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ABSTRACT

In this paper, we introduce MAMUS for constructing multilingual sparse word
representations. Our algorithm operates by determining a shared set of seman-
tic units which get reutilized across languages, providing it a competitive edge
both in terms of speed and evaluation performance. We demonstrate that our
proposed algorithm behaves competitively to strong baselines through a series of
rigorous experiments performed towards downstream applications spanning over
dependency parsing, document classification and natural language inference. Ad-
ditionally, our experiments relying on the QVEC-CCA evaluation score suggests
that the proposed sparse word representations convey an increased interpretability
as opposed to alternative approaches. Finally, we are releasing our multilingual
sparse word representations for the 27 typologically diverse set of languages that
we conducted our various experiments on.

1 INTRODUCTION

Cross-lingual transferability of natural language processing models is of paramount importance for
low-resource languages which often lack a sufficient amount of training data for various NLP tasks.
A series of attempts have been made to remedy the shortage of labeled training data. Both part-of-
speech tagging (Fang & Cohn, 2017; Zhang et al., 2016; Haghighi & Klein, 2006; Gouws & Søgaard,
2015; Kim et al., 2015; Agić et al., 2015) and dependency parsing (Guo et al., 2015; Agić et al.,
2016) have been investigated from that perspective. The mapping of distributed word representations
of low-resource languages to the embedding space of a resource-rich language makes NLP models
trained on the source language directly applicable for texts in resource-scarce languages.

Overcomplete word representations aim at expressing low dimensional distributed word representa-
tions as a sparse linear combination of an overcomplete set of basis vectors. Using sparse word rep-
resentations has not only been reported to give better performance compared to dense representations
for certain problems (Yogatama et al., 2015; Faruqui et al., 2015; Sun et al., 2016; Berend, 2017), but
it is also argued to provide increased interpretability (Murphy et al., 2012; Vyas & Carpuat, 2016;
Park et al., 2017; Subramanian et al., 2018). Such bilingual sparse representations have straightfor-
ward benefits as any machine learning model that is trained on the labeled training data using the
sparse representation of some resource-rich source language can be used directly and interchange-
ably for texts written in some target language. This way we can enjoy the benefits of sparsity such
as smaller and more interpretable models.

In this work, we propose a new algorithm for determining multilingual sparse word representations
in which words with similar meaning across different languages are described with similar sparse
vectors. Our work has multiple advantageous properties compared to previous similar attempts
(Vyas & Carpuat, 2016; Upadhyay et al., 2018). Firstly, our algorithm naturally fits multilingual
setting, i.e. it is not limited to pairs of languages, but is capable of determining cross-lingual sparse
embeddings for multiple languages. Our algorithm differs from previous approaches in that we
obtain target language sparse word representations via a series of convex optimization problems with
a substantially reduced parameter set, whereas previous solutions solve non-convex optimization for
orders of more parameters. It turns out that the proposed model formulation not only speeds up
computation drastically, but our empirical results also suggest that the proposed sparse word vectors
also perform better when employed in various extrinsic tasks, i.e. dependency parsing, document
classification and natural language inference.
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2 MAMUS – THE PROPOSED ALGORITHM

In order to facilitate the introduction of the MAssively MUltilingual Sparse (dubbed as MAMUS)
word representations, we first introduce our notation. In what follows, we denote dense word em-
bedding matrices of the source and target languages as S ∈ Rm×|Vs| and T ∈ Rn×|Vt|, respectively,
with Vs and Vt indicating the vocabulary of the source and target languages. The m = n condition
does not have to hold in general, however, it is going to be the case throughout the paper. We shall
denote some symbolic word form as x and its corresponding distributed vectorial representation in
boldface, i.e. x.

2.1 PREPROCESSING OF INPUT WORD EMBEDDINGS

Our algorithm takes as input a pair of “traditionally” trained distributed dense word embeddings
such as Glove (Pennington et al., 2014), word2vec (Mikolov et al., 2013a) or fasttext (Bojanowski
et al., 2017). It is important to note that we do not assume the existence of parallel text, meaning
that the word embeddings can be trained in total isolation from each other.

