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ABSTRACT

As deep neural networks (DNNs) achieve tremendous success across many appli-1

cation domains, researchers tried to explore in many aspects on why they gener-2

alize well. In this paper, we provide a novel perspective on these issues using3

the gradient signal to noise ratio (GSNR) of parameters during training process4

of DNNs. The GSNR of a parameter is simply defined as the ratio between its5

gradient’s squared mean and variance, over the data distribution. Based on several6

approximations, we establish a quantitative relationship between model param-7

eters’ GSNR and the generalization gap. This relationship indicates that larger8

GSNR during training process leads to better generalization performance. Futher,9

we show that, different from that of shallow models (e.g. logistic regression, sup-10

port vector machines), the gradient descent optimization dynamics of DNNs nat-11

urally produces large GSNR during training, which is probably the key to DNNs’12

remarkable generalization ability.13

1 INTRODUCTION14

Deep neural networks typically contain far more trainable parameters than training samples, which15

seems to easily cause a poor generalization performance. However, in fact they usually exhibit re-16

markably small generalization gaps. Traditional generalization theory such as VC dimension (Vap-17

nik & Chervonenkis, 1991) or Rademacher complexity (Bartlett P L, 2002) cannot explain its mech-18

anism. Extensive research focuses on the generalization ability of DNNs (Neyshabur et al., 2017; S.19

et al., 2018; Keskar et al., 2016; Dinh et al., 2017; Hoffer et al., 2017; R et al., 2018; Dziugaite &20

Roy, 2017; etc, 2018; Kawaguchi et al., 2017; Advani & Saxe, 2017).21

Unlike that of shallow models such as logistic regression or support vector machines, the global22

minimum of high-dimensional and non-convex DNNs cannot be found analytically, and can only23

be approximated by gradient descent and its variants (Zeiler, 2012; Kingma & Ba, 2014; Graves,24

2013). Previous work (Zhang et al., 2016; Hardt et al., 2015; Dziugaite & Roy, 2017) suggests that25

the generalization ability of DNNs is closely related to gradient descent optimization. For example,26

Hardt et al. (2015) claims that any model trained with stochastic gradient descent (SGD) for reason-27

able epochs would exhibit small generalization error. Their analysis is based on the smoothness of28

loss function. In this work, we attempt to understand the generalization behavior of DNNs through29

GSNR and reveal how GSNR affects the training dynamics of gradient descent.30

The GSNR of a parameter is defined as the ratio between its gradient’s squared mean and variance31

over the data distribution. Previous work tried to use GSNR to conduct theoretical analysis on32

deep learning. For example, Rainforth et al. (2018) used GSNR to analyze variational bounds in33

unsupervised DNNs such as variational auto-encoder (VAE). Here we focus on analyzing the relation34

between GSNR and the generalization gap.35

Intuitively, GSNR measures the similarity of a parameter’s gradients among different training sam-36

ples. Large GSNR implies that most training samples agree on the optimization direction of this37

parameter, thus the parameter is more likely to be associated with a meaningful “pattern” and we38

assume its update could lead to a better generalization. In this work, we prove that the GSNR is39

strongly related to the generalization performance, and larger GSNR means a better generalization.40

To reveal the mechanism of DNNs’ good generalization ability, we show that the gradient descent41

optimization dynamics of DNN naturally leads to large GSNR of model parameters, thus a good42
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generalization. Futher, we give a complete analysis and a detailed interpretation to this phenomenon.43

We believe this is probably the key to DNNs remarkable generalization ability.44

In the remainder of this paper we first analyze the relation between GSNR and generalization (Sec-45

tion 2). We then show how the training dynamics lead to large GSNR of model parameters experi-46

mentally and analytically in Section 3.47

2 LARGER GSNR LEADS TO BETTER GENERALIZATION48

In this section, we establish a quantitative relation between the GSNR of model parameters and the49

generalization gap based on several proper approximations. This relationship indicates that larger50

GSNR during training process leads to better generalization performance.51

2.1 GRADIENTS SIGNAL TO NOISE RATIO52

Consider a data distribution Z = X × Y from which each sample s = (x, y) is drawn, and a model53

