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ABSTRACT

The ability to design biological structures such as DNA or proteins would have
considerable medical and industrial impact. Doing so presents a challenging
black-box optimization problem characterized by the large-batch, low round set-
ting due to the need for labor-intensive wet lab evaluations. In response, we pro-
pose using reinforcement learning (RL) based on proximal-policy optimization
(PPO) for biological sequence design. RL provides a flexible framework for opti-
mization generative sequence models to achieve specific criteria, such as diversity
among the high-quality sequences discovered. We propose a model-based vari-
ant of PPO, DyNA-PPO, to improve sample efficiency, where the policy for a new
round is trained offline using a simulator fit on functional measurements from prior
rounds. To accommodate the growing number of observations across rounds, the
simulator model is automatically selected at each round from a pool of diverse
models of varying capacity. On the tasks of designing DNA transcription factor
binding sites, designing antimicrobial proteins, and optimizing the energy of Ising
models based on protein structure, we find that DyNA-PPO performs significantly
better than existing methods in settings in which modeling is feasible, while still
not performing worse in situations in which a reliable model cannot be learned.

1 INTRODUCTION

Driven by real-world obstacles in health and disease requiring new drugs, treatments, and assays,
the goal of biomolecular design is to identify new discrete sequences x which optimize some or-
acle, typically an experimentally-measured functional property f(x). This is a difficult black-box
optimization problem over a combinatorially large search space in which function evaluation relies
on slow and expensive wet-lab experiments. The setting induces unusual constraints in blackbox
optimization and reinforcement learning: large synchronous batches with few rounds total.

The current gold standard for biomolecular design is directed evolution, which was recently rec-
ognized with a Nobel prize (Arnold, 1998) and is a form of randomized local search. While the
method has had considerable impact, it has low sample efficiency and relies on greedy hillclimbing
to the optimal sequences. Recent work has demonstrated that machine-learning-guided optimization
(Section 3) can find better sequences faster.

Reinforcement learning (RL) provides a flexible framework for black-box optimization that can har-
ness modern deep generative sequence models. This paper proposes a simple method for improving
the sample efficiency of policy gradient methods such as PPO (Schulman et al., 2017) for black-box
optimization by using surrogate models that are trained online to approximate f(x). Our method
updates the policy’s parameters using sequences x generated by the current policy πθ(x), but evalu-
ated using a learned surrogate f ′w(x), instead of the true, but unknown, oracle reward function f(x).
We learn the parameters of the reward model, w, simultaneously with the parameters of the policy.
This is similar to other model-based RL methods, but simpler, since in the context of sequence opti-
mization, the state-transition model is deterministic and known. Initially the learned reward model,
f ′w(x), is unreliable, so we rely entirely on f(x) to assess sequences and update the policy. This
allows a graceful fallback to PPO when the model is not effective. Over time, the reward model
becomes more reliable and can be used as a cheap surrogate, similar to Bayesian optimization meth-
ods (Shahriari et al., 2015). We show empirically that cross-validation is an effective heuristic for
assessing the model quality, which is simpler than the inference required by Bayesian optimization.
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We rigorously evaluate our method on three in-silico sequence design tasks that draw on experimen-
tal data to construct functions f(x) characteristic of real-world design problems: optimizing binding
affinity of DNA sequences of length 8 (state space has size 48); optimizing anti-microbial peptide
sequences (state space has size 2050), and optimizing binary sequences where f(x) is defined by
the energy of an Ising model for protein structure (state space has size 250). These do not rely on
wet lab experiments, and thus allow for large-scale benchmarking across a range of methods. We
show that our DyNA-PPO method achieves higher cumulative reward for a given budget (measured
in terms of number of calls to f(x)) than various other methods from the literature, such as standard
PPO, various forms of the cross-entropy method, Bayesian optimization, and evolutionary search.

In summary, our contributions are as follows:

• We provide a model-based RL algorthm, DyNA-PPO, and demonstrate that its effectiveness
in the large batch / low round constraints imposed by biological sequence design.

• We demonstrate that model-based RL can increase sample efficiency, and we address model
bias by quantifying the reliability and automatically selecting models of appropriate com-
plexity via cross validation.

• We propose a visitation-based exploration bonus and show that it is more effective than
entropy-regularization in identifying multiple local optima.

• We present a new optimization task for benchmarking methods for biological sequence
design based on protein energy ising models.

2 METHODS

Let f(x) be the function that we want to optimize and x ∈ V T a sequence of length T over a
vocabulary V such as DNA nucleotides (|V | = 4) or amino acids (|V | = 20). We assume N exper-
imental rounds and that B sequences can be measured per round. Let Dn = {(x, f(x))} be the
data acquired in round n with |Dn| = B. For simplicity, we assume that the sequence length T is
constant, but our approach based on factorizing the sequence autoregressively easily generalizes to
variable-length sequences.

