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ABSTRACT

Adversarial examples are crafted with imperceptible perturbations with the intent
to fool neural networks. Against such attacks, adversarial training and its variants
stand as the strongest defense to date. Previous studies have pointed out that ro-
bust models that have undergone adversarial training tend to produce more salient
and interpretable Jacobian matrices than their non-robust counterparts. A natural
question is whether a model trained with an objective to produce salient Jacobian
can result in better robustness. This paper answers this question with affirma-
tive empirical results. We propose Jacobian Adversarially Regularized Networks
(JARN) as a method to optimize the saliency of a classifier’s Jacobian by adversar-
ially regularizing the model’s Jacobian to resemble natural training images. Image
classifiers trained with JARN show improved robust accuracy compared to stan-
dard models on the MNIST, SVHN and CIFAR-10 datasets, uncovering a new
angle to boost robustness without using adversarial training.

1 INTRODUCTION

Deep learning models have shown impressive performance in a myriad of classification tasks (Le-
Cun et al., 2015). Despite their success, deep neural image classifiers are found to be easily fooled by
visually imperceptible adversarial perturbations (Szegedy et al., 2013). These perturbations can be
crafted to reduce accuracy during test time or veer predictions towards a target class. This vulnera-
bility not only poses a security risk in using neural networks in critical applications like autonomous
driving (Bojarski et al., 2016) but also presents an interesting research problem about how these
models work.

Many adversarial attacks have come into the scene (Carlini & Wagner, 2017; Papernot et al., 2018;
Croce & Hein, 2019), not without defenses proposed to counter them (Gowal et al., 2018; Zhang
et al., 2019). Among them, the best defenses are based on adversarial training (AT) where models
are trained on adversarial examples to better classify adversarial examples during test time (Madry
et al., 2017). While several effective defenses that employ adversarial examples have emerged (Qin
et al., 2019; Shafahi et al., 2019), generating strong adversarial training examples adds non-trivial
computational burden on the training process (Kannan et al., 2018; Xie et al., 2019).

Adversarially trained models gain robustness but are also observed to produce more salient Jaco-
bian matrices (Jacobians) at the input layer as a side effect (Tsipras et al., 2018). These Jacobians
visually resemble their corresponding images for robust models but look much noisier for standard
non-robust models. It is shown in theory that the saliency in Jacobian is a result of robustness (Et-
mann et al., 2019). A natural question to ask is this: can an improvement in Jacobian saliency
induce robustness in models? In other words, could this side effect be a new avenue to boost model
robustness? To the best of our knowledge, this paper is the first to show affirmative findings for this
question.

To enhance the saliency of Jacobians, we draw inspirations from neural generative networks (Choi
et al., 2018; Dai & Wipf, 2019). More specifically, in generative adversarial networks (GANs)
(Goodfellow et al., 2014), a generator network learns to generate natural-looking images with a
training objective to fool a discriminator network. In our proposed approach, Jacobian Adversarially
Regularized Networks (JARN), the classifier learns to produce salient Jacobians with a regulariza-
tion objective to fool a discriminator network into classifying them as input images. This method
offers a new way to look at improving robustness without relying on adversarial examples during
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training. With JARN, we show that directly training for salient Jacobians can advance model ro-
bustness against adversarial examples in the MNIST, SVHN and CIFAR-10 image dataset. When
augmented with adversarial training, JARN can provide additive robustness to models thus attaining
competitive results. All in all, the prime contributions of this paper are as follows:

• We show that directly improving the saliency of classifiers’ input Jacobian matrices can
increase its adversarial robustness.

• To achieve this, we propose Jacobian adversarially regularized networks (JARN) as a
method to train classifiers to produce salient Jacobians that resemble input images.

• Through experiments in MNIST, SVHN and CIFAR-10, we find that JARN boosts ad-
versarial robustness in image classifiers and provides additive robustness to adversarial
training.