We transform the dense input embedding matrices so that the word vectors comprising it have unit
norm, as it is frequently met in the literature (Xing et al., 2015; Artetxe et al., 2016; 2017). This
preprocessing step ensures that the dot product of word embeddings equals their cosine similarity.
Unit normalization of word embeddings also makes cross-lingual comparison more natural, since
all embeddings have identical length, irrespective of the language they belong to.

2.2 MAPPING OF WORD EMBEDDINGS

In order to align independently trained word representations, we learn a linear mapping W . The
mapping is expected to bring target language word vectors close to their semantically equivalent
counterparts in the source embedding space.

As proposed by Mikolov et al. (2013b) suchW can be simply defined by minimizing
l∑
i=1

‖si−W ti‖ ,

with {(si, ti)}li=1 being a set of word pairs which are cross-lingual equivalents of each other. If we
construct matrices So = [si]

l
i=1 and To = [ti]

l
i=1 by stacking the embeddings of translation pairs,

we can express the solution as SoT+
o , with T+

o denoting the Moore-Penrose pseudoinverse of To.

Multiple studies have argued that ensuring W to be orthonormal can significantly improve the qual-
ity of the mapping of word embeddings across languages Smith et al. (2017); Xing et al. (2015);
Artetxe et al. (2016); Hamilton et al. (2016). Finding the optimal orthonormal W can be viewed
as an instance of the orthogonal Procrustes problem (Schönemann, 1966) which can be solved by
W⊥ = UV , with U and V coming from the SVD decomposition of the matrix product Sᵀ

oTo. By
applying an isometric transformation, we ensure that transformed embeddings preserve their norm.

2.3 SPARSE CODING OF THE EMBEDDING SPACES

Sparse coding decomposes a X ∈ Rm×v matrix of signals (word embeddings in our case) into the
product of a dictionary matrix D ∈ Rm×k and a matrix of sparse coefficients α ∈ Rk×v , where k
denotes the number of basis vectors to be employed. The columns of D form an overcomplete set
of basis vectors and the sparse nonzero coefficients in the ith column of α indicate which column
vectors from D should be incorporated in the reconstruction of xi. We minimize the objective

min
D∈C,α∈Rk×|v|

≥0

1

2
‖X −Dα‖2F + λ‖α‖1, (1)

where C denotes the convex set of matrices with column norm at most 1 and the sparse coefficients in
α are required to be non-negative. Ensuring that all the coefficients in α are non-negative makes their
cross-lingual comparison more natural, as the signs of sparse word coefficients cannot mismatch.
Additionally, non-negativity has been reported to provide increased interpretability (Murphy et al.,
2012). We used the SPAMS library (Mairal et al., 2009) to calculate D and α.

We can perform sparse coding as defined in (1) for the independently created source and target
embedding matrices S and T , obtaining decompositions S ≈ Dsαs and T ≈ Dtαt. If we do so,
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however, sparse word representations extractable from matrices αs and αt are not comparable to
any extent due to the fact that S and T are decomposed independently of each other.

We propose to first solve a single instance of the non-convex dictionary learning problem as de-
fined in (1) for the source language alone as if our goal was to obtain monolingual sparse word
representations. After determining Ds, we can apply this dictionary matrix to find sparse coefficient
matrices for the isometrically transformed embeddings of all the target languages, hence solving a
much simpler complex optimization problem with reasonably fewer parameters in the case of target
languages of the form

min
α∈Rk×|v|

≥0

1

2
‖W⊥X −Dsα‖2F + λ‖α‖1, (2)

with W⊥ denoting the isometric transformation specific to a given source-target language pair. We
summarize the working mechanisms of MAMUS in Algorithm 1.

