic environment, it is stochastic
given only a limited horizon of past observed frames
(in our case 4 frames). The level of stochasticity
is game dependent; however, it can be observed in
many Atari games. An example of such behavior is
the pause after a player scores in Pong. These pauses
are longer than 4 frames, so a model looking at only
the past 4 frames does not know when a new round
of the game should start and may keep predicting
paused frames.

Given the stochasticity of the proposed model, Sim-
PLe can be used with truly stochastic environments.
To demonstrate this, we ran an experiment where the
full pipeline (both the world model and the policy)
was trained in the presence of sticky actions, as recommended in (Machado et al., 2017, Section 5).
Our world model learned to account for the stickiness of actions and in most cases the end results
were very similar to the ones for the deterministic case even without any tuning.
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6.3 ABLATIONS

To evaluate the design of our method, we independently varied a number of the design decisions.
Here we present an overview; see Appendix A for detailed results.
Model architecture and hyperparameters. We evaluated a few choices for the world model and
our proposed stochastic discrete model performs best by a significant margin. The second most
important parameter was the length of world model’s training. We verified that a longer training
would be beneficial, however we had to restrict it in all other ablation studies due to a high cost of
training on all games. As for the length of rollouts from simulated env′, we use N = 50 by default.
We experimentally shown that N = 25 performs roughly on par, while N = 100 is slightly worse,
likely due to compounding model errors. The discount factor was set to γ = 0.99 unless specified
otherwise. We see that γ = 0.95 is slightly better than other values, and we hypothesize that it is due
to better tolerance to model imperfections. But overall, all three values of γ perform comparably.
Model-based iterations. The iterative process of training the model, training the policy, and collect-
ing data is crucial for non-trivial tasks where random data collection is insufficient. In a game-by-game
analysis, we quantified the number of games where the best results were obtained in later iterations of
training. In some games, good policies could be learned very early. While this might have been due
to the high variability of training, it does suggest the possibility of much faster training (i.e. in fewer
step than 100k) with more directed exploration policies. In Figure 8 in the Appendix we present the
cumulative distribution plot for the (first) point during learning when the maximum score for the run
was achieved in the main training loop of Algorithm 1.
Random starts. Using short rollouts is crucial to mitigate the compounding errors in the model. To
ensure exploration, SimPLe starts rollouts from randomly selected states taken from the real data
buffer D. Figure 8 compares the baseline with an experiment without random starts and rollouts of
length 1000 on Seaquest which shows much worse results without random starts.

7 CONCLUSIONS AND FUTURE WORK

We presented SimPLe, a model-based reinforcement learning approach that operates directly on raw
pixel observations and learns effective policies to play games in the Atari Learning Environment. Our
experiments demonstrate that SimPLe learns to play many of the games with just 100K interactions
with the environment, corresponding to 2 hours of play time. In many cases, the number of samples
required for prior methods to learn to reach the same reward value is several times larger.

Our predictive model has stochastic latent variables so it can be applied in highly stochastic environ-
ments. Studying such environments is an exciting direction for future work, as is the study of other
ways in which the predictive neural network model could be used. Our approach uses the model as a
learned simulator and directly applies model-free policy learning to acquire the policy. However, we
could use the model for planning. Also, since our model is differentiable, the additional information
contained in its gradients could be incorporated into the reinforcement learning process. Finally,
the representation learned by the predictive model is likely be more meaningful by itself than the
raw pixel observations from the environment. Incorporating this representation into the policy could
further accelerate and improve the reinforcement learning process.

While SimPLe is able to learn more quickly than model-free methods, it does have limitations. First,
the final scores are on the whole lower than the best state-of-the-art model-free methods. This
can be improved with better dynamics models and, while generally common with model-based RL
algorithms, suggests an important direction for future work. Another, less obvious limitation is
that the performance of our method generally varied substantially between different runs on the
same game. The complex interactions between the model, policy, and data collection were likely
responsible for this. In future work, models that capture uncertainty via Bayesian parameter posteriors
or ensembles (Kurutach et al., 2018; Chua et al., 2018) may improve robustness.

In this paper our focus was to demonstrate the capability and generality of SimPLe only across a
suite of Atari games, however, we believe similar methods can be applied to other environments and
tasks which is one of our main directions for future work. As a long-term challenge, we believe that
model-based reinforcement learning based on stochastic predictive models represents a promising and
highly efficient alternative to model-free RL. Applications of such approaches to both high-fidelity
simulated environments and real-world data represent an exciting direction for future work that can
enable highly efficient learning of behaviors from raw sensory inputs in domains such as robotics and
autonomous driving.
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Table 1: Summary of SimPLe ablations. For each game, a configuration was assigned a score being the mean
over 5 experiments. The best and median scores were calculated per game. The table reports the number of
games a given configuration achieved the best score or at least the median score, respectively.

model best at least median

deterministic 0 7
det. recurrent 3 13
SD 8 16
SD γ = 0.9 1 14
default 10 21
SD 100 steps 0 14
SD 25 steps 4 19

Full source code to reproduce our experiments is integrated in an open source library. To preserve
anonymity we provide a copy of the library source code here: http://bit.ly/2wjgn1a

A ABLATIONS

To evaluate the design of our method, we independently varied a number of the design decisions: the
choice of the model, the γ parameter and the length of PPO rollouts. The results for 7 experimental
configurations are summarized in the Table 1.