2 BACKGROUND AND RELATED WORK

Given an input x, a classifier f(x; θ) : x 7→ Rk maps it to output probabilities for k classes in set C,
where θ is the classifier’s parameters and y ∈ Rk is the one-hot label for the input. With a training
dataset D, the standard method to train a classifier f is empirical risk minimization (ERM), through
minθ E(x,y)∼DL(x,y), where L(x,y) is the standard cross-entropy loss function defined as

L(x,y) = E(x,y)∼D
[
−y> log f(x)

]
(1)

While ERM trains neural networks that perform well on holdout test data, their accuracy drops
drastically in the face of adversarial test examples. With an adversarial perturbation of magnitude ε
at input x, a model is robust against this attack if

arg max
i∈C

fi(x; θ) = arg max
i∈C

fi(x+δ; θ) , ∀δ ∈ Bp(ε) = δ : ‖δ‖p ≤ ε (2)

We focus on p =∞ in this paper.

Adversarial Training To improve models’ robustness, adversarial training (AT) (Goodfellow
et al., 2016) seek to match the training data distribution with the adversarial test distribution by
training classifiers on adversarial examples. Specifically, AT minimizes the loss function:

L(x,y) = E(x,y)∼D

[
max
δ∈B(ε)

L(x+δ,y)

]
(3)

where the inner maximization, maxδ∈B(ε) L(x+δ,y), is usually performed with an iterative
gradient-based optimization. Projected gradient descent (PGD) is one such strong defense which
performs the following gradient step iteratively:

δ ← Proj [δ − η sign (∇δL(x+δ,y))] (4)

where Proj(x) = arg minζ∈B(ε) ‖x−ζ‖. The computational cost of solving Equation (3) is domi-
nated by the inner maximization problem of generating adversarial training examples. A naive way
to mitigate the computational cost involved is to reduce the number gradient descent iterations but
that would result in weaker adversarial training examples. A consequence of this is that the models
are unable to resist stronger adversarial examples that are generated with more gradient steps, due
to a phenomenon called obfuscated gradients (Carlini & Wagner, 2017; Uesato et al., 2018).

Since the introduction of AT, a line of work has emerged that also boosts robustness with adversarial
training examples. Capturing the trade-off between natural and adversarial errors, TRADES (Zhang
et al., 2019) encourages the decision boundary to be smooth by adding a regularization term to re-
duce the difference between the prediction of natural and adversarial examples. Qin et al. (2019)
seeks to smoothen the loss landscape through local linearization by minimizing the difference be-
tween the real and linearly estimated loss value of adversarial examples. To improve adversarial
training, Zhang & Wang (2019) generates adversarial examples by feature scattering, i.e., maximiz-
ing feature matching distance between the examples and clean samples.
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Tsipras et al. (2018) observes that adversarially trained models display an interesting phenomenon:
they produce salient Jacobian matrices (∇xL) that loosely resemble input images while less robust
standard models have noisier Jacobian. Etmann et al. (2019) explains that linearized robustness
(distance from samples to decision boundary) increases as the alignment between the Jacobian and
input image grows. They show that this connection is strictly true for linear models but weakens
for non-linear neural networks. While these two papers show that robustly trained models result in
salient Jacobian matrices, our paper aims to investigate whether directly training to generate salient
Jacobian matrices can result in robust models.

Non-Adversarial Training Regularization Provable defenses are first proposed to bound mini-
mum adversarial perturbation for certain type of neural networks (Hein & Andriushchenko, 2017;
Raghunathan et al., 2018). One of the most advanced defense from this class of work (Wong et al.,
2018) uses a dual network to bound the adversarial perturbation with linear programming. The
authors then optimize this bound during training to boost adversarial robustness. Apart from this
category, closer to our work, Jakubovitz & Giryes (2018) proposes a regularization term to reduce
the Jacobian’s Frobenius norm to decrease the effect input perturbations have on the model predic-
tion. With a similar goal, Ross & Doshi-Velez (2018) shows that reducing the Frobenius norm of the
input Hessian matrix improves adversarial robustness. Different from them, we train the classifier
with an adversarial loss term to make the Jacobian resemble input images more closely.

3 JACOBIAN ADVERSARIALLY REGULARIZED NETWORKS (JARN)

Motivation Robustly trained models are observed to produce salient Jacobian matrices that re-
semble the input images. This begs a question in the reverse direction: will an objective function
that encourages Jacobian to more closely resemble input images, will standard networks become
robust? To study this, we look at neural generative networks where models are trained to produce
natural-looking images. We draw inspiration from generative adversarial networks (GANs) where a
generator network is trained to progressively generate more natural images that fool a discriminator
model, in a min-max optimization scenario (Goodfellow et al., 2014). More specifically, we frame a
classifier as the generator model in the GAN framework so that its Jacobians can progressively fool
a discriminator model to interpret them as input images.