Algorithm 1 Pseudocode of MAMUS

Require: source and target embeddings S ∈ Rm×|Vs|, T1 ∈ Rm×|Vt1
|, . . . , TN ∈ Rm×|VtN

|

semantically equivalent word pairs {(s(i)1 , t
(i)
1 )}l1i=1, . . . , {(s

(i)
N , t

(i)
N )}lNi=1

Ensure: Sparse representation matrices (αs, αt1 , . . . , αtN )
procedure MAMUS(S, T )

S ← UNITNORMALIZE(S)
D∗s , α

∗
s ← argmin

α,D
‖S −Dα‖F + λ‖α‖1

for k ← 1 to N do
Tk ← UNITNORMALIZE(Tk)

W ∗⊥ ← argmin
WᵀW=I

lk∑
i=1

‖s(i)k −W t
(i)
k ‖

αtk ← argmin
α∈R≥0

‖W ∗⊥Tk −D∗sα‖F + λ‖α‖1

end for
return αs, αt1 , . . . , αtN

end procedure

2.4 DECISIVE DIFFERENCES TO BISPARSE

The goal of the BISPARSE (Vyas & Carpuat, 2016) is to determine such sparse word representations
that behave similarly for a pair of languages. We subsequently juxtapose the conceptual differences
between BISPARSE and MAMUS both from theoretical and practical perspectives.

BISPARSE (Vyas & Carpuat, 2016) determines sparse bilingual word representations by solving

min
Ds,Dt∈Rm×k,

αs∈Rk×|Vs|
≥0

,

αt∈Rk×|Vt|
≥0

1

2

(
‖Xs−Dsαs‖2F+‖Xt−Dtαt‖2F+λx

|Vs|∑
i=1

|Vt|∑
j=1

Mij‖α(i)
s −α

(j)
t ‖22

)
+λt‖αt‖1+λs‖αs‖1,

(3)
where M is a pairwise similarity matrix between the source and target language word pairs, λs, λt
and λx denotes the regularization coefficients for the source, target language and the cross-lingual
loss, respectively. Finally, α(i)

s and α(j)
t refers to the ith and jth columns of matrices αs and αt,

respectively.

As a first notable difference, BISPARSE operates by employing an explicit |Vs| × |Vt| pairwise
similarity matrix, whereas MAMUS relies on a list of word translation pairs, which is used to rotate
all the target language embeddings into the embedding space of the source language. BISPARSE
hence requires an additional hyperparameter which controls for the strength of the cross-lingual
regularization (cf. λx). According to our experiments choosing this hyperparameter is a crucial
factor in employing BISPARSE.
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The objective in (3) reveals that the original BISPARSE model optimizes the source and target word
representations jointly, i.e. a separate source language representation is created whenever applied to
a new target. This behavior of BISPARSE limits its application for a single pair of languages, instead
of the more general multilingual setting, when our goal is to represent more than two languages at
a time. As the default behavior of BISPARSE hampers truly multilingual application, we adopt it
similar to MAMUS, i.e. we first train sparse word representations for the source language by solving

min
Ds∈Rm×k,αs∈Rk×|Vs|

≥0

1

2
‖Xs −Dsαs‖2F + λs‖αs‖1, (4)

with the source language being chosen as English. Once the dictionary matrix of semantic atoms
(D∗s ) and the sparse coefficients (α∗s) are calculated for the source language, we next solve

min
Dt∈Rm×k,αt∈Rk×|Vt|

≥0

1

2
‖Xt −Dtαt‖2F + λt‖αt‖1 +

1

2
λx

|Vs|∑
i=1

|Vt|∑
j=1

Mij‖α∗(i)
s −α(j)

t ‖22. (5)

Identical to BISPARSE (Vyas & Carpuat, 2016), we solved the modified optimization problems in (4)
and (5) relying on the efficient Forward-Backward Splitting Solver implementation of the FASTA
framework (Goldstein et al., 2014; 2015).

To summarize, the way BISPARSE works in its original formulation is that it creates sparse word
representations for pairs of languages, both for the source and target one. One compelling charac-
teristic of MAMUS, however, is that it learns the Ds and αs parameters independent from the target
embedding space, thus the same decomposition of source language embeddings can be utilized for
multiple target languages. This makes the algorithm conveniently applicable to an arbitrary number
of languages. Furthermore, by using the dictionary matrix D∗s for all the target languages, MA-
MUS additionally enjoys the ease of solving a series a convex optimization problems over a reduced
number of parameters for each target language as it treatsD∗s asD∗t . The model formulation of BIS-
PARSE on the other hand is such, that it requires to solve a series of highly non-convex optimization
problems for each of the target languages, since it requires the optimization over Dt as well. This
property is also true for the modified version of BISPARSE which is adapted for multilingual usage.
We will refer to this adapted version of BISPARSE as MULTISPARSE for the rest of the paper.