2.1 MARKOV DECISION PROCESS

We formulate the design of a single sequence x as a Markov decision process M = (S,A, p, r)
with state space S, action space A, transition function p, and reward function r. The state space
S = ∪t=1...TV

t is the set of all possible sequence prefixes and A corresponds to the vocabulary V .
A sequence is generated left to right. At time step t, the state st = a0, ..., at−1 corresponds to the t
last tokens and the action at ∈ A to the next token. The transition function p(st + 1|st) = stat is
deterministic and corresponds to appending at to st. The reward r(st, at) is zero except at the last
step T , where it corresponds to the functional measurement f(sT−1). For generating variable length
sequences, we extend the vocabulary by a special end-of-sequence token and terminate sequence
generation when this token is selected.

2.2 POLICY OPTIMIZATION

We train a policy πθ(at|st) to optimize the expected sum of rewards :

E[R(s1:t)|s0, θ] =
∑
st

∑
at

πθ(at|st)r(st, at). (1)

We build off of proximal policy optimization (PPO) with a KL-penalty (Schulman et al., 2017),
which we have found to be more stable and sample efficient than REINFORCE (Williams, 1992).
We have also considered off-policy deep Q-learning (Mnih et al., 2015), categorical distributional
deep Q-learning (Bellemare et al., 2017), which are in principle more sample-efficient than on-
policy learning using PPO since they can reuse samples multiple times. However, they performed
worse than PPO in our experience (Appendix A). We implement algorithms using the TF-Agents
RL library (Guadarrama et al., 2018).
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Algorithm 1: DyNA-PPO
1: Input: Number of experiment rounds N
2: Input: Number of model-based training rounds M
3: Input: Minimum R2 score τ for model-based training
4: Input: Policy πθ with initial parameters θ
5: for n = 1, 2, ...N do
6: Collect samples Dn = {x, f(x)} using policy πθ
7: Train policy πθ on Dn
8: Fit candidate models f ′ ∈ S on

⋃n
i=1Di

9: Select the subset of models S′ ⊆ S with a R2 score ≥ τ
10: if S is not empty then
11: for m = 1, 2, ...M do
12: Sample a batch of sequences x from πθ and observe the reward f ′

w(x) for a model f ′
w ∼ S

13: Update πθ on {x, f ′
w(x)}

14: end for
15: end if
16: end for

We employ autoregressive models with one fully-connected layer as policy and value networks since
they are faster to train and outperform recurrent networks in our experiments. At time step t, the
network takes as input the W last characters at−W , ..., at−1 that are one-hot encoded, where the
context window size W is a hyper-parameter. To provide the network with information about the
current position of the context window, it also receives the time step t, which is embedded using a
sinusoidal positional encoding (Vaswani et al., 2017), and concatenated with the one-hot characters.
The policy network outputs a distribution πθ(at|st) over next the token at. The value network V (st),
which approximates the expected future reward for being in state st, is used as a baseline to reduce
the variance of stochastic estimates of equation 1 (Schulman et al., 2017).

2.3 MODEL-BASED POLICY OPTIMIZATION

Model-based RL learns a model of the environment that is used as a simulator to provide additional
pseudo-observations. While model-free RL has been successful in domains where interaction with
the environment is cheap, such as those where the environment is defined by a software program,
its high sample complexity may be unrealistic for biological sequence design. In model-based RL,
the MDP M = (S,A, p, r) is approximated by a model M′ = (S,A, p′, r′) with the same state
space S and action space A asM (Sutton & Barto, 2018, Ch. 8). Since the transition function p is
deterministic in our case, only the reward function r(st, at) needs to be approximated by r′(st, at).
Since r(sT , aT ) is non-zero at the last step T and then corresponds to f(x) with x == sT−1,
the problem reduces to approximating f(x). This can be done by supervised regression: given the
data ∪r′<=rDr from all previous rounds, we fit a regressor f ′w(x). Then, the policy is updated
offline using a many rounds of optimization on a combination of observations from the simulated
environment and actual functional measurements (x, f(x)). We call our method DyNA-PPO, since
it is similar to the DYNA method introduced in Sutton (1991); Peng et al. (2018) and because it can
be used to design DNA.