ŷ = f(x, θ) trying to predict y from x, parameterized by θ. We use gs(θ) to denote parameters’54

gradient w.r.t sample s. Given the data distribution Z , we can evaluate the (sample-wise) mean55

and variance of gs(θ). We denote them as µ(θ) = Es∼Z(gs(θ)) and ρ2(θ) = Vars∼Z(gs(θ)),56

respectively.57

The gradient signal to noise ratio (GSNR) of q-th model parameter is defined as:58

rq(θ) ≡
µ2
q(θ)

ρ2q(θ)
(1)

We can see, at a particular point of the parameter space, GSNR measures the similarity of the param-59

eter gradients among different data samples.60

2.2 ONE-STEP GENERALIZATION RATIO61

In this section we introduce a new concept to help us measure the generalization performance during62

gradient descent optimization, which we call one-step generalization ratio (OSGR). We denote the63

training set as D = {(x0, y0), ..., (xn, yn)} ∼ Zn consists of n samples drawn from Z , and the64

test set as D′ = {(x′
0, y

′
0), ..., (x

′
n′ , y′n′)} ∼ Zn′

. In practice we use the loss on D′ to estimate the65

generalization loss. We denote the empirical training loss and test loss respectively as66

L[D] =
1

n

n∑
i=0

L(yi, f(xi, θ)), L[D′] =
1

n′

n′∑
i=0

L(y′i, f(x
′
i)) (2)

Then the empirical generalization gap is defined by e = L[D′]− L[D].67

In gradient descent optimization, both the training and test loss would decline step by step. We68

use ∆L[D] and ∆L[D′] to denote the one-step training and test loss decrease during training, re-69

spectively. Let’s consider the ratio between the expectations of ∆L[D′] and ∆L[D] of one single70

training step, which we denote as R(Z).71

R(Z) ≡ ED,D′∼Zn(∆L[D′])

ED∼Zn(∆L[D])
(3)

Note that the expectation of ∆L[D′] is over D and D′, and it’s because the optimization step, aka72

training process, is on D. We refer R(Z) as OSGR of gradient descent optimization. Statistically73

the training loss decreases faster than the test loss and OSGR would be less than 1, which usually74

results in a non-zero generalization gap at the end of training. If OSGR is large in the whole training75

process, generalization gap will be small when training completes, implying good generalization76

ability of the model.77
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2.3 RELATION BETWEEN GSNR AND OSGR78

In this section, we focus on deriving the relation between GSNR and OSGR, futher to prove the79

GSNR is strongly related to model generalization performance.80

For simplicity, we assume the sizes of training and test datasets are equal, n = n′. In gradient81

descent optimization, we compute the mean of gradient over the training dataset, which we denote82

as k(θ,D) = 1
n

∑n
i=0 gi(θ), and use it as the opposite descent direction. Note the difference83

between µ(θ) and k(θ,D), where µ(θ) is the gradient mean over a data distribution and k(θ,D) is84

the empirical gradient mean of a training dataset.85

The gradient mean of the training and test datasets are, respectively86

k(θ,D) =
1

n

n∑
i=0

gi(θ) =
∂L[D]

∂θ
, k′(θ,D′) =

1

n

n∑
i=0

g′
i(θ) =

∂L[D′]

∂θ
(4)

where g′
i(θ) is the gradient w.r.t the i-th sample of the test dataset.87

Both the training and test dataset are randomly generated from the same distribution Zn, so we88

can treat k(θ,D) and k′(θ,D′) as random variables. At the beginning of the optimization process,89