3 EXPERIMENTS

Our primary source for evaluating our proposed representations is the massively multilingual eval-
uation framework from (Ammar et al., 2016b), which also includes recommended corpora to be
used for training word representations for more than 70 languages. All the embeddings used in our
experiments were trained over these recommended resources, which is a combination of the Leipzig
Corpora Collection (Goldhahn et al., 2012) and Europarl (Koehn, 2005).

For 11 languages (bg, cs, da, de, el, es, fi, fr, hu, it, sv) – with ample parallel text to English
– bilingual dictionaries are also released as part of the evaluation framework. For the remaining
languages, Ammar et al. (2016b) released dictionaries that were obtained by translating the 20k
most common English words with Google Translate. All the word representations involved in our
experiments were trained over the previously introduced resources from (Ammar et al., 2016b) in
order to ensure the comparability of the different approaches.

We trained fasttext-CBOW (Bojanowski et al., 2017) dense embeddings as inputs to our experi-
ments. We simply used the default settings of fasttext for training, meaning that the original dense
word representations were 100 dimensional. We conducted additional experiments with different
input embeddings (word2vec and Glove) and also with different dimensionality (300), however,
we omit these results for brevity as the general trends we observed were very similar. We set the
number of semantic atoms in the dictionary matrix D consistently as k = 1200 throughout all our
experiments.

3.1 MONOLINGUAL EXPERIMENTS

We first performed monolingual experiments in order to investigate the effects of choosing different
regularization coefficients λ, controlling the sparsity and the quality of sparse word representations.
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Table 1: QVEC-CCA results on the English dev set from (Ammar et al., 2016b) as a function of λ.

λ 0.1 0.2 0.3 0.4 0.5

English QVEC-CCA (development set) 0.811 0.806 0.804 0.803 0.799
Avg. nonzero coefficients per word form 22.9 9.1 5.2 3.4 2.3

Table 1 reports the quality of our monolingual representations evaluated by the QVEC-CCA
(Tsvetkov et al., 2016) correlation-based intrinsic evaluation metric, which was proposed as an im-
provement over the QVEC evaluation technique (Tsvetkov et al., 2015). The goal for both QVEC
and QVEC-CCA is to quantify the extent to which embedding dimensions can be aligned to human-
interpretable concepts, such as word supersenses. The evaluation environment we utilize includes
supersense tag annotations for Danish (Alonso et al., 2015; Martinez Alonso et al., 2016), English
(Miller et al., 1993) and Italian (Montemagni et al., 2003).

During the monolingual experiments, we were solely focusing on the development set for English to
set the hyperparameter controlling the sparsity of the representations. Table 1 additionally contains
the average number of nonzero coefficients yielded by the different regularization coefficients.

Based on our monolingual evaluation results from Table 1, we decided to fix the regularization
coefficient for MAMUS as λ = 0.1 for all of our upcoming mutlilingual experiments. As our choice
for the value of λ was based on the performance achieved by MAMUS on the development set of a
single language and a single evaluation criterion, we chose this hyperparameter without the risk of
overfitting to the test data regarding any of the multilingual evaluation scenarios.

In the case of MULTISPARSE, we managed to obtain a similar performance and average sparseness
(55.2 nonzero coefficient per word form) when utilizing λs = 2. During our multilingual exper-
iments, we set the target language regularization coefficient identically, i.e. λt = 2. As for the
cross-lingual regularization term of MULTISPARSE, we chose λx = 5 based on our preliminary
investigation.

3.2 MULTILINGUAL EXPERIMENTS

In the recent survey, Ruder et al. (2017) recommend to evaluate cross-lingual word embeddings
on an intrinsic task and at least one downstream task besides document classification. Following
this suggestion, we measure the quality of word representations based on QVEC-CCA – similar to
our monolingual evaluation – and also report their performance scores in cross-lingual document
classification (CLDC), cross-lingual dependency parsing and cross-lingual natural language infer-
ence (XNLI). Results from this point on are all obtained with the exact same hyperparameters as
introduced before and on the test sets of the various tasks, unless stated otherwise.

