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ABSTRACT

The graph representation learning field has recently attracted the attention of a
wide research community. Several Graph Neural Network models are being de-
veloped to tackle effective graph classification. However, experimental proce-
dures often lack rigorousness and are hardly reproducible. Motivated by this, we
provide an overview of common practices that should be avoided to fairly com-
pare with the state of the art. To counter this troubling trend, we ran more than
47000 experiments in a controlled and uniform framework to re-evaluate five pop-
ular models across nine common benchmarks. Moreover, by comparing GNNs
with structure-agnostic baselines we provide convincing evidence that, on some
datasets, structural information has not been exploited yet. We believe that this
work can contribute to the development of the graph learning field, by providing
a much needed grounding for rigorous evaluations of graph classification models.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) (Micheli, 2009; Scarselli et al., 2009) have become
the standard tool for machine learning on graphs. These architectures effectively combine node
features and graph topology to build distributed node representations. GNNs can be used to solve
node classification (Kipf & Welling, 2017) and link prediction (Zhang & Chen, 2018) tasks, or they
can be applied to downstream graph classification (Bacciu et al., 2018). In literature, such models
are usually evaluated on chemical and social domains (Xu et al., 2019).

Given their appeal, an ever increasing number of GNNs is being developed (Gilmer et al., 2017).
However, despite the theoretical advancements reached by the latest contributions in the field, we
find that the experimental settings are in many cases ambiguous or not reproducible. For instance, it
is often unclear how hyper-parameters have been selected or which validation splits have been used.
Moreover, evaluation code is sometimes missing or incomplete, and experiments are not standard-
ized across different works in terms of data splits and feature used. This easily generates doubts and
confusion among practitioners that need a fully transparent and reproducible experimental setting.
As a matter of fact, the evaluation of a model goes through two different phases, namely model
selection on the validation set and model assessment on the test set. Clearly, to fail in keeping these
phases well separated could lead to over-optimistic and biased estimates of the true performance of
a model, and it makes hard for other researchers to present competitive results without following the
same ambiguous evaluation procedures. This troubling trend in scholarship, where best practices
are often overlooked, is also documented in Lipton & Steinhardt (2018).

With this premise, our primary contribution is to provide the graph learning community with a fair
performance comparison among GNN architectures, using a standardized and reproducible experi-
mental environment. More in detail, we performed a large number of experiments within a rigorous
model selection and assessment framework, in which all models were compared using the same fea-
tures and the same data splits. Our results put on a fair and unique reference scale many published
results which, as we document, were obtained under unclear experimental settings.
Secondly, we investigate if and to what extent current GNN models can effectively exploit graph
structure. To this end, we add two domain-specific and structure-agnostic baselines, whose purpose
is to disentangle the contribution of structural information from node features. Much to our surprise,
we found out that these baselines can even perform better than GNNs on some datasets; this calls
for moderation when reporting improvements that do not clearly outperform the baselines.
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Our last contribution is a study on the effect of node degrees as features in social datasets. Indeed,
we show that providing the degree can be beneficial in terms of performances, and it has also impli-
cations in the number of GNN layers needed to reach good results.
We publicly release code and dataset splits to reproduce our results, in order to allow other re-
searchers to carry out rigorous evaluations with minimum additional effort1.

Disclaimer Before delving into the work, we would like to clarify that this work does not aim at
pinpointing the best (or worst) performing GNN, nor it disavows the effort researchers have put in
the development of these models. Rather, it is intended to be an attempt to set up a standardized and
uniform evaluation framework for GNNs, such that future contributions can be compared fairly and
objectively with existing architectures.

2 RELATED WORK

Graph Neural Networks At the core of GNNs is the idea to compute a state for each node in a
graph, which is iteratively updated according to the state of neighboring nodes. Thanks to layering
(Micheli, 2009) or recursive (Scarselli et al., 2009) schemes, these models propagate information
and construct node representations that can be “aware” of the broader graph structure. GNNs have
recently gained popularity because they can efficiently and automatically extract relevant features
from a graph; in the past, the most popular way to deal with complex structures was to use kernel
functions (Shervashidze et al., 2011) to compute task-agnostic features. However, such kernels are
non-adaptive and typically computationally expensive, another aspect that makes GNNs even more
appealing.