Another motivation lies in the high computational cost of the strongest defense to date, adversarial
training. The cost on top of standard training is proportional to the number of steps its adversarial
examples take to be crafted, requiring an additional backpropagation for each iteration. Especially
with larger datasets, there is a need for less resource-intensive defense. In our proposed method
(JARN), there is only one additional backpropagation through the classifier and the discriminator
model on top of standard training. We share JARN in the following paragraphs and offer some
theoretical analysis in § 3.1.

Jacobian Adversarially Regularized Networks Denoting input as x ∈ Rhwc for h × w-size
images with c channels, one-hot label vector of k classes as y ∈ Rk, we express fcls(x) ∈ Rk as the
prediction of the classifier (fcls), parameterized by θ. The standard cross-entropy loss is

Lcls = E(x,y)

[
−y> log fcls(x)

]
(5)

With gradient backpropagation to the input layer, through fcls with respect to Lcls, we can get the
Jacobian matrix J ∈ Rhwc as:

J(x) := ∇xLcls =

[
∂Lcls

∂x1
· · · ∂Lcls

∂xd

]
(6)

where d = hwc. The next part of JARN entails adversarial regularization of Jacobian matrices
to induce resemblance with input images. Though the Jacobians of robust models are empirically
observed to be similar to images, their distributions of pixel values do not visually match (Etmann
et al., 2019). The discriminator model may easily distinguish between the Jacobian and natural
images through this difference, resulting in the vanishing gradient (Arjovsky et al., 2017) for the
classifier train on. To address this, an adaptor network (fapt) is introduced to map the Jacobian into
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the domain of input images. In our experiments, we use a single 1x1 convolutional layer with tanh
activation function to model fapt, expressing its model parameters as ψ. With the J as the input of
fapt, we get the adapted Jacobian matrix J ′ ∈ Rhwc,

J ′ = fapt(J) (7)

We can frame the classifier and adaptor networks as a generator G(x,y)

Gθ,ψ(x,y) = fapt(∇xLcls(x,y) ) (8)

learning to model distribution of pJ′ that resembles px.

We now denote a discriminator network, parameterized by φ, as fdisc that outputs a single scalar.
fdisc(x) represents the probability that x came from training images px rather than pJ′ . To train
Gθ,ψ to produce J ′ that fdisc perceive as natural images, we employ the following adversarial loss:

Ladv = Ex[log fdisc(x)] + EJ′ [log(1− fdisc(J
′))]

= Ex[log fdisc(x)] + E(x,y)[log(1− fdisc(Gθ,ψ(x)))]

= Ex[log fdisc(x)] + E(x,y) [log(1− fdisc( fapt(∇xLcls(x,y))))]

(9)

Combining this regularization loss with the classification loss function Lcls in Equation (5), we can
optimize through stochastic gradient descent to approximate the optimal parameters for the classifier
fcls as follows,

θ∗ = arg min
θ

(Lcls + λadvLadv) (10)

where λadv control how much Jacobian adversarial regularization term dominates the training.

Since the adaptor network (fapt) is part of the generator G, its optimal parameters ψ∗ can be found
with minimization of the adversarial loss,

ψ∗ = arg min
ψ

Ladv (11)

On the other hand, the (fdisc) is optimized to maximize the adversarial loss term to distinguish
Jacobian from input images correctly,

φ∗ = arg max
φ

Ladv (12)

Analogous to how generator from GANs learn to generate images from noise, we add [−ε,−ε]
uniformly distributed noise to input image pixels during JARN training phase. Figure 1 shows a
summary of JARN training phase while Algorithm 1 details the corresponding pseudo-codes. In
our experiments, we find that using JARN framework only on the last few epoch (25%) to train
the classifier confers similar adversarial robustness compared training with JARN for the whole
duration. This practice saves compute time and is used for the results reported in this paper.

3.1 THEORETICAL ANALYSIS

Here, we study the link between JARN’s adversarial regularization term with the notion of linearized
robustness. Assuming a non-parameteric setting where the models have infinite capacity, we have
the following theorem while optimizing G with the adversarial loss Ladv .
Theorem 3.1. The global minimum of Ladv is achieved when G(x) maps x to itself, i.e., G(x) = x.