3.2.1 BASELINE DENSE CROSS-LINGUAL REPRESENTATIONS

Before delving into the multilingual experimental results, we introduce those additional dense dis-
tributed cross-lingual representations that we used in our evaluation. These representations were
trained over the same corpora and translation lists introduced earlier.

multiCluster (Ammar et al., 2016b) builds a graph from word forms across multiple languages with
edges going between translated word pairs. Clusters are then formed based on the connected com-
ponents of the graph. Word forms are finally replaced by the random identifier of the cluster they
belong to and a skip-gram model is trained for the corpus obtained this way.

multiCCA (Ammar et al., 2016b) is an extension of the approach introduced in (Faruqui & Dyer,
2014). It seeks a linear operator which projects pre–trained word embeddings of some language to
the embedding space of English such that the correlation between the representation of translated
word pairs is maximized.

Even though we trained our representations and further baselines on the same corpora and word
translation lists as the multiCluster and multiCCA were built on, minor differences in the learned
vocabularies exists (even between multiCluster and multiCCA) which are likely due to small dif-
ferences in preprocessing. For this reason, pre–trained multiCluster and multiCCA allow for a less
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Table 2: Intrinsic (a) and extrinsic (b) evaluations from the test bed from (Ammar et al., 2016b).

(a) Intrinsic QVEC-CCA evaluation scores of various cross-
lingual word representations.

da en it {da,en,it}
multiCluster 0.475 0.539 0.468 0.372

multiCCA 0.501 0.635 0.510 0.415
MUSE 0.343 0.393 0.338 0.294

MULTISPARSE 0.612 0.808 0.596 0.480
MAMUS 0.632 0.819 0.620 0.503

(b) Downstream evaluation results as average accu-
racy for CLDC and UAS for dependency parsing.

CLDC dependency parsing

90.79 61.39
92.18 62.82
87.34 64.47
86.45 59.20
91.84 63.53

stringent comparison with the remaining representations, which were trained by ensuring to have
identical vocabularies to the one employed in our approach. With this caution in mind, we still think
it is useful to report evaluation results of these pre-trained embeddings as well.

MUSE (Lample et al., 2018) is capable of training dense cross-lingual word embeddings in both
unsupervised and supervised manner. We experiment with the supervised variant of MUSE which
requires translated word pairs as input similar to MAMUS. MUSE also incorporates a method for it-
eratively refining the list of word translation pairs that we relied on using its default parametrization.

3.2.2 MULTILINGUAL EXPERIMENTAL RESULTS

QVEC-CCA We next assess the quality of the different multilingual word representations accord-
ing to the QVEC-CCA evaluation score. As mentioned earlier, the evaluation framework introduced
by Ammar et al. (2016b) provides supersense tagging for Danish, English and Italian. In Table 2a,
we report the individual evaluation scores over the three subspaces and their combination, from
which we can conclude that MAMUS has a clear advantage over all the alternative word representa-
tion regarding this interpretability–oriented evaluation metric.

Downstream evaluations from Ammar et al. (2016b) We also performed a 4-class cross-lingual
document classification (CLDC) on newswire texts originating from the RCV corpus (Lewis et al.,
2004) over 7 languages (da, de, en, es, fr, it, sv). The model was simultaneously tuned on the
training sections of the different languages as implemented in (Ammar et al., 2016b). Table 2b lists
classification accuracies of the different methods.

Regarding our evaluation towards dependency parsing, we evaluated the transition-based stack-
LSTM parser from (Ammar et al., 2016a) over the Universal Dependencies v1.1 treebanks (Agić
et al., 2015) covering 18 languages (bg, cs, da, de, el, en, es, eu, fa, fi, fr, ga, he, hr, hu, id, it, sv).
Even though the parser is capable of incorporating additional features besides word embeddings,
this capability of the parser was disabled, so that the effects of employing different word represen-
tations can be assessed on their own. The performance metric for parsing is reported in Table 2b as
unlabeled attachment score (UAS).