θ is randomly initialized thus independent of D, so k(θ,D) and k′(θ,D′) would obey the same90

distribution. After a period of training, the model parameters begin to fit the training dataset and91

become a function of D, θ = θ(D), then the distribution of k(θ(D), D) and k′(θ(D), D′) becomes92

different. However we will make our derivation under the non-overfitting limit approximation 2.3.193

stated as below.94

Assumption 2.3.1 (Non-overfitting limit approximation) In the early training stage, the mean of95

gradients w.r.t the training dataset and test dataset k(θ(D), D) and k′(θ(D), D′) obey the same96

distribution, and we denote their mean and variance as µ(θ) and σ2(θ), i.e.97

ED∼Zn [k(θ(D), D)] = ED,D′∼Zn [k′(θ(D), D′)] = µ(θ) (5)
98

VarD∼Zn [k(θ(D), D)] = VarD,D′∼Zn [k′(θ(D), D′)] = σ2(θ) (6)

For simplicity, we denote k(θ(D), D) and k(θ(D), D′) as k(θ) and k′(θ) respectively. We can get99

the following relation:100

µ(θ) = ED∼Zn [k(θ)] = ED∼Zn [
1

n

n∑
i=0

gi(θ)] = Es∼Z [gs(θ)] (7)

σ2(θ) = VarD∼Zn [k(θ)] = VarD∼Zn [
1

n

n∑
i=0

gi(θ)] =
1

n
Vars∼Z [gs(θ)] ≡

1

n
ρ2(θ) (8)

where σ2(θ) is the variance of the gradient mean of a training dataset while ρ2(θ) is the variance of101

the gradient of a single sample.102

In one gradient descent step, the model parameter is updated by ∆θ = θt+1 − θt = −λk(θ) where103

λ is the learning rate. If λ is small enough, the one-step training and test loss decrease can be104

approximated as105

∆L[D] ≈ −∆θ · ∂L[D]

∂θ
+O(λ2) = λk(θ) · k(θ) +O(λ2) (9)

∆L[D′] ≈ −∆θ · ∂L[D
′]

∂θ
+O(λ2) = λk(θ) · k′(θ) +O(λ2) (10)

Usually there are some differences between the directions of k(θ) and k′(θ), so statistically ∆L[D]106

tends to be larger than ∆L[D′] and the generalization gap would increase during training. When107

λ → 0, in one single training step the empirical generalization gap increases by:108

∆e ≈ λk(θ) · k(θ)− λk(θ) · k′(θ) = λ(µ(θ) + ϵ)(µ(θ) + ϵ− µ(θ)− ϵ′) (11)
= λ(µ(θ) + ϵ)(ϵ− ϵ′) (12)
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We replace the random variables, k(θ) = µ(θ) + ϵ, k′(θ) = µ(θ) + ϵ′. ϵ and ϵ′ are random109

variables with zero mean and variance σ2(θ). Since E(ϵ′) = E(ϵ) = 0, ϵ and ϵ′ are independent,110

the expectation of ∆e is111

ED,D′∼Zn(∆e) = E(λϵ · ϵ) +O(λ2) = λ

Q∑
q=1

σ2
q +O(λ2) (13)

where Q is the number of parameters and σ2
q is the variance of mean gradient of the q-th parameter.112

Consider the expectation of ∆L[D] and ∆L[D′] when λ → 0113

ED∼Zn(∆L[D]) ≈ λED∼Zn(k(D) · k(D)) = λ

Q∑
q=1

ED∼Zn(k2q(D)) (14)

ED,D′∼Zn(∆L[D′]) = ED,D′∼Zn(∆L[D]−∆e) ≈ λ

Q∑
q=1

(ED∼Zn(k2q(D))− σ2
q ) (15)

= λ

Q∑
q=1

(ED∼Zn(k2q(D))− ρ2q/n) +O(λ2) (16)

Now we are ready to derive the relation between GSNR and OSGR, by substituting 16 and 14 into114

3:115

R(Z) = 1−
∑Q

q=1 ρ
2
q

n
∑Q

q=1 ED∼Zn(k2q(D))
(17)

Now the right hand side of equation (17) can be estimated using only the samples in the training116

datasets. Because the gradient average kq(D) and sample-wise gradient variance ρ2q can both be117

computed within one training dataset. We will elaborate on this estimation method in section 2.4.118

Reformulate equation (17) as:119

R(Z) = 1− 1

n

Q∑
q=1

ED∼Zn(k2q(D))∑Q
q′=1 ED∼Zn(k2q′(D))