Even though in this work we specifically focus on architectures designed for graph classification,
all GNNs share the notion of “convolution” over node neighborhoods, as a generalization of con-
volution on grids. For example, GraphSAGE (Hamilton et al., 2017) first performs sum, mean or
max-pooling neighborhood aggregation, and then it updates the node representation applying a lin-
ear projection on top of the convolution. It also relies on a neighborhood sampling scheme to keep
computational complexity constant. Instead, Graph Isomorphism Network (GIN) (Xu et al., 2019)
builds upon the limitations of GraphSAGE, extending it with arbitrary aggregation functions on
multi-sets. The model is proven to be as theoretically powerful as the Weisfeiler-Lehman test of
graph isomorphism. Very recently, Wagstaff et al. (2019) gave an upper bound to the number of
hidden units needed to learn permutation-invariant functions over sets and multi-sets. Differently
from the above methods, Edge-Conditioned Convolution (ECC) (Simonovsky & Komodakis, 2017)
learns a different parameter for each edge label. Therefore, neighbors aggregation is weighted ac-
cording to specific edge parameters. Finally, Deep Graph Convolutional Neural Network (DGCNN)
(Zhang et al., 2018) proposes a convolutional layer similar to the formulation of Kipf & Welling
(2017).
Some models also exploit a pooling scheme, which is applied after convolutional layers in order to
reduce the size of a graph. For example, the pooling scheme of ECC coarsens graphs through a
differentiable pooling map that can be pre-computed. Similarly, DiffPool (Ying et al., 2018) pro-
poses an adaptive pooling mechanism that collapses nodes on the basis of a supervised criterion.
In practice, DiffPool combines a differentiable graph encoder with its pooling strategy, so that the
architecture is end-to-end trainable. Lastly, DGCNN differs by other works in that nodes are sorted
and aligned by a specific algorithm called SortPool (Zhang et al., 2018).

Model evaluation The work of Shchur et al. (2018) shares a similar purpose with our contribu-
tion. In particular, the authors compare different GNNs on node classification tasks, showing that
results are highly dependent on the particular train/validation/test split of choice, up to the point
where changing splits leads to dramatically different performance rankings. Thus, they recommend
to evaluate GNNs on multiple test splits to achieve a fair comparison. Even though we operate in a
different setting (graph instead of node classification), we follow the authors’ suggestions by evalu-
ating models under a controlled and rigorous assessment framework. Finally, the work of Dacrema
et al. (2019) criticizes a large number of neural recommender systems, most of which are not repro-
ducible, showing that only one of them truly improves against a simple baseline.

1Link omitted due to double-blind review, but code is provided in the supplementary material.
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3 RISK ASSESSMENT AND MODEL SELECTION

Here, we recap the risk assessment (also called model evaluation or model assessment) and model
selection procedures, to clearly lay-out the experimental procedure followed in this paper.

3.1 RISK ASSESSMENT

The goal of risk assessment is to provide an estimate of the performance of a class of models. When
a test set is not explicitly given, a common way to proceed is to use a holdout technique or nested
Cross Validation (CV); briefly, nested CV applies an external kout-fold CV, and for each training
fold i an internal holdout or a kin-fold CV selects the best hyper-parameter configuration from a
set of candidates. Such configuration is then used to evaluate performances on the i-th external test
fold. This way, the external folds are never used for model selection, thus representing instances of
truly unseen data. It is also worth noting that model selection is performed kout times, thus leading
to kout different “best” configurations; this is why we refer to the performance of a class of models
rather than a single one.
For completeness, we also mention that risk assessment can be conducted using bootstrap (Efron,
1979). However, we decided to stick with nested CV for two reasons: i) results in GNNs’ literature
are usually obtained with a k-fold CV; ii) k-fold CV results are considered more unbiased towards
the mean value than bootstrap (Kohavi et al., 1995) .