Model-based RL provides the promise of improved sample efficiency when the model is accurate,
but it can reduce performance if insufficient data is available for training a trustworthy model. In this
case, the policy is prone to exploit regions where the model is inaccurate (Janner et al., 2019). To
reap the benefit of model-based RL when the model is accurate and avoid reduced performance when
it is not, we (i) automatically select the model from a set of candidate models of varying complexity,
and (ii) only use the selected model if it is accurate. After each round of experiments, we fit each of
the candidate models on all available data to estimate f(x) via supervised regression. We quantify
model accuracy by the R2 score, which we estimate by five-fold cross validation. If the R2 score of
no candidate model is below a pre-specified threshold τ (we used 0.5 in our experiments), we do not
perform model-based training in that round. Otherwise we perform model-based training where the
reward of each sequence is obtained by randomly sampling among models with a score above τ , and
using its prediction as reward. This is inspired by Thompson sampling, which is provably effective
for batched Bayesian optimization (Kandasamy et al., 2018).
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For models, we consider Bayesian ridge regression, random forests, gradient boosting trees, Gaus-
sian processes, and ensemble of deep neural networks. Within each model family, we additionally
use cross-validation for tuning hyper-parameters, such as the number of trees, tree depth, kernels
and kernel parameters, or number of hidden layers and units (see Appendix B.6 for details). By
testing and optimizing the hyper-parameters of different models automatically, the model capacity
can dynamically increase as data becomes available. By ignoring the model if it is inaccurate, we
aim to prevent the policy from reward hacking (Amodei et al., 2016).

In Bayesian optimization, non-parametric models such as Gaussian processes are popular regressors,
and they also automatically grow model capacity as more data arrives (Shahriari et al., 2015). On the
other hand, with Bayesian optimization there is no opportunity to ignore the regressor entirely if it
is unreliable. Furthermore, Bayesian optimization relies on the ability to do (approximate) Bayesian
inference, which in practice is sensitive to the choice of approximation and to hyper-parameter
choice (Snoek et al., 2012). Here, we have find it simpler to do cross-validation-based model se-
lection. Overall, our method combines the positive attributes of both generative and discriminative
approaches to sequence design. Our experiments do not compare to prior work on model-based RL,
since these methods primarily focus on estimating a dynamics model for state transitions.

2.4 DIVERSITY-PROMOTING REWARD FUNCTION

Learning policies to generate diverse sequences is importance because of several reasons. In many
applications, f(x) is an in-vitro (an experiment taking place outside a living organism) surrogate
for an in-vivo (reaction occurring inside a living organism) functional measurement that is even
more expensive to evaluate than f(x). The in-vivo measurement may depend on properties that
are correlated with f(x) and others that are not captured at all in-vitro, such as off-target effects
or toxicity. Therefore, it is desirable for the optimization procedure to discover a diverse set of
candidate optima, to improve the chance that a sequence satisfying the ultimate in-vivo criteria is
found within this set. Here, diversity is a downstream metric, for which training the policy πθ(x)
to maximize equation 1 will not necessarily yield good performance. For example, a high-quality
policy can learn to always generate the same sequence xwith a high value of f(x), and will therefore
result in zero diversity. An additional reason that diversity matters is that it yields a good exploration
strategy, even for scenarios where optimizing equation 1 is sufficient. Finally, use of strategies that
reward high-diversity policies can reduce the policies’ tendency to generate exact duplicates.

To increase sequence diversity, we employ a simple exploration reward bonus based on the fre-
quency of proposed sequences, similar to existing exploration techniques based on state visitation
frequency (Bellemare et al., 2016). Specifically, we define the final reward rT = f(x)−λ · freq(x),
where freq(x) ∈ N+ is the frequency by which x has been proposed in previous rounds, and λ ∈ R
is a hyper-parameter. This reward penalizes proposing the same sequence multiple times, where the
strength of the penalty is controlled by λ. As a result, the policy learns not to generate identical
sequences and hence explores the search space more effectively. An alternative penalty is based on
the distance of the proposed sequence to already-generated sequences. However, we found penal-
izing exact duplicates to be easier to tune and more effective, since a policy that does not generate
exact duplicates tends to spread its mass over well-separated sequences. Figure 5 contrasts the per-
formance of this exploration bonus with entropy regularization.

3 RELATED WORK

Recently, machine learning approaches have been shown to be effective in optimizing real-world
DNA and protein sequences (Wang et al., 2019; Chhibbar & Joshi, 2019; de Jongh et al., 2019; Liu
et al., 2019; Sample et al., 2019; Wu et al., 2019). Existing methods for biological sequence design
fall into three broad categories: evolutionary search, optimization using discriminative models (e.g.
Bayesian optimization), and optimization using generative models (e.g. the cross entropy method).

Evolutionary approaches perform direct local search in the space of sequences. They include the
aforementioned directed evolution and derivatives with application-specific mutation and recombi-
nation steps. Evolutionary approaches are appealing since they are simple and can easily incorporate
human intuition into the design process, but generally suffer from low sample efficiency.
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Optimization methods based on discriminative models alternate between two steps: (i) using the data
that have been collected so far to fit a regressor f ′w(x) to approximate f(x), and (ii) using f ′w(x) to
define an acquisition function that is optimized to select the next batch of sequences. Recently, such
an approach was used to optimize the binding affinity of IgG antibodies (Liu et al., 2019), where a
neural network ensemble was used for f ′w(x). In general, optimizing the acquisition function is a
non-trivial combinatorial optimization problem. Liu et al. (2019) employ activation maximization,
where gradient-based optimization is performed on a continuous relaxation of the discrete search
space. However, this requires f ′w(x) to be differentiable and optimization of a continuous relaxation
is vulnerable to leaving the data manifold (cf. deep dream (Mordvintsev et al., 2015)).