ρ2q
ED∼Zn(k2q(D))

(18)

= 1− 1

n

Q∑
q=1

ED∼Zn(k2q(D))∑Q
q′=1 ED∼Zn(k2q′(D))

1

rq +
1
n

(19)

where ED∼Zn(k2q(D)) = V arD∼Zn(kq(D)) + E2
D∼Zn(kq(D)) = 1

nρ
2
q + µ2

q .120

We define ∆Lq[D] to be the training loss decrease caused by updating the q-th parameter. We can121

show that when λ is very small ∆Lq[D] = λk2q(D) +O(λ2). Therefore when λ → 0122

R(Z) = 1− 1

n

Q∑
q=1

Wq
1

rq +
1
n

, where Wq =
ED∼Zn(∆Lq[D])

ED∼Zn(∆L[D])
with

Q∑
q=1

Wq = 1 (20)

Equation (20) shows that the GSNR (equation 1) plays a crucial role in the model’s generalization123

ability. In the non-overfitting limit approximation and with a small enough learning rate, the one-step124

generalization ratio in gradient descent equals 1 minus the weighted average of 1
rq+

1
n

over all model125

parameters divided by n. The weight is proportional to the expectation of the training loss decrease126

caused by updating that parameter. This result implies that larger GSNR of model parameters during127

training leads to smaller generalization gap growth and better generalization performance of the final128

model. Also note when n → ∞, we have R → 1 and hence good generalization performance.129

2.4 EXPERIMENTAL VERIFICATION OF THE RELATION BETWEEN GSNR AND OSGR130

The relation between GSNR and OSGR, i.e. equation 17 or 20, is solid and can be accurately verified131

using any datasets if: (1) The dataset include enough number of samples to construct enough number132
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Figure 1: Left hand (LHS) and right side (RHS) of equation 17. Points are drawn under different
experiment setting. Left figure: LHS vs RHS relation at epoch 20, 100, 500, 2500. Each point
is drawn by LHS and RHS computed at the given epoch under different model structure (channel
number) or training data size; red dotted line is the line of best fit computed by Least Square Method;
blue dotted line is the line of reference representing LHS = RHS; the value of c in each title represents
the Pearson correlation coefficient between LHS and RHS computed by points in figure. Right figure:
The legend, different symbols and colors stand for different channel number and training data size
respectively. Different random noise is not presented.

of training datasets and a large enough test dataset so that the estimation of ρ2q , ED∼Zn(k2q(D)) and133

OSGR can be accurate. (2) The learning rate is small enough. (3) In the early training stage of134

gradient descent.135

To vefity equation 17, here we show how to estimate the left and right hand sides of it. Suppose we136

have M number of training datasets with n samples each and a large test dataset with n′ samples.137

We initialize a model and train it separately on the M training datasets and test it with the same test138

dataset. For the t-th training iteration, we denote the training loss and test loss of the model trained139

on the m-th training dataset as Ltm and L′
tm, respectively. Then the left hand side, i.e. OSGR, of140

the t-th iteration can be estimated as141

Rt(Z) ≈
∑M

m=1 L
′
t+1m − L′

tm∑M
m=1 Lt+1m − Ltm

(21)

For the model trained on the m-th training datase, we can compute the t-th step gradient mean and142

sample-wise gradient variance of q-th parameter on the corresponding training dataset, denoted as143

k̂qmt and ρ̂2qmt, then the right hand side of equation 17 can be estimated144

ED∼Zn(k2qt(D)) ≈ 1

M

M∑
m=1

k̂2qmt, ρ2qt ≈
1

M

M∑
m=1

ρ̂2qmt (22)

Note that using equation 22, the right hand side can be computed merely with the samples in the145

training datasets.146

To verify equation 17, we carry out the experiment on MNIST training dataset with simple147