Table 2b illustrates that the performance obtained by dense representations varies largely between
downstream tasks. The performance of MUSE, for instance, is the best when evaluated on depen-
dency parsing, however, it has the second lowest overall accuracy for CLDC. Evaluation scores for
those models that are based on MAMUS representations rank second on both downstream evaluation
tasks with a minor performance gap to the best results obtained by different dense representations
on the two tasks.

Natural Language Inference In order to assess the capabilities of the different representations
towards natural language inference (NLI) in a multilingual setting, we also performed evaluation
towards the XNLI dataset (Conneau et al., 2018). XNLI covers 15 languages and it can be viewed
as a multilingual extension of the multiNLI (Williams et al., 2018) dataset. The task in XNLI and
multiNLI is to categorize sentence pairs – comprising of a premise (p) and a hypothesis (h) sentence
– whether the relation between p and h is entailing, contradictory or neutral.
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Table 3: Averaged multiNLI and XNLI performances of 5 independent MLPs.

(a) Average multiNLI matched dev set accuracy of the five models used during XNLI evaluation.

multiCluster multiCCA MUSE MULTISPARSE MAMUS

57.74 63.43 57.10 60.22 61.43

(b) XNLI results obtained. Results in bold are the best for a given language, underlined scores indicate the second best resutls.

ar bg de el en es fr ru sw tr zh hi th ur vi

multiCluster 33.36 49.53 50.00 49.52 58.84 48.86 48.46 39.47 35.91 36.97 36.05 — — — —
multiCCA 38.85 40.59 34.50 42.70 65.43 36.16 33.83 41.25 38.31 38.82 45.36 — — — —

MUSE 42.83 45.64 41.60 46.24 58.39 44.53 43.64 44.70 37.33 42.21 44.57 38.98 33.50 38.57 35.92
MULTISPARSE 33.10 35.04 38.17 33.33 60.10 40.48 40.92 33.34 36.20 37.78 33.23 35.40 33.06 34.18 34.63

MAMUS 42.67 47.88 44.27 49.58 61.53 51.19 48.93 43.89 37.09 47.24 44.73 41.78 34.59 42.00 34.94

We implemented a simple multilayer perceptron in PyTorch v1.1 (Paszke et al., 2017) with two
hidden layers and ReLU nonlinearity. The MLP uses the categorical cross-entropy for loss function,
which was optimized by Adam (Kingma & Ba, 2014). Based on the differently constructed sparse
and dense word representations, we train five different NLI models based on the English multiNLI
dataset and report average classification accuracies as the performance score. The five models only
differed in the random initialization of the parameters to account for the potential variability in
model performances.

For a pair of premise and hypothesis sentence representation pair (p,h), the input of to the MLP
was determined as

[p;h; |p− h|;p� h],

similar to (Williams et al., 2018) with ; standing for vector concatenation and � denoting element-
wise multiplication. The vectorial representations for the individual sentences were also obtained in
an identical way to the approach (dubbed as X-CBOW) in (Conneau et al., 2018), i.e. we took the
mean of the vectorial representations of the words comprising a sentence.

We report the average accuracy achieved by the different word representations for both multiNLI in
Table 3a and the 15 languages of XNLI in Table 3b. There were four languages included in the XNLI
– Hindi (hi), Thai (th), Urdu (ur) and Vietnamese (vi) – for which Ammar et al. (2016b) released
a corpora for training word embeddings, nonetheless their multiCluster and multiCCA embedding
spaces contain no embeddings for. For these languages, we only report results for the other repre-
sentations. We can see in Table 3a that according to the evaluation conducted on the development
set of multiNLI, multiCCA performed the best (similar to CLDC), and the English subspace of the
MAMUS representations achieved the second best results.

Table 3b represents the average performance of five models that are purely trained on the English
multiNLI training data relying on the various multilingual word representations upon evaluation. It
can be seen in Table 3b that – other than for Swahili – the models trained on the English MAMUS
representations perform either the best or the second best 14 out of the 15 languages.

3.2.3 ANALYSIS OF THE SPARSITY STRUCTURE

As a final assessment of the sparse word representations, we characterize their number of nonzero
coefficients as a function of the frequency of the words they correspond to.