Models. To assess the model choice, we evaluated the following models: deterministic, determin-
istic recurrent, and stochastic discrete (see Section 4). Based on Table 1 it can be seen that our
proposed stochastic discrete model performs best. Figures 6a and 6b show the role of stochasticity
and recurrence.

Steps. See Figure 6d. As described in Section 5 every N steps we reinitialize the simulated
environment with ground-truth data. By default we use N = 50, in some experiments we set N = 25
or N = 100. It is clear from the table above and Figure 6d that 100 is a bit worse than either 25 or
50, likely due to compounding model errors, but this effect is much smaller than the effect of model
architecture.

Gamma. See Figure 7b. We used the discount factor γ = 0.99 unless specified otherwise. We see
that γ = 0.95 is slightly better than other values, and we hypothesize that it is due to better tolerance
to model imperfections. But overall, all three values of γ seem to perform comparably at the same
number of steps.

Model-based iterations. The iterative process of training the model, training the policy, and
collecting data is crucial for non-trivial tasks where simple random data collection is insufficient. In
the game-by-game analysis, we quantified the number of games where the best results were obtained
in later iterations of training. In some games, good policies could be learned very early. While this
might have been due simply to the high variability of training, it does suggest the possibility that
much faster training – in many fewer than 100k steps – could be obtained in future work with more
directed exploration policies. We leave this question to future work.

In Figure 8 we present the cumulative distribution plot for the (first) point during learning when the
maximum score for the run was achieved in the main training loop of Algorithm 1.

On Figure 6c we show results for experiments in which the number samples was fixed to be 100K but
the number of training loop varied. We conclude that 15 is beneficial for training.

Long model training Our best results were obtained with much 5 times longer training of the
world models, see Figure 7a for comparison with shorter training. Due to our resources constraints
other ablations were made with the short model training setting.

Random starts. Using short rollouts is crucial to mitigate the compounding errors under the model.
To ensure exploration SimPLe starts rollouts from randomly selected states taken from the real data
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buffer D. In Figure 8 we present a comparison with an experiment without random starts and rollouts
of length 1000 on Seaquest. These data strongly indicate that ablating random starts substantially
deteriorate results.

B QUALITATIVE ANALYSIS

This section provides a qualitative analysis and case studies of individual games. We emphasize that
we did not adjust the method nor hyperparameters individually for each game, but we provide specific
qualitative analysis to better understand the predictions from the model.3

Solved games. The primary goal of our paper was to use model-based methods to achieve good
performance within a modest budget of 100k interactions. For two games, Pong and Freeway, our
method, SimPLe, was able to achieve the maximum score.

Exploration. Freeway is a particularly interesting game. Though simple, it presents a sub-
stantial exploration challenge. The chicken, controlled by the agents, is quite slow to ascend
when exploring randomly as it constantly gets bumped down by the cars (see the left video
https://goo.gl/YHbKZ6). This makes it very unlikely to fully cross the road and obtain
a non-zero reward. Nevertheless, SimPLe is able to capture such rare events, internalize them into the
predictive model and then successfully learn a successful policy.

However, this good performance did not happen on every run. We conjecture the following scenario in
failing cases. If at early stages the entropy of the policy decayed too rapidly the collected experience
stayed limited leading to a poor world model, which was not powerful enough to support exploration
(e.g. the chicken disappears when moving to high). In one of our experiments, we observed that the
final policy was that the chicken moved up only to the second lane and stayed waiting to be hit by the
car and so on so forth.

Pixel-perfect games. In some cases (for Pong, Freeway, Breakout) our models were able to
predict the future perfectly, down to every pixel. This property holds for rather short time intervals,
we observed episodes lasting up to 50 time-steps. Extending it to long sequences would be a very
exciting research direction. See videos https://goo.gl/uyfNnW.

Benign errors. Despite the aforementioned positive examples, accurate models are difficult to
acquire for some games, especially at early stages of learning. However, model-based RL should be
tolerant to modest model errors. Interestingly, in some cases our models differed from the original
games in a way that was harmless or only mildly harmful for policy training.

For example, in Bowling and Pong, the ball sometimes splits into two. While nonphysical,
seemingly these errors did not distort much the objective of the game, see Figure 9 and also https:
//goo.gl/JPi7rB.

In Kung Fu Master our model’s predictions deviate from the real game by spawning a different
number of opponents, see Figure 10. In Crazy Climber we observed the bird appearing earlier
in the game. These cases are probably to be attributed to the stochasticity in the model. Though not
aligned with the true environment, the predicted behaviors are plausible, and the resulting policy can
still play the original game.

Failures on hard games. On some of the games, our models simply failed to produce useful
predictions. We believe that listing such errors may be helpful in designing better training protocols
and building better models. The most common failure was due to the presence of very small but
highly relevant objects. For example, in Atlantis and Battle Zone bullets are so small that
they tend to disappear. Interestingly, Battle Zone has pseudo-3D graphics, which may have
added to the difficulty. See videos https://goo.gl/uiccKU.