Bayesian optimization defines an acquisition function such as expected improvement (Mockus et al.,
2014) based on the posterior distribution of f ′w(x), which enables balancing exploration and ex-
ploitation. Gaussian processes (GPs) are commonly used for Bayesian black box optimization.
See Shahriari et al. (2015) for an overview. Unfortunately, GPs are hard to scale to large, high-
dimensional datasets and are sensitive to the choice of hyperparameters. In response, recent work has
performed continuous black box optimization in the latent space of a deep generative model (Gómez-
Bombarelli et al., 2018). However, this approach requires a pre-trained model such as a variational
autoencoder to obtain the latent embeddings. Our model-based reinforcement learning approach is
similar to these approaches in that we train a reinforcement learning policy to optimize a model
f ′w(x). However, our policy is also trained directly on observations of f(x) and is able to resort
to model-free training by automatically identifying if the model f ′w(x) has insufficient accuracy to
be used as a simulation of f(x). Janner et al. (2019) investigate conditions in which an estimate
of model generalization (their analysis uses validation accuracy) could justify model usage in such
model-based policy optimization settings. Hashimoto et al. (2018) propose using a cascade of clas-
sifiers, one per round, to guide sampling progressively better candidates.

Optimization methods based on generative models seek to learn a distribution pθ(x) parameterized
by θ that maximizes the expected value of f(x): Ex∼Pθ(x)[f(x)]. We note that this is the same
form as variational optimization objectives, which allow the use of parameter-space evolutionary
strategies (Staines & Barber, 2013; Wierstra et al., 2014; Salimans et al., 2017). Variants of the
cross entropy method (De Boer et al., 2005; Brookes et al., 2019a) optimize θ, by alternating two
steps: (i) sampling x ∼ pθ(x) and evaluating f(x), and (ii) updating θ to maximize this expectation.
Methods differ in how step (ii) is performed. For example, hillclimb-MLE (Neil et al., 2018) per-
forms maximum-likelihood training on the top k sequences from step (i). Similarly, Feedback GAN
(FBGAN) uses samples whose target function value f(x) exceeds fixed threshold for training a gen-
erative adversarial network (Gupta & Zou, 2018). Design by Adaptive Sampling (DbAs) performs
weighted MLE of variational autoencoders, where a sample’s weight corresponds to the probability
that f(x) is greater than a quantile cutoff under an noise model (Brookes & Listgarten, 2018). In
Brookes et al. (2019b), pθ(x) is further restricted to stay close to a prior distribution over sequences.

An alternative approach for optimizing the above expectation is RL. While RL has been used for
generating natural text (Bahdanau et al., 2016), small molecules (Zhou et al., 2019), and RNA se-
quences that fold into a particular structure (Runge et al., 2018), we are not aware of applications of
RL to optimizing DNA and protein sequences.

Prior work on sequence generation incorporates non-differentiable rewards, like BLEU in machine
translation, via weighted maximum likelihood (MLE). Norouzi et al. (2016) introduce reward aug-
mented MLE, while Bahdanau et al. (2016) fine tune an MLE-pretrained model using actor-critic
methods. Reinforcement learning has also been applied to solving combinatorial optimization prob-
lems (Bello et al., 2016; Bengio et al., 2018; Dai et al., 2017; Kool et al., 2018). In this setting
sample complexity is less important because evaluating f(x) only involves a fast software program.

Finally, DNA and protein design is slightly different from ML-based small molecule design (Grif-
fiths & Hernández-Lobato, 2017; Kusner et al., 2017; Gómez-Bombarelli et al., 2018; Jin et al.,
2018; Sanchez-Lengeling & Aspuru-Guzik, 2018; Korovina et al., 2019): (i) the number of se-
quences measured in parallel in the lab is typically higher (hundred or thousands vs. dozens) due to
the maturity of DNA synthesis and sequencing technology, (ii) the search space is a set of sequences
instead of molecular graphs, which require specialized network architectures for both discriminative
and generative models, and (iii) molecules must be optimized subject to the constraint that there is a
set of reactions to synthesize them, whereas practically all DNA or protein sequences are synthesiz-
able.

5



Under review as a conference paper at ICLR 2019

4 EXPERIMENTS

In the next three sections, we compare DyNA-PPO to existing methods on three in-silico optimiza-
tion problems that we designed in collaboration with life scientists to faithfully simulate the behavior
of real wet-lab experiments, which would be cost prohibitive for a comprehensive methodological
evaluation. Along the way, we present ablation experiments to help better understand the behavior
of DyNA-PPO.