CNNs which consists of 2 Conv-Relu-MaxPooling blocks and 2 fully-connnected layers. First,148

to estimate equation 22 with M = 10, we randomly sample 10 training datasets with n sam-149

ples each and a test set with 10000 samples. Then to cover different conditions, we (1) set150

n ∈ {1000, 2000, 4000, 6000, 8000, 10000, 15000}, respectively; (2) inject noise in the datasets by151

randomly changing the labels with proportion prandom ∈ {0.0, 0.1, 0.2, 0.3, 0.5}; (3) experiment152

on various model structures which are different only at the number of channels in layers. For model153

details, please see Appendix A. Moreover, we use the gradient descent training (Not SGD), with a154

small learning rate of 0.001. The left and right hand sides of 17 at different epochs are shown in155

Figure 1, where each point represents one specific combination of above settings.156

At the beginning of training, the data points closely distributed along the dashed line of y = x which157

shows that equation 17 fits quite well under a variety of different settings. As training proceeds,158

equation 17 gradually losses its accuracy because the non-overfitting limit approximation no longer159

holds, but strong positive correlation between the left and right hand sides of equation 17 remains160

even when the training converges (at epoch 2500).161
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Through analytically derivations and experimental verifications, we prove that GSNR is strongly162

relatetd to OSGR which indicates the generalization ability, thus demonstrate that the larger GSNR163

during training leads to better generalization performance.164

3 TRAINING DYNAMICS OF DNNS NATURALLY LEADS TO LARGE GSNR165

In this section, we analyze and explain one observed phenomenon: the parameters’ GSNR of DNN166

models rises in the early stages of training, while the GSNR of shallow models such as logistic167

regression or support vector machines declines during the entire training process. This difference of168

behaviors provides GSNR large practical values during DNN training, which in turn is associated169

with good generalization. We analyze the dynamics behind this phenomenon both experimentally170

and theoretically, which deepens our understanding of the good generalization ability of DNNs.171

3.1 GSNR BEHAVIOR OF DNNS TRAINING172

For shallow models, the GSNR of parameters decreases in the whole training process because gra-173

dients become small as learning proceeds when the optimizer finds the local minimum. But for174

DNN it is not the case. We trained DNNs on the CIFAR datasets and computed the GSNR aver-175

aged over all model parameters. Because ED∼Zn(k2q(D)) = 1
nρ

2
q + µ2

q and we assume n is large,176

ED∼Zn(k2q(D)) ≈ µ2
q . In the case of only one large training datasets, we estimate GSNR of t-th177

iteration by178

r̂qt(θ) ≈ k̂2qt(θ)/ρ̂
2
qt(θ) (23)

As shown in Figure 2, the GSNR starts out low with randomly initialized parameters. As learning179

progresses, the GSNR increases in the early training stage and stays at a high level in the whole180

learning process. We also computed the proportion of the samples that have the same gradient181

sign (positive or negative) for each parameter, denoted as psame_sign. In Figure 2c, we plot the182

mean timeseries of this proportion for all the parameters . This value increases from about 50%(half183

positive half negetive due to random initialization) at beginning to about 56% finally, which indicates184

that for most parameters, the gradient signs on different samples become to have a certain degree185

of consistency as the training proceeds. We hypothesis this is because meaningful features begin to186

emerge in the learning process and the gradients of the weights on these features tend to have the187

same sign among different samples.188

Previous research (Zhang et al., 2016) showed that DNNs achieved zero training loss by memorizing189

training samples even if the labels were randomized. We also plot the average GSNR for model190

trained using data with randomized labels in Figure 2 and find that the GSNR stays at a low level191

throughout the training process. Although the training loss of both the original and randomized192

labels go to zero (not shown), the GSNR curves clearly distinguish between these two cases and193

reveal the lack of meaningful patterns in the latter one. We believe this is the reason why DNNs194

trained on real and random data lead to completely different generalization behavior.195

Figure 2: (a): GSNR curves generated by a simple network based on real and random data. An
obvious upward process in the early training stage was observed for real data.(b): Same figure but
for ResNet18 (c): average of psame−sign for the same model in (a)