Another interesting example comes from Private Eye in which the agent traverses different
scenes, teleporting from one to the other. We found that our model generally struggled to capture
such large global changes.

3We strongly encourage the reader to watch accompanying videos https://goo.gl/itykP8
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(a) Effect of stochasticity.
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(b) Effect of recurrent architecture
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Figure 6: Ablations part 1. The graphs are in the same format as Figure 3: each bar illustrates the number of
interactions with environment required by Rainbow to achieve the same score as a particular variant of SimPLe.
The red line indicates the 100K interactions threshold which is used by SimPLe.
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Figure 7: Ablations part 2. The graphs are in the same format as Figure 3: each bar illustrates the number of
interactions with environment required by Rainbow to achieve the same score as a particular variant of SimPLe.
The red line indicates the 100K interactions threshold which is used by SimPLe.

Figure 8: (left) CDF of the number of iterations to acquire maximum score. The vertical axis represents the
fraction of all games. (right) Comparison of random starts vs no random starts on Seaquest (for better
readability we clip game rewards to {−1, 0, 1}). The vertical axis shows a mean reward and the horizontal axis
the number of iterations of Algorithm 1.

15



Under review as a conference paper at ICLR 2020

Figure 9: Frames from the Pong environment.

Figure 10: Frames from the Kung Fu Master environment (left) and its model (right).
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C NUMERICAL RESULTS

Below we present numerical results of our experiments. We tested SimPLe on 7 configurations (see
description in Section A). For each configuration we run 5 experiments. For the evaluation of the i-th
experiments we used the policy given by softmax(logits(πi)/T ), where πi is the final learnt policy
in the experiment and T is the temperature parameter. We found empirically that T = 0.5 worked
best in most cases. A tentative explanation is that polices with temperatures smaller than 1 are less
stochastic and thus more stable. However, going down to T = 0 proved to be detrimental in many
cases as, possibly, it makes policies more prone to imperfections of models.

In Table 2 we present the mean and standard deviation of the 5 experiments. We observed that the
median behaves rather similarly, which is reported it in Table 4. In this table we also show maximal
scores over 5 runs. Interestingly, in many cases they turned out to be much higher. This, we hope,
indicates that our methods has a further potential of reaching these higher scores.

Human scores are "Avg. Human" from Table 3 in Pohlen et al. (2018).

17



U
nderreview

as
a

conference
paperatIC

L
R

2020

Table 2: Models comparison. Mean scores and standard deviations over five training runs. Right most columns presents score for random agent and human.

Game Ours, deterministic Ours, det. recurrent Ours, SD long Ours, SD Ours, SD γ = 0.90 Ours, SD γ = 0.95 Ours, SD 100 steps Ours, SD 25 steps random human