We compare the performance of model-free policy optimization (PPO) and model-based optimiza-
tion (DyNA-PPO) with the following methods that we discussed in Section 3. Further details for
each method can be found in Appendix B:

• RegEvolution: local search based on regularized evolution (Real et al., 2019), which has
performed well on other blackbox optimization tasks and can be seen as an instance of
directed evolution

• DbAs: a cross-entropy optimization approach using variational autoencoders (Brookes &
Listgarten, 2018) with quantile weighting.

• FBGAN: a cross entropy optimization approach using generative adversarial networks
(Gupta & Zou, 2018)

• Bayesopt GP: Bayesian optimization using a GP regressor, expected improvement acqui-
sition function, and activation maximization as acquisition function solver

• Bayesopt ENN Bayesopt GP with an ensemble of neural networks regressor
• Random: guessing sequences uniformly at random.

We quantify optimization performance by the cumulative maximum of f(x) for sequences proposed
up to a given round. We quantify sequence diversity (Section 2.4) in terms of the mean pairwise
hamming distance between sequences in a round. For problems with known optima, we also report
the fraction of global optima found. We replicate experiments with 50 random seeds.

4.1 OPTIMIZATION OF PROTEIN CONTACT ISING MODELS

Figure 1: Performance of methods on optimizing the energy of protein contact Ising models. Left: the
cumulative maximum reward depending on the number of rounds for one selected protein target (1A3N). Right:
the mean cumulative maximum relative to Random for alternative protein targets. Results stratified by the
protein that the Ising model approximates. Since f(x) can be well-approximated by a model trained on few
examples, model-based training (DyNA-PPO) results in a clear improvement over model-free training (PPO).

We first consider synthetic black-box optimization problems based on the 3D structure of naturally-
occurring proteins. Ising models fit on sets of evolutionary-related protein sequences have been
shown to be accurate predictors for proteins’ 3D structure (Shakhnovich & Gutin, 1993; Weigt
et al., 2009; Marks et al., 2011; Sułkowska et al., 2012). We consider the inverse problem: given
a protein, we seek to find the amino acid sequence that minimizes the energy of the Ising model
parameterized by its structure. For simplicity, we group amino acids into a vocabulary of size two
(hydrophobic/polar) instead of 20 (the number of amino acids). Optimizers are given a budget of 10
rounds with batch size 1000. The functional form of the energy function is given in Appendix C.1.
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Figure 2: Analysis of DyNA-PPO performance on the Ising model. The search space size is 250. Left:
Performance of DyNA-PPO depending on the number of inner policy optimization rounds using the surrogate
model. Using 0 rounds corresponds to PPO training. Since the surrogate model is sufficiently accurate, it is
useful to perform many rounds of updating the policy using it before querying f(x) again. Right: theR2 of the
surrogate model. Since it is always above the threshold for model-based training (0.5; dashed line), it is always
used for training.

On the left of Figure 1 we consider the optimization trajectory for a representative protein and on
the right we compare the best f(x) found for each method across a range of proteins. We find
that DyNA-PPO considerably outperforms the other methods. We expect that this is because this
synthetic reward landscape can be well-described by a model fit using few examples. On the left of
Figure 2 we vary the number of inner-loop optimization rounds of the policy using interaction with
the model-based simulated environment, where using 0 rounds corresponds to performing standard
PPO. We find that with DyNA-PPO it is worthwhile to spend considerable resources updating the
policy using the simulator: the best system performs the most steps. Doing so is possible because
the surrogate model is high quality. On the right we plot the score of the regressor fit by automated
model selection. Its high accuracy helps DyNA-PPO learn to generate high-quality sequences using
very few evaluations of f(x).

4.2 OPTIMIZATION OF TRANSCRIPTION FACTOR BINDING SITES

Figure 3: Performance on a representative transcription factor binding target (SIX6 REF R1). The
search space size is 48. Left: Maximum cumulative reward f(x) as a function of samples. Right: fraction of
local optima found. PPO optimizes f(x) faster and finds more optima than baseline methods, while model-
based training using DyNA PPO does not further improve performance.