3.2 TRAINING DYNAMICS BEHIND THE GSNR BEHAVIOR196

In this section we show that the feature learning ability of DNNs is the key reason why the GSNR197

curve behavior of DNNs is different from that of shallow models during the gradient descent training198

process. To demonstrate this clearly, a simple two-layer perceptron regression model is construceted.199
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Figure 3: Average GSNR (a) and loss (b) curves for frozen and non-frozen the first layer. GSNR
curves (c) of individual parameters for the non-frozen case

A synthetic dataset is generated as following. Each data point is constructed i.i.d. using y = x0x1+ϵ,200

where x0 and x1 are drawn from uniform distribution [−1, 1] and ϵ is drawn from uniform distribu-201

tion [−0.01, 0.01]. The training set and test set sizes are 200 and 10000, respectively. We use a very202

simple 2-layer MLP structure with 2 input, 20 hidden neurons and 1 output.203

We randomly initialized the model parameters and trained the model on the synthetic training dataset.204

As a control setup we also tried to freeze model weights in the first layer to prevent it from learning205

features. Note that a two layer MLP with the first layer frozen is equivalent to a linear regression206

model. That is, regression weights are learned on the second layer using fixed features extracted by207

the first layer. We plot the average GSNR of the second layer parameters for both the frozen and208

non-frozen cases. Figure 3 shows that in the non-frozen case, the average GSNR over parameters209

of the second layer has a significant upward process, whereas in the frozen case the average GSNR210

decreases in the beginning and remains at a low level during whole training process.211

GSNR curve of individual parameters of the second layer of the non-frozen case are shown in Figure212

3. It can be observed that the GSNR for some parameters have a significant upward process. We213

computed the Pearson correlation between the features extracted from the first layer and y corre-214

sponding to these parameters at the beginning of the training process and the maximum point of the215

GSNR curve. We can see that the learning process changes these features from a random initialized216

one to a "good" feature with stronger correlation with y as shown in Table 1. This shows that in the217

training of DNN, the feature learning process is closely related to the GSNR increasing process.218

3.3 ANALYTICAL ANALYSIS OF TRAINING DYNAMICS BEHIND DNNS’ GSNR BEHAVIOR219

In this section, we will analytically investigate the training dynamics behind the GSNR curve behav-220

ior of DNNs. In the case of fully connected network structure, we can analytically show that the221

numerator of GSNR, the squared gradient mean of model parameters, tends to increase in the early222

training stage through feature learning.223

In a fully connected network, whose parameters are denoted as θ ≡224

{ω1,b1, ω2,b2, ..., ωlmax
,blmax

}, ω1,b1 is the weight and bias of the first layer, and so on.225

We denote the activations of the l-th layer as [al]c1(ϕ), c1 = {1, 2, ..., C1}, where C1 is the number226

of activations of this layer. ϕ is the collection of model parameters over all the layers before this227

layer, i.e. ϕ = {ω1,b1, ω2,b2, ..., ωl−1,bl−1}. In the forward pass of the i-th sample, al(ϕ) will228

be multiplied by the weight of this layer ωl, which can be expressed as matrix multiplication.229

[ol]ic2 =
∑
c1

[ωl]c2c1 [al]ic1(ϕ) (24)

where ol is the output of the matrix multiplication of the l-th layer and c2 = {1, 2, ..., C2} where C2230

is the number of activations of the next layer. We use kl to denote the gradient mean of weights of231

the l-th layer ωl, i.e. kl =
1
n

∑n
i=1

Li

∂ωl
, where Li is the loss of the i-th sample.232

Here we analytically show that the feature learning ability of DNNs plays a crucial role in the GSNR233

increasing process. To be more precise, we show that the learning of features al(ϕ), i.e. the learning234

of parameters ϕ, tends to increase the absolute value of kl. Let’s consider, the one-step change of235

gradient mean ∆[kl] = ([kl])t+1 − ([kl])t with the learning rate λ → 0. In one training step, θ will236

be updated by ∆θ = θt+1 − θt = −λk(θ). Use linear approximation with λ → 0, we have237