From a human cognition point of view, we can argue that frequency can be a good proxy to the
specialization in the meaning of a word (Caraballo & Charniak, 1999). Words with high frequency,
e.g. car, dog and newspaper tend to refer to easily definable concepts, whereas less frequent words,
such as gymnosperms or samizdat have a more complex – hence more difficult to describe – meaning.

In terms of sparse coding, this could be reflected by the fact that words with more complex meaning
would rely on more semantic atoms from the dictionary matrix D. Encoding less frequent words
with more bits can also be motivated from an information theoretic point of view.
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Figure 1: The sparsity structure of the learned representations for the languages covered in the
multilingual QVEC-CCA evaluation as a function of the frequency of word forms. Plots also include
the frequency-binned average norms of the dense input embeddings.

In Figure 1, we plot the average number of nonzero elements over the entire vocabulary of the
Danish, English and Italian subspaces (grouped into bins of 1,000 words). We omit similar figures
for the rest of the languages for space considerations.

Figure 1 reveals that the sparsity structures induced by the different approaches differ substantially.
MAMUS tends to behave more stable across the languages, i.e. it tends to assign a similar amount
of nonzero coefficients for words in different languages that belong to the same frequency bin. The
number of nonzero coefficients per a word form determined by MULTISPARSE, however behaves
less predictably.

Figure 1 also illustrates that the sparsity structure of MULTISPARSE is highly influenced by the
norms of the dense input embeddings, which are known to be typically higher for more common
word forms (Turian et al., 2010). Representations determined by MAMUS, however, behave in the
cognitively more plausible manner, i.e. they assign more nonzero coefficient for less frequent –
hence arguably more specialized – word forms.

4 RELATED WORK

A common technique employed to overcome the absence of labeled training data is to apply
cross-lingual projections to port the missing linguistic annotation for low-resource target languages
(Yarowsky & Ngai, 2001; Das & Petrov, 2011; Täckström et al., 2013; Agić et al., 2015; Agić et al.,
2016). Such projections are often determined by word alignment algorithms which imply that these
kind of approaches inherently require substantial amounts of parallel text.

There has been a series of research conducted for handling low-resource languages. A dominant
approach is to rely on some form of dictionary between a low-resource and a resource-rich language
which can be used to perform canonical correlation analysis (Kim et al., 2015), directly incorporated
into the learning procedure of word embeddings (Gouws & Søgaard, 2015) or use it in a post-hoc
manner to map independently trained word embeddings (Fang & Cohn, 2017; Zhang et al., 2016).
Model transfer techniques, in which an initial model is trained on a resource-rich language and
adapted for a target language in a semi-supervised or unsupervised manner, are also popular (Fang
& Cohn, 2017; Zhang et al., 2016).

There is massive research interest in transforming word representations such that they become com-
parable across languages with little or no supervision (Zhang et al., 2017b;a; Artetxe et al., 2017;
Smith et al., 2017; Lample et al., 2018; Joulin et al., 2018). There has been a myriad of further
techniques introduced for determining cross-lingual distributed word representations (Klementiev
et al., 2012; Hermann & Blunsom, 2014; Faruqui & Dyer, 2014; Huang et al., 2015; Luong et al.,
2015; Gouws et al., 2015; Vulić & Moens, 2015; Ammar et al., 2016b), inter alia. The proposed
approaches differ widely in the assumptions they make regarding the amount of available parallel
or comparable data for determining bilingual word embeddings. Upadhyay et al. (2016) and Ruder
et al. (2017) provide extensive overviews on the available approaches.
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Contrary to these methods, our algorithm relates to the line of research focusing on sparse word
representations. Such sparse word representations have been shown to outperform dense word em-
beddings in monolingual settings (Murphy et al., 2012; Yogatama et al., 2015; Faruqui et al., 2015;
Berend, 2017; Sun et al., 2016; Subramanian et al., 2018).

An approach for creating bilingual sparse word representations has already been proposed by Vyas
& Carpuat (2016) We have detailed the differences to Upadhyay et al. (2018) extends the previous
work by incorporating dependency relations into sparse coding.