Transcription factors are protein sequences that bind to DNA sequences and regulate their activity.
In Barrera et al. (2016), the binding affinity of numerous transcription factors was measured against
all possible length-8 DNA sequences (V = 4). The resulting dataset defines 158 different discrete
optimization tasks, where the goal of each task is to find a DNA sequence of length eight that maxi-
mizes the affinity towards one of the transcription factors. It is well suited for in-silico benchmarking
since (i) it is exhaustive and thereby does not require estimating missing f(x) and (ii) the distinct
local optima of all tasks are known and can be used to quantify exploration (see Appendix C.2 for

7



Under review as a conference paper at ICLR 2019

DyNA-PPO PPO BO-GP DbAs RegEvol FBGAN Random
Cumulative maximum 6.1 5.8 5.4 3.6 3.5 2.2 1.4
Fraction optima found 6.8 5.7 5.4 3.3 3.5 2.3 1.0
Mean hamming distance 4.9 4.3 5.8 2.4 1.0 2.6 7.0

Table 1: Comparison of methods across transcription factor binding sites. Mean rank of meth-
ods across all 41 hold-out tasks of the transcription factor binding dataset. Ranks were computed
within each task using the average of metrics across optimization rounds, and then averaged across
tasks. The higher the rank the better. 7 is the maximum rank. DyNA-PPO outperforms the other
methods on both optimization of f(x) and its ability to identify multiple well-separated local optima.

Figure 4: Analysis of the progression of model-based training on the transcription factor task. Left: the
mean R2 model score averaged across replicas as a function of the number of training samples. The horizontal
dashed line indicates the minimum threshold (0.5) for model-based training. We write GP and DNN to denote
the most frequent type of model selected by automated model selection. Right: the fraction of replicates that
performed model-based training based on this threshold. Shows that models tend to be inaccurate in early
rounds and are therefore not used for model-based training. This explains the relatively small improvement of
DyNA PPO over PPO in Figure 3.

details). The optimization methods are given a budget of 10 rounds with a batch size ofB = 100 se-
quences. We repeat each experiments 50 times with different random seeds. We use one task (CRX
REF R1) for optimizing the hyper-parameters of all methods, and test performance on 41 hold-out
tasks. In real-world settings, hyper-parameters would either be tuned on in-silico surrogate tasks or
would be done using prior in-vitro results from related design tasks.

Figure 3 plots the performance of methods on a single representative binding target (SIX REF R1)
as a function of the total number of sequences measured so far. We find that DyNA-PPO and
PPO outperform all other methods in terms of both the cumulative maximum f(x) found as well
as the fraction of local optima discovered. We also find that the diversity of proposed sequences
quantified by the fraction of global optima found is high compared to other generative approaches.
This shows that our method continues to explore the search space by proposing novel sequences
instead of converging to a single sequence or a handful of sequences–a desired property as discussed
in section 2.4. Across all tasks DyNA-PPO and PPO rank highest compared with other methods.
We observe the same trend across all 41 hold-out tasks in Table 1.

In Figures 4 and 5 we analyze the effects two key design decisions of DyNA-PPO: model-based
training and an exploration bonus. We find that automated model selection automatically increases
the complexity of the model, but that the models are not always accurate enough to be used for
model-based training. This explains why DyNA-PPO and PPO are similar in performance. We also
find that the exploration bonus outlined in Section 2.4 is more effective than entropy regularization
in finding multiple local optima and promoting sequence diversity.
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Proposed exploration bonus Entropy regularization

Figure 5: Comparison of the proposed exploration bonus vs. entropy regularization on the transcription
factor task. Left: performance with exploration bonus as a function of the duplication penalty λ (Section 2.4).
Right: performance of entropy regularization as a function of the regularization strength. The top row shows
that PPO finds about 80% of local optima with a relatively mild duplication penalty of λ = 0.1, whereas only
about 45% local optima are found when using entropy regularization. The bottom row shows that varying the
duplication penalty enables to control the sequence diversity quantified by the mean pairwise hamming distance
between sequences.

4.3 OPTIMIZATION OF ANTI-MICROBIAL PEPTIDES

Next, we seek to design antimicrobial peptides (AMPs). AMPs are relatively short (8 - 75 amino
acids) protein sequences (|V | = 20 amino acids) that are promising candidates against multi-resistant
pathogens due to their wide range of antimicrobial activities. We use the dataset proposed by Witten
& Witten (2019), which contains 6,760 unique AMP sequences and their antimicrobial activity
towards multiple pathogens. We follow Witten & Witten (2019) for preprocessing the dataset and
generating non-AMP sequences as negative training samples. Unlike the transcription factor binding
site dataset, we do not have wet-lab experiments for every sequence in the search space. Therefore,
we fit random forest classifiers to predict if a sequence is antimicrobial towards a certain pathogen in
the dataset (see Section C.3), and use the predicted probability as the functional measurement f(x)
to optimize. Given the high accuracy of the classifier (cross validated AUC > 0.9) we expect that
the reward landscape of f(x) is of realistic difficulty. We perform 8 rounds with a batch size 250.