Alien 378.3 (85.5) 321.7 (50.7) 616.9 (252.2) 405.2 (130.8) 413.0 (89.7) 590.2 (57.8) 435.6 (78.9) 534.8 (166.2) 184.8 7128.0
Amidar 62.4 (15.2) 86.7 (18.8) 74.3 (28.3) 88.0 (23.8) 50.3 (11.7) 78.3 (18.8) 37.7 (15.1) 82.2 (43.0) 11.8 1720.0
Assault 361.4 (166.6) 490.5 (143.6) 527.2 (112.3) 369.3 (107.8) 406.7 (118.7) 549.0 (127.9) 311.7 (88.2) 664.5 (298.2) 233.7 742.0
Asterix 668.0 (294.1) 1853.0 (391.8) 1128.3 (211.8) 1089.5 (335.3) 855.0 (176.4) 921.6 (114.2) 777.0 (200.4) 1340.6 (627.5) 248.8 8503.0
Asteroids 743.7 (92.2) 821.7 (115.6) 793.6 (182.2) 731.0 (165.3) 882.0 (24.7) 886.8 (45.2) 821.9 (93.8) 644.5 (110.6) 649.0 47389.0
Atlantis 14623.4 (2122.5) 12584.4 (5823.6) 20992.5 (11062.0) 14481.6 (2436.9) 18444.1 (4616.0) 14055.6 (6226.1) 14139.7 (2500.9) 11641.2 (3385.0) 16492.0 29028.0
BankHeist 13.8 (2.5) 15.1 (2.2) 34.2 (29.2) 8.2 (4.4) 11.9 (2.5) 12.0 (1.4) 13.1 (3.2) 12.7 (4.7) 15.0 753.0
BattleZone 3306.2 (794.1) 4665.6 (2799.4) 4031.2 (1156.1) 5184.4 (1347.5) 2781.2 (661.7) 4000.0 (788.9) 4068.8 (2912.1) 3746.9 (1426.8) 2895.0 37188.0
BeamRider 463.8 (29.2) 358.9 (87.4) 621.6 (79.8) 422.7 (103.6) 456.2 (160.8) 415.4 (103.4) 456.0 (60.9) 386.6 (264.4) 372.1 16926.0
Bowling 25.3 (10.4) 22.3 (17.0) 30.0 (5.8) 34.4 (16.3) 27.7 (5.2) 23.9 (3.3) 29.3 (7.5) 33.2 (15.5) 24.2 161.0
Boxing -9.3 (10.9) -3.1 (14.1) 7.8 (10.1) 9.1 (8.8) 11.6 (12.6) 5.1 (10.0) -2.1 (5.0) 1.6 (14.7) 0.3 12.0
Breakout 6.1 (2.8) 10.2 (5.1) 16.4 (6.2) 12.7 (3.8) 7.3 (2.4) 8.8 (5.1) 11.4 (3.7) 7.8 (4.1) 0.9 30.0
ChopperCommand 906.9 (210.2) 709.1 (174.1) 979.4 (172.7) 1246.9 (392.0) 725.6 (204.2) 946.6 (49.9) 729.1 (185.1) 1047.2 (221.6) 671.0 7388.0
CrazyClimber 19380.0 (6138.8) 54700.3 (14480.5) 62583.6 (16856.8) 39827.8 (22582.6) 49840.9 (11920.9) 34353.1 (33547.2) 48651.2 (14903.5) 25612.2 (14037.5) 7339.5 35829.0
DemonAttack 191.9 (86.3) 120.3 (38.3) 208.1 (56.8) 169.5 (41.8) 187.5 (68.6) 194.9 (89.6) 170.1 (42.4) 202.2 (134.0) 140.0 1971.0
FishingDerby -94.5 (3.0) -96.9 (1.7) -90.7 (5.3) -91.5 (2.8) -91.0 (4.1) -92.6 (3.2) -90.0 (2.7) -94.5 (2.5) -93.6 -39.0
Freeway 5.9 (13.1) 23.7 (13.5) 16.7 (15.7) 20.3 (18.5) 18.9 (17.2) 27.7 (13.3) 19.1 (16.7) 27.3 (5.8) 0.0 30.0
Frostbite 196.4 (4.4) 219.6 (21.4) 236.9 (31.5) 254.7 (4.9) 234.6 (26.8) 239.2 (19.1) 226.8 (16.9) 252.1 (54.4) 74.0 -
Gopher 510.2 (158.4) 225.2 (105.7) 596.8 (183.5) 771.0 (160.2) 845.6 (230.3) 612.6 (273.9) 698.4 (213.9) 509.7 (273.4) 245.9 2412.0