3.2 MODEL SELECTION

The goal of model selection, or hyper-parameter tuning, is to choose among a set of candidate
hyper-parameter configurations the one that works best on a specific validation set. If a validation
set is not explicitly sourced, one can rely on a holdout training/validation split or an inner k-fold.
Nevertheless, the key point to remember is that validation performances are a biased estimate of the
true generalization capabilities. Consequently, model selection results are generally over-optimistic,
especially on small datasets; this issue is thoroughly documented in Cawley & Talbot (2010).

4 OVERVIEW OF REPRODUCIBILITY ISSUES

To motivate our contribution, we follow the approach of Dacrema et al. (2019) and briefly review
recent papers describing five different GNN models, highlighting problems in the experimental se-
tups as well as reproducibility of results. We emphasize that our observations are based solely on
the contents of their paper and the available code2. Suitable GNN works were selected according to
the following criteria: i) performances obtained with 10-fold CV; ii) peer reviewed; iii) strong archi-
tectural differences; iv) popularity. In particular, we selected DGCNN (Zhang et al., 2018), DiffPool
(Ying et al., 2018), ECC (Simonovsky & Komodakis, 2017), GIN (Xu et al., 2019) and GraphSAGE
(Hamilton et al., 2017). For a detailed description of each model we refer to their respective papers.
Our criteria to assess quality of evaluation and reproducibility are: i) code for data preprocessing,
model selection and assessment is provided; ii) data splits are provided; iii) data is split by means of
a stratification technique, to preserve class proportions across all partitions; iv) results of the 10-fold
CV are reported correctly using standard deviations, and they refer to model evaluation (test sets)
rather than model selection (validation sets). Table 1 summarizes our findings.

DGCNN The authors evaluate the model on 10-fold CV. While the architecture is fixed for all
dataset, learning rate and epochs are tuned using only one random CV fold, and then reused on all
the other folds. While this practice is still acceptable, it may lead to sub-optimal performances.
Nonetheless, the code to reproduce model selection is not available. Moreover, the authors run CV
10 times, and they report the average of the 10 final scores. As a result, the variance of the provided
estimates is reduced. However, the same procedure was not applied to the other competitors as well.
Finally, CV data splits are correctly stratified and publicly available, making it possible to reproduce
at least the evaluation experiments.

2As of the date of this submission.
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Table 1: Criteria for reproducibility considered in this work and their compliance among considered
models. (Y) indicates that the criteria is met, (N) indicates that the criteria is not satified, (A)
indicates ambiguity, (-) indicates lack of information. Note that GraphSAGE is excluded from this
comparison, as it was not directly applied by authors to graph classification tasks.

DGCNN DiffPool ECC GIN
Data preprocessing code Y Y - Y
Model selection code N N - N
Model evaluation code Y Y - Y
Data splits provided Y N N Y
Label Stratification Y N - Y
Report accuracy on test Y A A N
Report standard deviations Y N N Y

DiffPool From both the paper and the provided code, it is unclear if reported results are obtained
on a test set rather than a validation set. Although the authors state that 10-fold CV is used, standard
deviations of DiffPool and its competitors are not reported. Moreover, the authors applied early
stopping, which entails the use of a validation set; unfortunately, neither model selection code nor
validation splits are available. Furthermore, according to the code, data is randomly split (without
stratification) and no random seed is set, hence splits are different each time the code is executed.

ECC The paper reports that ECC is evaluated on 10-fold CV, but results do not include standard
deviations. Similarly to DGCNN, hyper-parameters are fixed in advance, hence it is not clear if and
how model selection has been performed. Importantly, there are no references in the code repository
to data pre-processing, data stratification, data splitting, and model selection.