Figure 6 compares methods on C. alibicani. Due to the size of the problem, we found it better to
use an ensemble of neural networks as our regressor for BayesOpt. We find that DyNA-PPO does
not out-perform PPO, but that they both considerably outperform the other methods in terms of the
maximum f(x) found. DyNA-PPO relies on the ability to accurately model the reward landscape
using a discriminative model fit on limited examples. Even though here f(x) corresponds to a
parametric model fit on data, it may be difficult to approximate, since it was trained on a large
about of data using synthetic negative examples that the training within DyNA-PPO does not have
access to. The results demonstrate the useful worst-case behavior of DyNA-PPO. When the model
is unreliable, it gracefully falls back to being standard PPO.
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Figure 6: Comparison of performance for AMP design. The search space is 2050. Left: PPO outperforms
the other methods but model-based training using DyNA-PPO does not improve over PPO. This is because
the automatic model selection is rarely able to find a trustworthy surrogate model, and thus DyNA-PPO falls
back to performing model-free training only using observations from the actual experiment. Right: Effect of
changing R2 threshold τ . Using a low threshold of τ = −1, and thus use inaccurate surrogate models for
model-based training, resulting in a performance decrease compared with only using models with a R2 score
above τ = 0.5.

5 CONCLUSION

We have shown that RL is an attractive alternative to existing methods for designing DNA and
protein sequences. We have proposed DyNA-PPO, a model-based extension of PPO (Schulman
et al., 2017) with automatic model selection that improves sample efficiency, and incorporates a
reward function that promotes exploration by penalizing identical sequences. By approximating an
expensive wet-lab experiment with a surrogate model, we can perform many rounds of optimization
in this simulated environment. Going forward, we will consider using more sophisticated rewards
when optimizing the surrogate to shape the policy to have a variety of desired behaviors. Finally,
while this work has been focused on showing the benefit of DyNA-PPO for biological sequence
design, we believe that the large-batch, low-round setting described here may well be of general
interest and that model-based RL may be applicable in other domains with long time delays, such
agriculture, education, and economics.
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Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.
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A ALTERNATIVE RL METHODS

Figure 7: Comparison of PPO against alternative RL methods. The cumulative maximum reward and
fraction of local optima found for alternative RL methods are averaged across 41 binding targets for the tran-
scription factor binding task as described in Section 4.2.

DyNA-PPO is built on PPO, which we have found to outperform other policy-based and value-based
RL methods in practice on our problems. In Figure 7 we contrast the performance of PPO (Schul-
man et al., 2017), REINFORCE (Williams, 1992), deep Q-learning (Mnih et al., 2015), and cat-
egorical distributional deep Q-learning (Bellemare et al., 2017) on the tuning problem employed
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in Section 4.2. We use standard implementations from (Guadarrama et al., 2018). We find that
PPO outperforms the other methods significantly. Perhaps the performance difference is because
Q-learning with function approximation may not even converge, whereas at least PPO will mono-
tonically improve the quality of the policy to a local optimum.

B IMPLEMENTATION DETAILS

f

B.1 REGULARIZED EVOLUTION

Regularized evolution is a variant of directed mutation evolution that regularizes the search by keep-
ing a fixed number of individuals alive as candidates for selection (analogous to death by aging).
At each round, it generates a batch of child sequences by sampling two parent sequences per child
from the population via tournament selection, i.e. selecting the fittest out of K randomly sampled
individuals. It then performs crossover of the two parent sequences by copying the characters of one
parent from left to right and randomly transitioning to transcribing from the other parent sequence
with some crossover probability at each step. Child sequences are mutated by replacing each token
with another from the alphabet with some mutation probability. For variable length sequences, we
also allowed insertion and deletion mutations. As hyper-parameters, we tune the tournament size,
substitution-, insertion-, and deletion-probabilities.

B.2 FEEDBACK GAN

We follow the methodology suggested by Gupta & Zou (2018). Instead of using a constant threshold
for selecting sequences for training as described in the original publication, we used a quantile cutoff,
which does not depend on the absolute scale of f(x) and performed better in our experiments. As
hyper-parameters, we tuned the quantile cutoff, learning rate, batch size, discriminator and generator
training epochs, the gradient penalty weight, the gumble softmax temperature, and the number of
latent variables of the generator.

B.3 DBAS

We follow the methodology suggested by Brookes & Listgarten (2018). As hyper-parameters, we
optimized the quantile for selecting training samples, learning rate, batch size, training epochs,
number of hidden units of the MLP generator and discriminator, and number of latent variables

B.4 BAYESIAN OPTIMIZATION

As regressors, we considered a Gaussian process (GP) with RBF kernel on one-hot features, and
an ensemble of ten fully-connected neural networks with one fully connected layer and 128 hidden
units. We used the regressor output to compute the expected improvement or posterior mean acqui-
sition function, which we maximized by gradient ascent for a certain number of acquisition steps
using activation maximization. We took the resulting B unique sequences with highest acquisition
function value as sequences to measure in the next round. We tuned the length scale and variance of
the RBF kernel, and the learning rate, batch size, and number of training epochs of the neural net-
work ensemble. We further tuned the number of gradient ascent steps for activation maximization.