Gravitar 237.0 (73.1) 213.8 (57.4) 173.4 (54.7) 198.3 (39.9) 219.4 (7.8) 213.0 (37.3) 188.9 (27.6) 116.4 (84.0) 227.2 3351.0
Hero 621.5 (1281.3) 558.3 (1143.3) 2656.6 (483.1) 1295.1 (1600.1) 2853.9 (539.5) 3503.5 (892.9) 3052.7 (169.3) 1484.8 (1671.7) 224.6 30826.0
IceHockey -12.6 (2.1) -14.0 (1.8) -11.6 (2.5) -10.5 (2.2) -12.2 (2.9) -11.9 (1.2) -13.5 (3.0) -13.9 (3.9) -9.7 1.0
Jamesbond 68.8 (37.2) 100.5 (69.8) 100.5 (36.8) 125.3 (112.5) 28.9 (12.7) 50.5 (21.3) 68.9 (42.7) 163.4 (81.8) 29.2 303.0
Kangaroo 481.9 (313.2) 191.9 (301.0) 51.2 (17.8) 323.1 (359.8) 148.1 (121.5) 37.5 (8.0) 301.2 (593.4) 340.0 (470.4) 42.0 3035.0
Krull 834.9 (166.3) 1778.5 (906.9) 2204.8 (776.5) 4539.9 (2470.4) 2396.5 (962.0) 2620.9 (856.2) 3559.0 (1896.7) 3320.6 (2410.1) 1543.3 2666.0
KungFuMaster 10340.9 (8835.7) 4086.6 (3384.5) 14862.5 (4031.6) 17257.2 (5502.6) 12587.8 (6810.0) 16926.6 (6598.3) 17121.2 (7211.6) 15541.2 (5086.1) 616.5 22736.0
MsPacman 560.6 (172.2) 1098.1 (450.9) 1480.0 (288.2) 762.8 (331.5) 1197.1 (544.6) 1273.3 (59.5) 921.0 (306.0) 805.8 (261.1) 235.2 6952.0
NameThisGame 1512.1 (408.3) 2007.9 (367.0) 2420.7 (289.4) 1990.4 (284.7) 2058.1 (103.7) 2114.8 (387.4) 2067.2 (304.8) 1805.3 (453.4) 2136.8 8049.0
Pong -17.4 (5.2) -11.6 (15.9) 12.8 (17.2) 5.2 (9.7) -2.9 (7.3) -2.5 (15.4) -13.9 (7.7) -1.0 (14.9) -20.4 15.0
PrivateEye 16.4 (46.7) 50.8 (43.2) 35.0 (60.2) 58.3 (45.4) 54.4 (49.0) 67.8 (26.4) 88.3 (19.0) 1334.3 (1794.5) 26.6 69571.0
Qbert 480.4 (158.8) 603.7 (150.3) 1288.8 (1677.9) 559.8 (183.8) 899.3 (474.3) 1120.2 (697.1) 534.4 (162.5) 603.4 (138.2) 166.1 13455.0
Riverraid 1285.6 (604.6) 1740.7 (458.1) 1957.8 (758.1) 1587.0 (818.0) 1977.4 (332.7) 2115.1 (106.2) 1318.7 (540.4) 1426.0 (374.0) 1451.0 17118.0
RoadRunner 5724.4 (3093.1) 1228.8 (1025.9) 5640.6 (3936.6) 5169.4 (3939.0) 1586.2 (1574.1) 8414.1 (4542.8) 722.2 (627.2) 4366.2 (3867.8) 0.0 7845.0
Seaquest 419.5 (236.2) 289.6 (110.4) 683.3 (171.2) 370.9 (128.2) 364.6 (138.6) 337.8 (79.0) 247.8 (72.4) 350.0 (136.8) 61.1 42055.0
UpNDown 1329.3 (495.3) 926.7 (335.7) 3350.3 (3540.0) 2152.6 (1192.4) 1291.2 (324.6) 1250.6 (493.0) 1828.4 (688.3) 2136.5 (2095.0) 488.4 11693.0
YarsRevenge 3014.9 (397.4) 3291.4 (1097.3) 5664.3 (1870.5) 2980.2 (778.6) 2934.2 (459.2) 3366.6 (493.0) 2673.7 (216.8) 4666.1 (1889.4) 3121.2 54577.0
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Table 3: Comparison of our method (SimPLe) with model-free benchmarks - PPO and Rainbow, trained with 100 thousands/500 thousands/1 million steps. (1 step equals 4 frames)