GIN The authors correctly list all the hyper-parameters tuned. However, as stated explicitly in the
paper and in the public review discussion, they report the validation accuracy of 10-fold CV. In other
words, reported results refer to model selection and not to model evaluation. The code for model
selection is not provided.

GraphSAGE The original paper does not test this model on graph classification datasets, but
GraphSAGE is often used in other papers as a strong baseline. It follows that GraphSAGE results
on graph classification should be accompanied by the code to reproduce the experiments. Despite
that, the two works which report results of GraphSAGE (DiffPool and GIN) fail to do so.

Summary Our analysis reveals that GNN works rarely comply to good machine learning practices
as regards quality of evaluation and reproducibility of results. This motivates the need to re-evaluate
all models within a rigorous, reproducible and fair environment.

5 EXPERIMENTS

In this section we detail our main experiment, in which we re-evaluate the above-mentioned mod-
els on 9 datasets (4 chemical, 5 social), using a model selection and assessment framework based
on nested CV, as described in Section 3. In addition, we implement two baselines whose purpose
is to understand the extent to which GNNs are able to exploit structural information. All models
have been implemented by means of the Pytorch Geometrics library (Fey & Lenssen, 2019), which
provides graph pre-processing routines and makes the definition of graph convolution easier to im-
plement. We sometimes found discrepancies between papers and related code; in such cases, we
complied with the specifications in the paper. Because GraphSAGE was not applied to graph clas-
sification in the original work, we opted for a max-pooling global aggregation function to classify
graph instances. Finally, we conform to the available code and do not use sampled neighborhood
aggregation.

Datasets All graph datasets are publicly available (Kersting et al., 2016) and represent a rele-
vant subset of those most frequently used in literature to compare GNNs. Some collect molecular
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graphs, while others contain social graphs. In particular, we used D&D (Dobson & Doig, 2003),
PROTEINS (Borgwardt et al., 2005), NCI1 (Wale et al., 2008) and ENZYMES (Schomburg et al.,
2004) for binary and multi-class classification of chemical compounds, whereas IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-5K and COLLAB (Yanardag & Vishwanathan, 2015)
are social datasets. Dataset statistics are reported in table A.1.

Features In GNN literature, it is common practice to augment node descriptors by adding struc-
tural features. For example, DiffPool augments the input with both node degree and clustering
coefficient, whereas GIN adds a one-hot representation of node degrees. The latter choice trades an
improvement in performances (due to injectivity of the first sum) with the inability to generalize to
graphs with arbitrary node degree. To ensure a fair comparison, this practice should be consistently
applied to all models. Differently from other works, we evaluate models with the same node fea-
tures as input. In particular, we use one common setting for the chemical domain and two alternative
settings as regards the social domain. More in detail, in the former nodes are labelled with a one-hot
encoding of their atom type, though on ENZYMES we follow the literature and use 18 additional
features available. As regards the latter, whose graph nodes do not convey information, we use either
an uninformative feature for all nodes or the node degree. As such, we are able to reason about the
effectiveness of the structural inductive bias imposed by the model; that is, if the model is able to
implicitly learn structural features or not.

Baselines We adopt two distinct baselines, one for chemical and one for social datasets. On all
chemical datasets but for ENZYMES, we follow Ralaivola et al. (2005) and implement the Molec-
ular Fingerprint technique, which first applies global sum pooling (i.e., counts the occurrences of
atom types in the graph) and then applies a single-layer MLP with ReLU activations. On social
domains and ENZYMES (due to the presence of additional features), we take inspiration from the
work of Zaheer et al. (2017): first, we apply a single-layer MLP on top of node features, followed
by global sum pooling and another single-layer MLP for classification. Note that both baselines
do not leverage graph topology. Using these baselines as a reference is of fundamental importance
for future works, as they can provide feedback on the effectiveness of GNNs on a specific dataset.
As a matter of fact, if GNN performances are close to the ones of a structure-agnostic baseline,
one can draw two possible conclusions: the task does not need topological information to be ef-
fectively solved; or the GNN is not exploiting graph structure adequately. While the former can be
verified through domain-specific human expertise, the second is more difficult to assess, as multiple
factors come into play such as the amount of training data, the structural inductive bias imposed
by the architecture and the hyper-parameters used for model selection. Nevertheless, significant
improvements with respect to these baselines are a strong indicator that graph topology has been
exploited. Therefore, structure-agnostic baselines become vital to understand if and how a model
can be improved.