∆[kl]c1c2 ≈
Q∑

q=1

∂[kl]c1c2
∂θq

∆θq =

Ql∑
q=1

∂[kl]c1c2
∂ϕq

∆ϕq +

Q∑
q=Ql+1

∂[kl]c1c2
∂θq

∆θq (25)

where Q is the total number of model parameters and Ql is the number of model parameters of all238

the layers before the l-th layer. We will focus on the first term of equation 25, i.e. the one-step239
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change of kl caused by learning ϕ. Substituting kl =
1
n

∑n
i=1

Li

∂ωl
and ∆ϕq = (−λ 1

n

∑n
i=1

∂Li

∂ϕq
) in240

to equation 25, we have241

∆[kl]c1c2 = − λ

n2

Ql∑
q=1

[ωl]c1c2(

n∑
i=1

∂Li

∂[ol]ic2

∂[al]ic1
∂ϕq

)2 + other terms (26)

The detailed derivation of equation 26 can be found in Appendix B. We can see the first term (which242

is a summation of Ql terms) in equation 26 has opposite sign with [ωl]c1c2 . This term will make243

∆[kl]c1c2 negatively correlated with [ωl]c1c2 . We plot the correlation between ∆[kl]c1c2 with [ωl]c1c2244

for a model trained on MNIST for 200 epochs as shown in Figure 4a. In the early training stage,245

they are indeed negatively correlated. For top-10% weights with larger absolute values, the negative246

correlation is more significant.247

Here we show that this negative correlation between ∆[kl]c1c2 and [ωl]c1c2 will tend to increase248

the absolute value of [kl] through an interesting mechanism. Consider the weights [ωl]c1c2 with249

{[ωl]c1c2 > 0, [kl]c1c2 < 0}. Learning ϕ would tend to decrease [kl]c1c2 and thus increase its250

absolute value because the first term in equation 26 is negative in this case. Learning [ωl]c1c2 would251

increase [ωl]c1c2 and its absolute value because ∆[ωl]c1c2 = −λ[kl]c1c2 is positive in this case. This252

will form a positive feedback process, in which the numerator of GSNR, ([kl]c1c2)
2, would increase253

and so is the GSNR. Similar things happen for the weights with {[ωl]c1c2 < 0, [kl]c1c2 > 0}.254

Then what about the weights with {[ωl]c1c2 [kl]c1c2 > 0}? Here we show that the weights with255

{[ωl]c1c2 [kl]c1c2 > 0} tends to change into weights with {[ωl]c1c2 [kl]c1c2 < 0} during training256

process. Consider the case where {[ωl]c1c2 > 0, [kl]c1c2 > 0}, the first term in equation 26 will be257

negative, learning ϕ tends to decrease [kl]c1c2 or even change the sign of [kl]c1c2 . Another posibility258

is that learning [ωl]c1c2 tends to changes the sign of [ωl]c1c2 because ∆[ωl]c1c2 = −λ[kl]c1c2 is259

negative in this case. Both case will change the weights with {[ωl]c1c2 [kl]c1c2 > 0} to weights with260

{[ωl]c1c2 [kl]c1c2 < 0}. Same things happen for the weights with {[ωl]c1c2 < 0, [kl]c1c2 < 0}.261

Therefore {[ωl]c1c2 [kl]c1c2 < 0} is a more stable state than {[ωl]c1c2 [kl]c1c2 > 0} in the early262

training process. For a simple model trained on Mnist, We plot the proportion of weights that satisfy263

{[ωl]c1c2 [kl]c1c2 < 0} in Figure 4b and find that there are more weights with {[ωl]c1c2 [kl]c1c2 < 0}264

than the opposite. Because weights with small absolute value easily change sign during training, we265

also plot this proportion for the top-10% weights with larger absolute values. It can be seen that for266

the weights with large absolute values, nearly 80% of these weights have opposite sign with their267

gradient mean as training proceeds. And for these weights, the numerator of GSNR, ([kl]c1c2)
2,268

tends to increase through a posotive feedback process in the early training stage of DNN.269

Through discussions above, we further demonstrate that the learning of corresponding features tends270

to increase the GSNR of a weight based on analytical analysis. This GSNR increasing process leads271

to larger GSNR in the whole gradient descent training process of DNN, which in turn provides good272

generalization performance of DNN.273

Figure 4: Dataset: Mnist. Left: Correlation be-
tween ∆[kl]c1c2 with [ωl]c1c2 . Right : Ratio of
weights that have opposite sign with its gradi-
ent mean.