B.5 PPO

We used the PPOAgent from the TF-Agents RL library (Guadarrama et al., 2018) for policy training.
After each round, we trained trained the agent on the collected batch of sequences for a relatively
high number of steps (about 72), since it resulted in performance increase. We used the PPO-Penalty
instead of PPO-Clip, since it performed slightly better in our experiments Schulman et al. (2017).
We used a policy and value network with one fully conntected layer and 128 hidden units. As
hyper-parameters, we tuned the learning rate, number of training steps, adaptive KL target, entropy
regularization. We set the context window W of the autoregressive model to the minimum of the
total sequence length and 50.
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B.6 AUTOMATED MODEL SELECTION

For automatic model selection, we optimized the hyper-parameters of model candidates by five-
fold cross-validation using the scikit class RandomizedSearchCV, and quantified model accuracy by
the R2 score. To account for randomness in the R2 score between models due to different cross-
validation splits, we used the same split for evaluating each of the models per round. We considered
the following candidate models (implemented in scikit learn) and corresponding hyper-parameters:

• KNeighborsRegressor: n neighbors
• BayesianRidge: alpha 1, alpha 2, lambda 1, lamdba 2
• RandomForestRegressor: max depth, max features, n estimators
• ExtraTreesRegressor: max depth, max features, n estimators
• GradientBoostingRegressor: learning rate, max depth, n estimators
• GaussianProcessRegressor: with RBF, RationalQuadratic, and Matern kernel

We also considered an ensemble of 10 neural networks with two convolutional layers and one fully
connected layer, and optimized the learning rate and number of training epochs.

C DATASET DETAILS

C.1 PROTEIN CONTACT ISING MODELS

We compute the energy E(x) for sequence x as E(x) =
∑
i φ(xi) +

∑
ij Cijφ(xi, xj), where xi

refers to the value in the i-th position of sequence x. Cij is an indicator for whether positions i
and j are separated by less than 8 Angstroms when the protein folds and φ(xi, xj) is a ‘frustrated
potential’ that encourages xi and xj to take on opposite values. The use of frustrated potentials
helps prevent the energy minimum from being a trivial sequence of all 0 or all 1. We further set
the local term φ(xi) heuristically to return #edges

#nodes for xi = 1 and 0 otherwise, which helps make
the energy landscape more complex in practice. Our experiments consider a set of qualitatively-
different proteins listed at the bottom-right of Figure 1. We identify the local optima using the same
procedure as in Section C.2, except without accounting for reverse complements.

C.2 TRANSCRIPTION FACTOR BINDING SITE DATASET

We used the dataset described by Barrera et al. (2016), and normalized binding affinities between
zero and one. To reduce computational costs, we only considered the first replicate (REF R1) of
each wild type transcription factor in the dataset, which resulted in 41 optimization targets that we
used for comparing optimizers as described in Section 4.2. We extracted local optima for each
binding target as follows. First, we separated sequences into forward and reverse sequences by
ordering sequences lexicographically and including each sequence in the set of forward sequences
unless the set already contained its reverse complement. We then chose the 100 forward sequences
with the highest binding affinity and clustered them using the hamming distance metric, where we
determined the number of clusters by finding the number of PCA components required to explain
95% of variance. We then used the sequences with the highest reward per cluster and their reverse
complement as local optima. Our goal was to construct a metric for this small exhaustive dataset
with which to judge the ability of the algorithms to find distinct sequences with high scores. We do
not use a typical motif-finding approach popular in the literature for identifying transcription factor
binding sites, since we seek to ensure generalizability of these algorithms to a wide range of use
cases.

C.3 ANITMICROBIAL PEPTIDE DATASET

We downloaded the dataset1 provided by Witten & Witten (2019), and followed the paper for prepro-
cessing sequences and generating non-AMP sequences as negative training samples. We addition-
ally excluded sequences containing cysteine and sequences shorter than 15 or longer than 50 amino

1https://github.com/zswitten/Antimicrobial-Peptides
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acids. We fit one classifier to predict if a sequence is antimicrobial towards either E.coli, S.aureus,
P.aeruginosa, or B.subtilis, which we used for hyper-parameter tuning, and a second classifier for C.
alibicani, which we used for hold-out evaluation. We used C. alibicani as hold-out target since its
antimicrobial activity was least correlated with the activity of other pathogenes in the dataset with
more than 1000 AMP sequences. We used random forest classifiers since they were more accurate
(cross validated AUC 0.99 and 0.94) than alternative models such as k-nearest neighbors, Gaussian
processes, or neural networks. Since sequences are variable-length, we padded them to the maxi-
mum sequence length of 50 and extended the vocabulary by an additional end of sequence token.
Tokens after the fist end of sequence token were ignored when evaluating f(x).
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