Game SimPLe PPO_100k PPO_500k PPO_1m Rainbow_100k Rainbow_500k Rainbow_1m random human

Alien 616.9 (252.2) 291.0 (40.3) 269.0 (203.4) 362.0 (102.0) 290.6 (14.8) 828.6 (54.2) 945.0 (85.0) 184.8 7128.0
Amidar 74.3 (28.3) 56.5 (20.8) 93.2 (36.7) 123.8 (19.7) 20.8 (2.3) 194.0 (34.9) 275.8 (66.7) 11.8 1720.0
Assault 527.2 (112.3) 424.2 (55.8) 552.3 (110.4) 1134.4 (798.8) 300.3 (14.6) 1041.5 (92.1) 1581.8 (207.8) 233.7 742.0
Asterix 1128.3 (211.8) 385.0 (104.4) 1085.0 (354.8) 2185.0 (931.6) 285.7 (9.3) 1702.7 (162.8) 2151.6 (202.6) 248.8 8503.0
Asteroids 793.6 (182.2) 1134.0 (326.9) 1053.0 (433.3) 1251.0 (377.9) 912.3 (62.7) 895.9 (82.0) 1071.5 (91.7) 649.0 47389.0
Atlantis 20992.5 (11062.0) 34316.7 (5703.8) 4836416.7 (6218247.3) - (-) 17881.8 (617.6) 79541.0 (25393.4) 848800.0 (37533.1) 16492.0 29028.0
BankHeist 34.2 (29.2) 16.0 (12.4) 641.0 (352.8) 856.0 (376.7) 34.5 (2.0) 727.3 (198.3) 1053.3 (22.9) 15.0 753.0
BattleZone 4031.2 (1156.1) 5300.0 (3655.1) 14400.0 (6476.1) 19000.0 (4571.7) 3363.5 (523.8) 19507.1 (3193.3) 22391.4 (7708.9) 2895.0 37188.0
BeamRider 621.6 (79.8) 563.6 (189.4) 497.6 (103.5) 684.0 (168.8) 365.6 (29.8) 5890.0 (525.6) 6945.3 (1390.8) 372.1 16926.0
Bowling 30.0 (5.8) 17.7 (11.2) 28.5 (3.4) 35.8 (6.2) 24.7 (0.8) 31.0 (1.9) 30.6 (6.2) 24.2 161.0
Boxing 7.8 (10.1) -3.9 (6.4) 3.5 (3.5) 19.6 (20.9) 0.9 (1.7) 58.2 (16.5) 80.3 (5.6) 0.3 12.0
Breakout 16.4 (6.2) 5.9 (3.3) 66.1 (114.3) 128.0 (153.3) 3.3 (0.1) 26.7 (2.4) 38.7 (3.4) 0.9 30.0
ChopperCommand 979.4 (172.7) 730.0 (199.0) 860.0 (285.3) 970.0 (201.5) 776.6 (59.0) 1765.2 (280.7) 2474.0 (504.5) 671.0 7388.0
CrazyClimber 62583.6 (16856.8) 18400.0 (5275.1) 33420.0 (3628.3) 58000.0 (16994.6) 12558.3 (674.6) 75655.1 (9439.6) 97088.1 (9975.4) 7339.5 35829.0
DemonAttack 208.1 (56.8) 192.5 (83.1) 216.5 (96.2) 241.0 (135.0) 431.6 (79.5) 3642.1 (478.2) 5478.6 (297.9) 140.0 1971.0
FishingDerby -90.7 (5.3) -95.6 (4.3) -87.2 (5.3) -88.8 (4.0) -91.1 (2.1) -66.7 (6.0) -23.2 (22.3) -93.6 -39.0
Freeway 16.7 (15.7) 8.0 (9.8) 14.0 (11.5) 20.8 (11.1) 0.1 (0.1) 12.6 (15.4) 13.0 (15.9) 0.0 30.0
Frostbite 236.9 (31.5) 174.0 (40.7) 214.0 (10.2) 229.0 (20.6) 140.1 (2.7) 1386.1 (321.7) 2972.3 (284.9) 74.0 -
Gopher 596.8 (183.5) 246.0 (103.3) 560.0 (118.8) 696.0 (279.3) 748.3 (105.4) 1640.5 (105.6) 1905.0 (211.1) 245.9 2412.0
Gravitar 173.4 (54.7) 235.0 (197.2) 235.0 (134.7) 325.0 (85.1) 231.4 (50.7) 214.9 (27.6) 260.0 (22.7) 227.2 3351.0
Hero 2656.6 (483.1) 569.0 (1100.9) 1824.0 (1461.2) 3719.0 (1306.0) 2676.3 (93.7) 10664.3 (1060.5) 13295.5 (261.2) 224.6 30826.0
IceHockey -11.6 (2.5) -10.0 (2.1) -6.6 (1.6) -5.3 (1.7) -9.5 (0.8) -9.7 (0.8) -6.5 (0.5) -9.7 1.0
Jamesbond 100.5 (36.8) 65.0 (46.4) 255.0 (101.7) 310.0 (129.0) 61.7 (8.8) 429.7 (27.9) 692.6 (316.2) 29.2 303.0
Kangaroo 51.2 (17.8) 140.0 (102.0) 340.0 (407.9) 840.0 (806.5) 38.7 (9.3) 970.9 (501.9) 4084.6 (1954.1) 42.0 3035.0
Krull 2204.8 (776.5) 3750.4 (3071.9) 3056.1 (1155.5) 5061.8 (1333.4) 2978.8 (148.4) 4139.4 (336.2) 4971.1 (360.3) 1543.3 2666.0
KungFuMaster 14862.5 (4031.6) 4820.0 (983.2) 17370.0 (10707.6) 13780.0 (3971.6) 1019.4 (149.6) 19346.1 (3274.4) 21258.6 (3210.2) 616.5 22736.0
MsPacman 1480.0 (288.2) 496.0 (379.8) 306.0 (70.2) 594.0 (247.9) 364.3 (20.4) 1558.0 (248.9) 1881.4 (112.0) 235.2 6952.0
NameThisGame 2420.7 (289.4) 2225.0 (423.7) 2106.0 (898.8) 2311.0 (547.6) 2368.2 (318.3) 4886.5 (583.1) 4454.2 (338.3) 2136.8 8049.0
Pong 12.8 (17.2) -20.5 (0.6) -8.6 (14.9) 14.7 (5.1) -19.5 (0.2) 19.9 (0.4) 20.6 (0.2) -20.4 15.0
PrivateEye 35.0 (60.2) 10.0 (20.0) 20.0 (40.0) 20.0 (40.0) 42.1 (53.8) -6.2 (89.8) 2336.7 (4732.6) 26.6 69571.0
Qbert 1288.8 (1677.9) 362.5 (117.8) 757.5 (78.9) 2675.0 (1701.1) 235.6 (12.9) 4241.7 (193.1) 8885.2 (1690.9) 166.1 13455.0
Riverraid 1957.8 (758.1) 1398.0 (513.8) 2865.0 (327.1) 2887.0 (807.0) 1904.2 (44.2) 5068.6 (292.6) 7018.9 (334.2) 1451.0 17118.0
RoadRunner 5640.6 (3936.6) 1430.0 (760.0) 5750.0 (5259.9) 8930.0 (4304.0) 524.1 (147.5) 18415.4 (5280.0) 31379.7 (3225.8) 0.0 7845.0
Seaquest 683.3 (171.2) 370.0 (103.3) 692.0 (48.3) 882.0 (122.7) 206.3 (17.1) 1558.7 (221.2) 3279.9 (683.9) 61.1 42055.0
UpNDown 3350.3 (3540.0) 2874.0 (1105.8) 12126.0 (1389.5) 13777.0 (6766.3) 1346.3 (95.1) 6120.7 (356.8) 8010.9 (907.0) 488.4 11693.0
YarsRevenge 5664.3 (1870.5) 5182.0 (1209.3) 8064.8 (2859.8) 9495.0 (2638.3) 3649.0 (168.6) 7005.7 (394.2) 8225.1 (957.9) 3121.2 54577.0

19



U
nderreview

as
a

conference
paperatIC

L
R

2020

Table 4: Models comparison. Scores of median (left) and best (right) models out of five training runs. Right most columns presents score for random agent and human.