5 CONCLUSIONS

In this paper we introduced MAMUS for determining cross-lingually comparable sparse word repre-
sentations. Our model formulation allowed us to solve a series of convex optimization problems per
each target language, which resulted in a more favorable overall training time (4 hours for MAMUS
as opposed to 300 hours when using MULTISPARSE) over the 27 languages we conducted our evalu-
ations on. Finally, we make our multilingual sparse embeddings for 27 languages publicly available
at anonimized.
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translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 2979–2984. As-
sociation for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
D18-1330.

Young-Bum Kim, Benjamin Snyder, and Ruhi Sarikaya. Part-of-speech taggers for low-resource
languages using CCA features. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1292–1302, Lisbon, Portugal, 2015. Association for Compu-
tational Linguistics. URL http://aclweb.org/anthology/D15-1150.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual distributed represen-
tations of words. In Proceedings of COLING 2012, pp. 1459–1474. The COLING 2012 Organiz-
ing Committee, 2012. URL http://www.aclweb.org/anthology/C12-1089.

Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Summit, pp. 79–86, Phuket, Thailand, 2005. AAMT,
AAMT. URL http://mt-archive.info/MTS-2005-Koehn.pdf.

11

http://www.aclweb.org/anthology/N15-1157
http://www.aclweb.org/anthology/N15-1157
http://jmlr.org/proceedings/papers/v37/gouws15.pdf
http://jmlr.org/proceedings/papers/v37/gouws15.pdf
http://www.aclweb.org/anthology/P15-1119
http://www.aclweb.org/anthology/P15-1119
https://doi.org/10.3115/1220835.1220876
http://www.aclweb.org/anthology/P16-1141
http://www.aclweb.org/anthology/P16-1141
http://arxiv.org/abs/1404.4641
http://arxiv.org/abs/1404.4641
http://aclweb.org/anthology/D15-1127
http://aclweb.org/anthology/D15-1127
http://aclweb.org/anthology/D18-1330
http://aclweb.org/anthology/D18-1330
http://aclweb.org/anthology/D15-1150
http://www.aclweb.org/anthology/C12-1089
http://mt-archive.info/MTS-2005-Koehn.pdf


Under review as a conference paper at ICLR 2020

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H196sainb.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res., 5:361–397, December 2004. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1005332.1005345.

Thang Luong, Hieu Pham, and Christopher D. Manning. Bilingual word representations with mono-
lingual quality in mind. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural
Language Processing, pp. 151–159, Denver, Colorado, June 2015. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W15-1521.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 689–696, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/
1553374.1553463. URL http://doi.acm.org/10.1145/1553374.1553463.

Hector Martinez Alonso, Anders Trærup Johannsen, Sussi Olsen, Sanni Nimb, and Bolette Sandford
Pedersen. An empirically grounded expansion of the supersense inventory. In Proceedings of the
8th Global Wordnet Conference, pp. 199–208, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. CoRR, abs/1301.3781, 2013a. URL http://arxiv.org/abs/
1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among languages for ma-
chine translation. CoRR, abs/1309.4168, 2013b. URL http://dblp.uni-trier.de/db/
journals/corr/corr1309.html#MikolovLS13.

George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. A semantic concordance. In
Proceedings of the Workshop on Human Language Technology, HLT ’93, pp. 303–308, Strouds-
burg, PA, USA, 1993. Association for Computational Linguistics. ISBN 1-55860-324-7. doi:
10.3115/1075671.1075742. URL https://doi.org/10.3115/1075671.1075742.

Simonetta Montemagni, Francesco Barsotti, Marco Battista, Nicoletta Calzolari, Ornella Corazzari,
Alessandro Lenci, Antonio Zampolli, Francesca Fanciulli, Maria Massetani, Remo Raffaelli, et al.
Building the italian syntactic-semantic treebank. In Treebanks, pp. 189–210. Springer Nether-
lands, 2003.

Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective and interpretable semantic
models using non-negative sparse embedding. In Proceedings of COLING 2012, pp. 1933–1950,
Mumbai, India, December 2012. The COLING 2012 Organizing Committee. URL http://
www.aclweb.org/anthology/C12-1118.

Sungjoon Park, JinYeong Bak, and Alice Oh. Rotated word vector representations and their in-
terpretability. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 401–411. Association for Computational Linguistics, 2017. URL http:
//www.aclweb.org/anthology/D17-1041.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/D14-1162.
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