Experimental Setting We apply a nested CV procedure where we set kout = 10 for the outer
evaluation, and we use a holdout technique with a 90%/10% training/validation split in the inner
fold. After each model selection, we train three times on the whole training fold, holding out a
random fraction (10%) of the data to perform early stopping. These three separate runs are needed
to smooth the effect of unfavourable random weight initialization on test performances. The final
test fold score is obtained as the mean of these three runs; Table 2 reports the pseudo-code of
the entire evaluation process. To be consistent with literature, we implement early stopping with
patience parameter n, where training stops if n epochs have passed without improvement on the
validation set. Importantly, all data partitions have been pre-computed, so that models are selected
and evaluated on the same data splits. Moreover, all data splits are stratified, i.e., class proportions
are preserved inside each k-fold split as well as in the holdout splits used for model selection.

Hyper-parameters Hyper-parameter tuning is performed via grid search. For the sake of con-
ciseness, we list all hyper-parameters in Section A.3. Notice that we always include those used by
other authors in their respective papers. We optimize the number of convolutional layers, the em-
bedding space dimension, the learning rate, and the criterion for early stopping (either based on the
validation accuracy or validation loss) for all models. Depending on the model, we also optimized
regularization terms, dropout, and other model-specific parameters.
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Table 2: Pseudo-code for model assessment (left) and model selection (right). In Algorithm 1,
“Select” refers to Algorithm 2, whereas “Train” and “Eval” represent training and inference phases,
respectively. After each model selection, the best configuration bestk is used to evaluate on the
external test fold. Performances are averaged across R training runs, where R in our case is set to 3.

Algorithm 1 Model Assessment (k-fold CV)
1: Input: Dataset D, set of configurations Θ
2: Split D into k folds F1, . . . , Fk
3: for i← 1, . . . , k do
4: traink, testk ←

(⋃
j 6=i Fj

)
, Fi

5: bestk ← Select(traink, Θ)
6: for r ← 1, . . . , R do
7: modelr ← Train(traink, bestk)
8: pr ← Eval(modelk, testk)
9: end for

10: perfk ←
∑R
r=1 pr/R

11: end for
12: return

∑k
i=1 perfi/k

Algorithm 2 Model Selection
1: Input: traink, Θ
2: Split traink into train and valid
3: pθ = ∅
4: for each θ ∈ Θ do
5: model← Train(traink, θ)
6: pθ ← pθ ∪ Eval(model, valid)
7: end for
8: bestθ ← argmaxθ pθ
9: return bestθ

Computational considerations Our experiments involve a large number of training runs. For
all models, grid sizes range from 32 to 72 possible configurations, depending on the number of
hyper-parameters to choose from. However, we tried to keep the upper bound on the number of
parameters as similar as possible across models. The total effort required, in terms of number of
single trainings, to complete model assessment procedures exceeded 47000. Such a large number
required an extensive use of parallelism, both in CPU and GPU, to conduct the experiments in a
reasonable amount of time. We emphasize that in some cases, training on a single hyper-parameter
configuration required more than 72 hours, which would have made the sequential exploration of
one single grid last months. Therefore, due to the large amount of experiments to conduct and to the
computational resources available, we limited the time to complete a single training to 72 hours.

6 RESULTS AND DISCUSSION

Tables 3 and 4 show the results of our experiments. Overall, GIN seems to be effective on social
datasets. Importantly, we discover that on D&D, PROTEINS and ENZYMES none of the GNNs is
able to improve over the baseline. On the contrary, on NCI1 the baseline is clearly outperformed.
On social datasets, we observe that adding node degrees as features is beneficial, but such effect is
more noticeable for REDDIT-B, REDDIT-5K and COLLAB.