Game Ours, deterministic Ours, det. recurrent Ours, SD long Ours, SD Ours, SD γ = 0.90 Ours, SD γ = 0.95 SD 100 steps Ours, SD 25 steps random human

Alien 354.4 516.6 299.2 381.1 515.9 1030.5 409.2 586.9 411.9 530.5 567.3 682.7 399.5 522.3 525.5 792.8 184.8 7128.0
Amidar 58.0 84.8 82.7 118.4 80.2 102.7 85.1 114.0 55.1 58.9 84.3 101.4 45.2 47.5 93.1 137.7 11.8 1720.0
Assault 334.4 560.1 566.6 627.2 509.1 671.1 355.7 527.9 369.1 614.4 508.4 722.5 322.9 391.1 701.4 1060.3 233.7 742.0
Asterix 529.7 1087.5 1798.4 2282.0 1065.6 1485.2 1158.6 1393.8 805.5 1159.4 923.4 1034.4 813.3 1000.0 1128.1 2313.3 248.8 8503.0
Asteroids 727.3 854.7 827.7 919.8 899.7 955.6 671.2 962.0 885.5 909.1 886.1 949.5 813.8 962.2 657.5 752.7 649.0 47389.0
Atlantis 15587.5 16545.3 15939.1 17778.1 13695.3 34890.6 13645.3 18396.9 19367.2 23046.9 12981.2 23579.7 15020.3 16790.6 12196.9 15728.1 16492.0 29028.0
BankHeist 14.4 16.2 14.7 18.8 31.9 77.5 8.9 13.9 12.3 14.5 12.3 13.1 12.8 17.2 14.1 17.0 15.0 753.0
BattleZone 3312.5 4140.6 4515.6 9312.5 3484.4 5359.4 5390.6 7093.8 2937.5 3343.8 4421.9 4703.1 3500.0 8906.2 3859.4 5734.4 2895.0 37188.0
BeamRider 453.1 515.5 351.4 470.2 580.2 728.8 433.9 512.6 393.5 682.8 446.6 519.2 447.1 544.6 385.7 741.9 372.1 16926.0
Bowling 27.0 36.2 28.4 43.7 28.0 39.6 24.9 55.0 27.7 34.9 22.6 28.6 28.4 39.9 37.0 54.7 24.2 161.0
Boxing -7.1 0.2 3.5 5.0 9.4 21.0 8.3 21.5 6.4 31.5 2.5 15.0 -0.7 2.2 -0.9 20.8 0.3 12.0
Breakout 5.5 9.8 12.5 13.9 16.0 22.8 11.0 19.5 7.4 10.4 10.2 14.1 10.5 16.7 6.9 13.0 0.9 30.0
ChopperCommand 942.2 1167.2 748.4 957.8 909.4 1279.7 1139.1 1909.4 682.8 1045.3 954.7 1010.9 751.6 989.1 1031.2 1329.7 671.0 7388.0
CrazyClimber 20754.7 23831.2 49854.7 80156.2 55795.3 87593.8 41396.9 67250.0 56875.0 58979.7 19448.4 84070.3 53406.2 64196.9 19345.3 43179.7 7339.5 35829.0
DemonAttack 219.2 263.0 135.8 148.4 191.2 288.9 182.4 223.9 160.3 293.8 204.1 312.8 164.4 222.6 187.5 424.8 140.0 1971.0
FishingDerby -94.3 -90.2 -97.3 -94.2 -91.8 -84.3 -91.6 -88.6 -90.0 -85.7 -92.0 -88.8 -90.6 -85.4 -95.0 -90.7 -93.6 -39.0
Freeway 0.0 29.3 29.3 32.2 21.5 32.0 33.5 34.0 31.1 32.0 33.5 33.8 30.0 32.3 29.9 33.5 0.0 30.0
Frostbite 194.5 203.9 213.4 256.2 248.8 266.9 253.1 262.8 246.7 261.7 250.0 255.9 215.8 247.7 249.4 337.5 74.0 -
Gopher 514.7 740.6 270.3 320.9 525.3 845.6 856.9 934.4 874.1 1167.2 604.1 1001.6 726.9 891.6 526.2 845.0 245.9 2412.0
Gravitar 232.8 310.2 219.5 300.0 156.2 233.6 202.3 252.3 223.4 225.8 228.1 243.8 193.8 218.0 93.0 240.6 227.2 3351.0
Hero 71.5 2913.0 75.0 2601.5 2935.0 3061.6 237.5 3133.8 3135.0 3147.5 3066.2 5092.0 3067.3 3256.9 1487.2 2964.8 224.6 30826.0
IceHockey -12.4 -9.9 -14.8 -11.8 -12.3 -7.2 -10.0 -7.7 -11.8 -8.5 -11.6 -10.7 -12.9 -10.0 -12.2 -11.0 -9.7 1.0
Jamesbond 64.8 128.9 64.8 219.5 110.9 141.4 87.5 323.4 25.0 46.9 58.6 69.5 61.7 139.1 139.8 261.7 29.2 303.0
Kangaroo 500.0 828.1 68.8 728.1 62.5 65.6 215.6 909.4 103.1 334.4 34.4 50.0 43.8 1362.5 56.2 1128.1 42.0 3035.0
Krull 852.2 1014.3 1783.6 2943.6 1933.7 3317.5 4264.3 7163.2 1874.8 3554.5 2254.0 3827.1 3142.8 6315.2 3198.2 6833.4 1543.3 2666.0
KungFuMaster 7575.0 20450.0 4848.4 8065.6 14318.8 21054.7 17448.4 21943.8 12964.1 21956.2 20195.3 23690.6 19718.8 25375.0 18025.0 20365.6 616.5 22736.0
MsPacman 557.3 818.0 1178.8 1685.9 1525.0 1903.4 751.2 1146.1 1410.5 1538.9 1277.3 1354.5 866.2 1401.9 777.2 1227.8 235.2 6952.0
NameThisGame 1468.1 1992.7 1826.7 2614.5 2460.0 2782.8 1919.8 2377.7 2087.3 2155.2 1994.8 2570.3 2153.4 2471.9 1964.2 2314.8 2136.8 8049.0
Pong -19.6 -8.5 -17.3 16.7 20.7 21.0 1.4 21.0 -2.0 6.6 3.8 14.2 -17.9 -2.0 -10.1 21.0 -20.4 15.0
PrivateEye 0.0 98.9 75.0 82.8 0.0 100.0 76.6 100.0 75.0 96.9 60.9 100.0 96.9 99.3 100.0 4038.7 26.6 69571.0
Qbert 476.6 702.7 555.9 869.9 656.2 4259.0 508.6 802.7 802.3 1721.9 974.6 2322.3 475.0 812.5 668.8 747.3 166.1 13455.0
Riverraid 1416.1 1929.4 1784.4 2274.5 2360.0 2659.8 1799.4 2158.4 2053.8 2307.5 2143.6 2221.2 1387.8 1759.8 1345.5 1923.4 1451.0 17118.0
RoadRunner 5901.6 8484.4 781.2 2857.8 5906.2 11176.6 2804.7 10676.6 1620.3 4104.7 7032.8 14978.1 857.8 1342.2 2717.2 8560.9 0.0 7845.0
Seaquest 414.4 768.1 236.9 470.6 711.6 854.1 386.9 497.2 330.9 551.2 332.8 460.9 274.1 317.2 366.9 527.2 61.1 42055.0
UpNDown 1195.9 2071.1 1007.5 1315.2 1616.1 8614.5 2389.5 3798.3 1433.3 1622.0 1248.6 1999.4 1670.3 2728.0 1825.2 5193.1 488.4 11693.0
YarsRevenge 3047.0 3380.5 3416.3 4230.8 6580.2 7547.4 2435.5 3914.1 2955.9 3314.5 3434.8 3896.3 2745.3 2848.1 4276.3 6673.1 3121.2 54577.0
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(a) Model based (SimPLe)
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(b) Model based + model free (SimPLe + PPO)