Table 1: Pearson correlation of the features
with y.

q Beginning of Maximum of
training GSNR curve

1 -0.11 0.47
2 -0.33 0.53
3 -0.21 -0.27
4 0.07 0.40
5 0.11 0.44

274

4 SUMMARY275

In this paper we investigated the relation between generalization of DNNs and the GSNR of the276

model parameters in gradient descent. We also analyzed the GSNR behavior and the mechanism277

behind it in the DNNs training process. Through our analysis, we hope to shed more light on the278

mechanisms behind DNNs impressive generalization ability.279
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A APPENDIX A320

Model Structure in Section 2.4. As shown in Table 2, all models in the experiment consist of 2321

Conv-Relu-MaxPooling blocks and 2 fully-connnected layers, but they are different at the number322

of channels. We choose the number of channel p as p ∈ {6, 8, 10, 12, 14, 16, 18, 20}.323

Table 2: Model structure in Section 2.4. p is the number of channel in experiment setting and
q = int(2.5 ∗ p)

Layer input channel number output channel number

conv + relu + maxpooling 1 p
conv + relu + maxpooling p q
flatten - -
fc + relu 16 * q 10 * q
fc + relu 10 * q 10
softmax - -

B APPENDIX B324

The step-by-step derivation of equation 26

∆[kl]c1c2 =

Ql∑
q=1

∂[kl]c1c2
∂ϕq

∆ϕq + other terms (27)

=

Ql∑
q=1

∂( 1n
∑n

i=1
∂Li

∂[ωl]c1c2
)

∂ϕq
(−λ

1

n

n∑
i=1

∂Li

∂ϕq
) + other terms (28)

=

Ql∑
q=1

∂( 1n
∑n

i=1
∂Li

∂[ol]ic2

∂[ol]ic2
∂[ωl]c1c2

)

∂ϕq
(−λ

n

n∑
i=1

∑
c′1c

′
2

∂Li

∂[ol]ic′2

∂[ol]ic′2
∂[al]ic′1

∂[al]ic′1
∂ϕq

) + other terms (29)

= − λ

n2

Ql∑
q=1

∂(
∑n

i=1
∂Li

∂[ol]ic2
[al]ic1)

∂ϕq
(

n∑
i=1

∑
c′1c

′
2

∂Li

∂[ol]ic′2
[ωl]c′1c′2

∂[al]c′1
∂ϕq

) + other terms (30)

= − λ

n2

Ql∑
q=1

n∑
i=1

(
∂Li

∂[ol]ic2

∂[al]ic1
∂ϕq

+
∂2Li

∂[ol]ic2∂ϕq
[al]ic1)(

∑
c′1c

′
2

[ωl]c′1c′2

n∑
i=1

∂Li

∂[ol]ic′2

∂[al]c′1
∂ϕq

)

+ other terms (31)

In the above derivation, we use relation
∂[ol]ic′2
∂[al]ic′1

= [ωl]c′1c′2 and ∂[ol]ic2
∂[ωl]c1c2

= [al]ic1 which can both be325

derived from equation 24. Consider the first term of equation 31 and when c′1 = c1, c
′
2 = c2 in the326

c′1, c
′
2 summation, we have327

∆[kl]c1c2 = − λ

n2

Ql∑
q=1

[ωl]c1c2(

n∑
i=1

∂Li

∂[ol]ic2

∂[al]ic1
∂ϕq

)2 + other terms (32)

Note that the term related to ∂2Li

∂[ol]ic2∂ϕq
[al]ic1 and the terms when c′1 ̸= c1 or c′2 ≠ c2 in equation328

31 is added into other terms of equation 32.329
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