6.1 THE IMPORTANCE OF BASELINES

Our results also show that structure-agnostic baselines are an essential tool to understand the effec-
tiveness of GNNs and extract useful insights. As an example, since none of the GNNs surpass the
baseline on D&D, PROTEINS and ENZYMES, we argue that GNNs are still unable to exploit the
structure on such datasets. The reason is that, in chemistry, structural features such as the presence
of functional groups are known to correlate with relevant molecular properties (van Rossum, 1963).
For all these reasons, we suggest to put small performance gains on these datasets into the right
perspective, at least until the baseline will clearly be outperformed. Currently, small average fluctu-
ations on these datasets are likely to be caused by other factors, such as random initializations, rather
than a successful exploitation of the structure. In conclusion, we warmly recommend GNN practi-
tioners to include baseline comparisons in future works, in order to better characterize the extent of
their contributions.
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Table 3: Results on chemical datasets with mean accuracy and standard deviation are reported. Best
performances are highlighted in bold.

D&D NCI1 PROTEINS ENZYMES
Baseline 78.36± 4.5 69.83± 2.2 75.75± 3.7 65.17± 6.4
DGCNN 76.63± 4.3 76.42± 1.7 72.89± 3.5 38.89± 5.7
DiffPool 74.96± 3.5 76.93± 1.9 73.73± 3.5 59.50± 5.6
ECC 72.64± 4.1 76.18± 1.4 72.30± 3.4 29.50± 8.2
GIN 75.30± 2.9 80.04± 1.4 73.25± 4.0 59.56± 4.5
GraphSAGE 72.86± 2.0 76.02± 1.8 73.01± 4.5 58.17± 6.0

Table 4: Results on social datasets with mean accuracy and standard deviation are reported. Best
performances are highlighted in bold. OOR means Out of Resources, either time (> 72 hours for a
single training) or GPU memory.

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

N
O

F
E

A
T

U
R

E
S Baseline 50.70± 2.4 36.07± 3.0 72.05± 7.8 35.13± 1.4 54.95± 1.9

DGCNN 53.30± 5.0 38.56± 2.2 77.13± 2.9 35.65± 1.8 57.41± 1.9
DiffPool 68.30± 6.1 45.10± 3.2 76.62± 2.4 34.60± 2.0 67.72± 1.9
ECC 67.80± 4.8 44.80± 3.1 OOR OOR OOR
GIN 66.77± 3.9 42.20± 4.6 87.03± 4.4 53.76± 5.9 75.88± 1.9
GraphSAGE 69.87± 4.6 47.18± 3.6 86.13± 2.0 49.92± 1.7 71.61± 1.5

W
IT

H
D

E
G

R
E

E Baseline 70.77± 5.0 49.09± 3.5 82.18± 3.0 52.16± 1.5 70.19± 1.5
DGCNN 69.17± 3.0 45.58± 3.4 87.77± 2.5 49.20± 1.2 71.20± 1.9
DiffPool 68.40± 3.3 45.64± 3.4 89.08± 1.6 53.78± 1.4 68.85± 2.0
ECC 67.67± 2.8 43.49± 3.1 OOR OOR OOR
GIN 71.23± 3.9 48.53± 3.3 89.93± 1.9 56.09± 1.7 75.61± 2.3
GraphSAGE 68.80± 4.5 47.56± 3.5 84.32± 1.9 50.02± 1.3 73.94± 1.7