Figure 11: Behaviour with respect to the number of used samples. We report number of frames required by
PPO to reach the score of our models. Results are averaged over game.

D RESULTS AT DIFFERENT NUMBERS OF INTERACTIONS

As already described SimPLe excels in low data regime. We observe that the results increase
approximately up to 500k samples, it is also the point at which they are on par with state-of-the-art
model-free results tuned for the same number of steps, see Figure 11 (a). Such behavior, with fast
growth at the beginning of training but lower asymptotic performance is commonly observed when
comparing model-based and model-free methods. In experiments depicted in Figure 11 (b) we started
PPO training using policies obtained by SimPLe at 100K samples. We conclude that indeed SimPLe
checkpoints may serve as useful initialization. Lower asymptotic performance is probably due to
lower exploration as a policy pre-trained with SimPLe was meant to obtain the best performance on
100K, at which point its entropy is very low thus hindering in the further PPO training.
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(a) Fraction at 100K clipped to 10. (b) Fraction at 200K

(c) Fraction at 500K. (d) Fraction at 1M.

Figure 12: Fractions of the rainbow scores at given number of samples. These were calculate with the formula
(SimPLe_score− random_score)/(rainbow_score− random_score); if denominator is smaller than 0,
both nominator and denominator are increased by 1.
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E BASELINES OPTIMIZATION

To assess the performance of SimPle we compare it with model-free algorithms. To make this com-
parison more reliable we tuned Rainbow in the low data regime. To this end we run an hyperparame-
ter search over the following parameters from https://github.com/google/dopamine/
blob/master/dopamine/agents/rainbow/rainbow_agent.py:

• update_horizon in {1, 3}, best parameter = 3
• min_replay_history in {500, 5000, 20000}, best parameter = 20000
• update_period in {1, 4}, best parameter = 4
• target_update_period {50, 100, 1000, 4000}, best parameter = 8000
• replay_scheme in {uniform, prioritized}, best parameter = prioritized

Each set of hyperparameters was used to train 5 Rainbow agents on the game of Pong until 1
million of interactions with the environment. Their average performance was used to pick the best
hyperparameter set.

For PPO we used the standard set of hyperparameters from https://github.com/openai/
baselines.
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(a) Fraction at 100K clipped to 10. (b) Fraction at 200K

(c) Fraction at 500K. (d) Fraction at 1M.

Figure 13: Fractions of the ppo scores at given number of samples. These were calculate with the formula
(SimPLe_score− random_score)/(ppo_score− random_score); if denominator is smaller than 0, both
nominator and denominator are increased by 1.

24



Under review as a conference paper at ICLR 2020

(a) SimPLe compared to Rainbow at 100K. (b) SimPLe compared to Rainbow at 200K

(c) SimPLe compared to PPO at 100K. (d) SimPLe compared to PPO at 200K.

Figure 14: Comparison of scores from Simple against Rainbow and PPO at different numbers of interactions.
The following formula is used: (SimPLe_score@100K − baseline_score)/human_score. Points are
normalized by average human score in order to be presentable in one graph.
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