Its proof is deferred to § A. If we assume Jacobian J of our classifier fcls to be the direct output of
G, then J = G(x) = x at the global minimum of the adversarial objective.

In Etmann et al. (2019), it is shown that the linearized robustness of a model is loosely upper-
bounded by the alignment between the Jacobian and the input image. More concretely, denoting
Ψi as the logits value of class i in a classifier F , its linearized robustness ρ can be expressed as

ρ(x) := minj 6=i∗
Ψi∗ (x)−Ψj(x)

‖∇xΨi∗ (x)−∇xΨj(x)‖ . Here we quote the theorem from Etmann et al. (2019):
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Figure 1: Training architecture of JARN.

Algorithm 1: Jacobian Adversarially Regularized Network
1 Input: Training data Dtrain, Learning rates for classifier fcls, adaptor fapt and discriminator fdisc: (α, β, γ)
2 for each training iteration do
3 Sample (x,y) ∼ Dtrain
4 x← x+ξ, ξi ∼ unif[−ε, ε]
5 Lcls ← −y> log fcls(x) . (1) Compute classification cross-entropy loss
6 J ← ∇xLcls . (2) Compute Jacobian matrix
7 J ′ ← fapt(J) . (3) Adapt Jacobian to image domain
8 Ladv ← log fdisc(x) + log(1− fdisc(J

′)) . (4) Compute adversarial loss
9 θ ← θ − α∇θ(Lcls + λadvLadv) . (5a) Update the classifier fcls to minimize Lcls and Ladv

10 ψ ← ψ − β ∇ψLadv . (5b) Update the adaptor fapt to minimize Ladv
11 φ← φ+ γ ∇φLadv . (5b) Update the adaptor fapt to maximize Ladv

Theorem 3.2 (Linearized Robustness Bound). (Etmann et al., 2019) Defining i∗ = arg maxi Ψi

and j∗ = arg maxj 6=i∗ Ψj as top two prediction, we let the Jacobian with respect to the difference
in top two logits be g := ∇x(Ψi∗ − Ψj∗)(x). Expressing alignment between the Jacobian with the
input as α(x) = |〈x,g〉|

‖g‖ , then

ρ(x) ≤ α(x) +
C

‖g‖
(13)

where C is a positive constant.

Combining with what we have in Theorem 3.1, assuming J to be close to g in a fixed constant
term, the alignment term α(x) in Equation (13) is maximum when Ladv reaches its global minimum.
Though this is not a strict upper bound and, to facilitate the training in JARN in practice, we use
an adaptor network to transform the Jacobian, i.e., J ′ = fapt(J), our experiments show that model
robustness can be improved with this adversarial regularization.

4 EXPERIMENTS

We conduct experiments on three image datasets, MNIST, SVHN and CIFAR-10 to evaluate the
adversarial robustness of models trained by JARN.

4.1 MNIST

Setup MNIST consists of 60k training and 10k test binary-colored images. We train a CNN,
sequentially composed of 3 convolutional layers and 1 final softmax layer. All 3 convolutional
layers have a stride of 5 while each layer has an increasing number of output channels (64-128-256).
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For JARN, we use λadv = 1, a discriminator network of 2 CNN layers (64-128 output channels)
and update it for every 10 fcls training iterations. We evaluate trained models against adversarial
examples with l∞ perturbation ε = 0.3, crafted from FGSM and PGD (5 & 40 iterations). FGSM
generates weaker adversarial examples with only one gradient step and is weaker than the iterative
PGD method.

Results The CNN trained with JARN shows improved adversarial robustness from a standard
model across the three types of adversarial examples (Table 1). In the MNIST experiments, we find
that data augmentation with uniform noise to pixels alone provides no benefit in robustness from the
baseline.

Table 1: MNIST accuracy (%) on adversarial and clean test samples.