6.2 THE EFFECT OF NODE DEGREE

Based on our results, using node degrees as input features is almost always beneficial to increase
performances on social datasets, sometimes by a large amount. As an example, degree information
is sufficient for our baseline to improve performances of ≈ 15%, hence being competitive on many
datasets; in particular, the baseline achieves the best performance on IMDB-BINARY. In contrast,
adding node degrees is less relevant for most GNNs, since they can automatically infer such infor-
mation from the structure. One notable exception is DGCNN, which explicitly needs node degree to
perform well on all datasets. However, one may wonder whether the addition of the degree has an in-
fluence on the number of layers that are necessary to solve the task or not. We therefore investigated
the matter by computing the median number of layers across the 10 different folds. We observed a
general trend across models, with GraphSAGE being the only exception, where the addition of the
degree reduces the number of layers needed by ≈ 1, which is shown in Table A.2. This may be due
to the fact that most architectures find useful to compute the degree at the very first layer, as such
information seems useful to the overall performances.

6.3 COMPARISON WITH PUBLISHED RESULTS

Figure 1 compares the average values of our test results with those reported in literature. In addition,
we plot the average of our validation results across the 10 different model selections. The plots show
how our test accuracies are in most cases different with what reported in the literature, and the gap
between the two estimates is usually consistent. In contrast, our average validation accuracies are
always higher or equal than our test results; this is expected, as discussed in Section 3.2. Finally,
we emphasize once again that our results are i) obtained within the framework of a rigorous model
selection and assessment protocol; ii) fair with respect of data splits and input features assigned to
all competitors; iii) reproducible. In contrast, we saw in Section 4 how published results rely on
unclear or poorly documented experimental settings.
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Figure 1: Chemical and social (with degree) benchmark results are shown together with published
results (when available). For each of them, we report validation and test accuracies of the evaluated
models, together with published results if available.

7 CONCLUSIONS

In this paper, we wanted to show how a rigorous empirical evaluation of GNNs can help design future
experiments and better reason about the effectiveness of different architectural choices. To this aim,
we highlighted ambiguities in the experimental settings of different papers, and we proposed a clear
and reproducible procedure for future comparisons. We then provided a complete re-evaluation
of five GNNs on nine datasets, which required a significant amount of time and computational
resources. This uniformed environment helped us reason about the role of structure, as we found
that structure-agnostic baselines outperform GNNs on some chemical datasets, thus suggesting that
structural properties have not been exploited yet. Moreover, we objectively analyzed the effect of
the degree feature on performances and model selection in social datasets, unveiling an effect on the
depth of GNNs. Finally, we provide the graph learning community with reliable and reproducible
results to which GNN practitioners can compare their architectures. We hope that this work, along
with the library we release, will prove useful to researchers and practitioners that want to compare
GNNs in a more rigorous way.
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A APPENDIX

A.1 DATASET STATISTICS

Table 5: Dataset Statistics. Note that, when node labels are not present, we either assigned the same
feature of 1 or the degree to all nodes in the dataset. Moreover, following literature, we use the 18
additional node attributes for ENZYMES.

# Graphs # Classes # Nodes # Edges # Node labels

C
H

E
M

. DD 1178 2 284.32 715.66 89
ENZYMES 600 6 32.63 64.14 3
NCI1 4110 2 29.87 32.30 37
PROTEINS 1113 2 39.06 72.82 3

S
O

C
IA

L

COLLAB 5000 3 74.49 2457.78 -
IMDB-BINARY 1000 2 19.77 96.53 -
IMDB-MULTI 1500 3 13.00 65.94 -
REDDIT-BINARY 2000 2 429.63 497.75 -
REDDIT-5K 4999 5 508.82 594.87 -

A.2 EFFECT OF NODE DEGREE ON LAYERING

Table 6: The table displays the median number of selcted layers in relation to the addition of node
degrees as input features on all social datasets. 1 indicates that an uninformative feature is used as
node label.

IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB

1 DEG 1 DEG 1 DEG 1 DEG 1 DEG

DGCNN 3 3 3.5 3 4 3 3 2 4 2
DiffPool 1 2 2 1 2 2 2 1 2 1.5
ECC 1 2 1 1 - - - - - -
GIN 3 2 4 2 4 4 4 3 4 4
GraphSAGE 4 3 5 4 3 4 3 5 3 5
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