Model FGSM PGD5 PGD40 Clean
Standard 76.5 0 0 98.7
Uniform Noise 77.5 0 0.02 98.7
JARN 98.4 98.1 98.1 98.8

4.2 SVHN

Setup SVHN is a 10-class house number image classification dataset with 73257 training and
26032 test images, each of size 32x32x3. We train the Wide-Resnet 32-10 model following hyper-
parameters from (Madry et al., 2017)’s setup for their CIFAR-10 experiments. For JARN, we use
λadv = 5, a discriminator network of 5 CNN layers (16-32-64-128-256 output channels) and update
it for every 20 fcls training iterations. We evaluate trained models against adversarial examples with
(ε = 8/255), crafted from FGSM and 5, 10, 20-iteration PGD attack.

Results Similar to the findings in § 4.1, JARN advances the adversarial robustness of the classifier
from the standard baseline against all four types of attacks. Interestingly, uniform noise image aug-
mentation increases adversarial robustness from the baseline in the SVHN experiments, concurring
with previous work that shows noise augmentation improves robustness (Ford et al., 2019).

Table 2: SVHN accuracy (%) on adversarial and clean test samples.

Model FGSM PGD5 PGD10 PGD20 Clean
Standard 64.4 26.0 5.47 1.96 94.7
Uniform Noise 65.0 42.6 18.4 9.21 95.3
JARN 67.2 57.5 37.7 26.79 94.9

4.3 CIFAR-10

Setup CIFAR-10 contains 32x32x3 colored images labeled as 10 classes, with 50k training and
10k test images. We train the Wide-Resnet 32-10 model using similar hyperparameters to (Madry
et al., 2017) for our experiments. Following the settings from Madry et al. (2017), we compare with
a strong adversarial training baseline (PGD-AT7) that involves training the model with adversarial
examples generate with 7-iteration PGD attack. For JARN, we use λadv = 1, a discriminator net-
work of 5 CNN layers (32-64-128-256-512 output channels) and update it for every 20 fcls training
iterations. We evaluate trained models against adversarial examples with (ε = 8/255), crafted from
FGSM and PGD (5, 10 & 20 iterations). We also add in a fast gradient sign attack baseline (FGSM-
AT1) that generates adversarial training examples with only 1 gradient step. Though FGSM-trained
models are known to rely on obfuscated gradients to counter weak attacks, we augment it with JARN
to study if there is additive robustness benefit against strong attacks.

Results Similar to results from the previous two datasets, the JARN classifier performs better than
the standard baseline for all four types of adversarial examples. Compared to the model trained with
uniform-noise augmentation, JARN performs closely in the weaker FGSM attack while being more
robust against the two stronger PGD attacks. The strong PGD-AT7 baseline shows higher robustness
against PGD attacks than the JARN model. When we train JARN together with 1-step adversarial
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training (JARN-AT1), we find that the model’s robustness exceeds that of strong PGD-AT7 baseline
on all four adversarial attacks, suggesting JARN’s gain in robustness is additive to that of AT.

Table 3: CIFAR-10 accuracy (%) on adversarial and clean test samples.

Model FGSM PGD5 PGD10 PGD20 Clean
Standard 13.4 0 0 0 95.0
Uniform Noise 67.4 44.6 19.7 7.48 94.0
FGSM-AT1 94.5 0.25 0.02 0.01 91.7
JARN 67.2 50.0 27.6 15.5 93.9
PGD-AT7 56.2 55.5 47.3 45.9 87.3
JARN-AT1 65.7 60.1 51.8 46.7 84.8

4.3.1 GENERALIZATION OF ROBUSTNESS

Adversarial training (AT) based defenses generally train the model on examples generated by pertur-
bation of a fixed ε. Unlike AT, JARN by itself does not have ε as a training parameter. To study how
JARN-AT1 robustness generalizes, we conduct PGD attacks of varying ε and strength (5, 10 and 20
iterations). We also include another PGD-AT7 baseline that was trained at a higher ε = (12/255).
JARN-AT1 shows higher robustness than the two PGD-AT7 baselines against attacks with higher
ε values (≤ 8/255) across the three PGD attacks, as shown in Figure 2. We also observe that the
PGD-AT7 variants outperform each other on attacks with ε values close to their training ε, suggest-
ing that their robustness is more adapted to resist adversarial examples that they are trained on. This
relates to findings by Tramèr & Boneh (2019) which shows that robustness from adversarial training
is highest against the perturbation type that models are trained on.
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Figure 2: Generalization of model robustness to PGD attacks of different ε values.

4.3.2 LOSS LANDSCAPE

We compute the classification loss value along the adversarial perturbation’s direction and a random
orthogonal direction to analyze the loss landscape of the models. From Figure 3, we see that the
models trained by the standard and FGSM-AT method display loss surfaces that are jagged and non-
linear. This explains why the FGSM-AT display modest accuracy at the weaker FGSM attacks but
fail at attacks with more iterations, a phenomenon called obfuscated gradients (Carlini & Wagner,
2017; Uesato et al., 2018) where the initial gradient steps are still trapped within the locality of the
input but eventually escape with more iterations. The JARN model displays a loss landscape that
is less steep compared to the standard and FGSM-AT models, marked by the much lower (1 order
of magnitude) loss value in Figure 3c. When JARN is combined with one iteration of adversarial
training, the JARN-AT1 model is observed to have much smoother loss landscapes, similar that of
the PGD-AT7 model, a strong baseline previously observed to be free of obfuscated gradients. This
suggests that JARN and AT have additive benefits and JARN-AT1’s adversarial robustness against
strong PGD attacks is attributed by its resistance to obfuscated gradients.

4.3.3 SALIENCY OF JACOBIAN

The Jacobian matrices of JARN model and PGD-AT are salient and visually resemble the images
more than those from the standard model (Figure 4). Upon closer inspection, the Jacobian matrices
of the PGD-AT model concentrate their values at small regions around the object of interest whereas
those of the JARN model covers a larger proportion of the images. One explanation is that the JARN
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(a) Standard (b) FGSM-AT1 (c) JARN

(d) JARN-AT1 (e) PGD-AT7

Figure 3: Loss surfaces of models along the adversarial perturbation and a random direction.

model is trained to fool the discriminator network and hence generates Jacobian that contains details
of input images to more closely resemble them.

deer frog horse ship cat

S
ta
nd
ar
d

Im
ag
e

JA
R
N
-A
T1

P
G
D
-A
T7

dog plane bird

Figure 4: Jacobian matrices of CIFAR-10 models.

5 CONCLUSIONS

In this paper, we show that training classifiers to give more salient input Jacobian matrices that re-
semble images can advance their robustness against adversarial examples. We achieve this through
an adversarial regularization framework (JARN) that train the model’s Jacobians to fool a discrim-
inator network into classifying them as images. Through our experiments in three image datasets,
JARN boosts adversarial robustness of standard models and give competitive performance when
added on to weak defenses like FGSM. Our findings open the viability of improving the saliency of
Jacobian as a new avenue to boost adversarial robustness.
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Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations.
arXiv preprint arXiv:1904.13000, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial risk
and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. In Advances in Neural Information Processing Systems, pp. 8400–8409, 2018.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 501–509, 2019.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. arXiv preprint arXiv:1907.10764, 2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019.

A PROOF OF THEOREM 3.1

Theorem A.1. The global minimum of Ladv is achieved when G(x) maps x to itself, i.e., G(x) = x.

Proof. From (Goodfellow et al., 2014), for a fixed G, the optimal discriminator is

f∗disc(x) =
pdata(x)

pdata(x) + pG(x)
(14)
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We can include the optimal discriminator into Equation (9) to get

Ladv(G) = Ex∼pdata [log f∗disc(x)] + Ex∼pdata [log(1− f∗disc(G(x)))]

= Ex∼pdata [log f∗disc(x)] + Ex∼pG [log(1− f∗disc(x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pG(x)

]
+ Ex∼pG

[
log

pG(x)

pdata(x) + pG(x)

]
= Ex∼pdata

[
log

pdata(x)
1
2 (pdata(x) + pG(x))

]
+ Ex∼pG

[
log

pG(x)
1
2 (pdata(x) + pG(x))

]
− 2 log 2

= KL

(
pdata

∥∥∥∥ pdata + pG
2

)
+KL

(
pG

∥∥∥∥ pdata + pG
2

)
− log 4

= 2 · JS(pdata||pG)− log 4
(15)

where KL and JS are the Kullback-Leibler and Jensen-Shannon divergence respectively. Since
the Jensen-Shannon divergence is always non-negative, Ladv(G) reaches its global minimum value
of − log 4 when JS(pdata||pG) = 0. When G(x) = x, we get pdata = pG and consequently
JS(pdata||pG) = 0, thus completing the proof.
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