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ABSTRACT

A major component of overfitting in model-free reinforcement learning (RL) in-
volves the case where the agent may mistakenly correlate reward with certain
spurious features from the observations generated by the Markov Decision Process
(MDP). We provide a general framework for analyzing this scenario, which we
use to design multiple synthetic benchmarks from only modifying the observation
space of an MDP. When an agent overfits to different observation spaces even if
the underlying MDP dynamics is fixed, we term this observational overfitting. Our
experiments expose intriguing properties especially with regards to implicit regu-
larization, and also corroborate results from previous works in RL generalization
and supervised learning (SL).

1 INTRODUCTION

Generalization for RL has recently grown to be an important topic for agents to perform well in
unseen environments. Complication arises when the dynamics of the environments entangle with
the observation, which is often a high-dimensional projection of the true latent state. One particular
frame work, which we denote the zero-shot supervised framework (Zhang et al., 2018a;c; Nichol
et al., 2018; Justesen et al., 2018) used to study RL generalization is to treat it analogous to a classical
supervised learning (SL) problem – i.e. assume there exists a distribution of MDP’s, train jointly on a
finite “training set” sampled from this distribution, and check expected performance on the entire
distribution, with the fixed trained policy. In this framework, there is a spectrum of analysis, ranging
from almost purely theoretical analysis (Wang et al., 2019; Asadi et al., 2018) to full empirical results
on diverse environments (Zhang et al., 2018c; Packer et al., 2018).

However, there is a lack of analysis in the middle of this spectrum - previous theoretical works
lack analysis for the case when the underlying MDP is relatively complex and requires the policy
to be a non-linear function approximator such as neural networks, while there also is no common
ground between recently proposed empirical benchmarks. This is partially caused by multiple
confounding factors for RL generalization that can be hard to identify and separate. For instance,
an agent can overfit to the MDP dynamics of the training set, such as for control in Mujoco (Pinto
et al., 2017; Rajeswaran et al., 2017b). In other cases, an RNN-based policy can overfit to maze-like
tasks in exploration (Zhang et al., 2018c), or even exploit determinism and avoid using observations
(Bellemare et al., 2012; Machado et al., 2018). Furthermore, various hyperparameters such as the
batch-size in SGD (Smith et al., 2018), choice of optimizer (Kingma & Ba, 2014), discount factor
γ (Jiang et al., 2015) and regularizations such as entropy (Ahmed et al., 2018) and weight norms
(Cobbe et al., 2018) can also affect generalization.

Due to these confounding factors, it can be unclear what parts of the MDP or policy are actually
contributing to overfitting or generalization in a principled manner, especially in empirical works with
newly proposed benchmarks. In order to isolate these factors, we study one broad factor affecting
generalization that is most correlated with themes in SL, specifically observational overfitting, where
an agent overfits due to properties of the observation which are irrelevant to the latent dynamics of
the MDP family. To study this factor, we fix a single underlying MDP’s dynamics and generate a
distribution of MDP’s by only modifying the observational outputs.

Our contributions in this paper are the following:
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1. We discuss realistic instances where observational overfitting may occur and its difference
from other confounding factors, and design a parametric theoretical framework to induce
observational overfitting that can be applied to any underlying MDP.

2. We study observational overfitting with linear quadratic regulators (LQR) in a synthetic
environment and neural networks such as multi-layer perceptrons (MLPs) and convolutions
in classic Gym environments. A primary novel result we demonstrate for all cases is that
implicit regularization occurs in this setting in RL. We further test the implicit regularization
hypothesis on the benchmark CoinRun from using MLPs, even when the underlying MDP
dynamics are changing per level.

2 MOTIVATION AND RELATED WORKS

Currently most architectures used in model-free RL are simple (with fewer than one million parame-
ters) compared to the much larger and more complex ImageNet architectures used for classification.
This is due to the fact that most RL environments the community studies either have relatively simple
and highly structured images (e.g. Atari) compared to real world images, or conveniently do not
directly force the agent to observe highly detailed images. For instance in large scale RL such as
DOTA2 (OpenAI, 2018) or Starcraft 2 (Vinyals et al., 2017), the agent observations are internal
minimaps pertaining to object xy-locations, rather than human-rendered observations.

Figure 1: Example of observational overfitting in Gym Retro (Nichol et al., 2018) for Sonic. Saliency
maps highlight (in red) the top-left timer and background objects because they are correlated with
progress. The agent could memorize optimal actions for training levels if its observation was only
from the timer, and “blacking-out” the timer consistently improved generalization performance (see
Appendix A.2.3)

Figure 1 highlights the issues surrounding MDP’s with rich, textured observations - specifically, the
agent can use any features that are correlated with progress, even those which may not generalize
across levels. Several artificial benchmarks (Zhang et al., 2018b; Gamrian & Goldberg, 2019) have
been proposed before to portray this notion of overfitting, where an agent must deal with a changing
background - however, a key difference in our work is that we explicitly require the “background” to
be correlated with the progress rather than loosely correlated (e.g. through determinism between
the background and the game avatar) or not at all. This makes a more explicit connection to causal
inference (Arjovsky et al., 2019; Heinze-Deml & Meinshausen, 2019; Heinze-Deml et al., 2019)
where spurious correlations between ungeneralizable features and progress may make training easy,
but are detrimental to test performance because they induce false attributions.

Previously, many works interpret the decision-making of an agent through saliency and other network
visualizations (Greydanus et al., 2018; Such et al., 2018) on common benchmarks such as Atari.
However, our work is motivated by learning theoretic frameworks to capture this phenomena, as there
is vast literature on understanding the generalization properties of SL classifiers (Neyshabur et al.,
2017; Vu, 2007; Novak et al., 2018; Neyshabur et al., 2018b). For an RL policy with high-dimensional
observations, we hypothesize its overfitting can come from more theoretically principled reasons, as
opposed to purely good inductive biases on game images.

As an example of what may happen in high dimensional observation space, consider a generic
loss function `(x) acting on a low dimensional input space x ∈ Rd, with a projected loss function
`projected(y) = `(Zy) acting on a high dimensional space y ∈ Rh. If x∗ is a minima of `(x),
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(a) (b)

Figure 2: (a) Visual Analogy of the Observation Function. (b) Our combinations for 1-D (top) and
2-D (bottom) images for synthetic tasks.
`projected can posses many more minima as rank of the solution space y∗ can be as high as h − d
from solving Zy∗ = x∗ where Z is d× h and h� d. Thus a high dimensional observation space
with a low dimensional state space can induce multiple solutions, some of which are not generalizable
to other functions or MDP’s.

2.1 NOTATION

To formalize the zero-shot framework for RL generalization, let Θ be a distribution over pa-
rameters θ that parametrize an MDP family {Mθ : θ ∈ Θ}. Each θ parametrizes Mθ =
(Sθ,Aθ, rθ, Tθ, S0,θ, wθ) which are respectively, state space, action space, reward, transitions, initial
state, and observation function. An appropriate train and test set can then be created by randomly
sampling θ ∼ Θ and training or evaluating withinMθ, and thus expected episodic reward will also be
parametrized as Rθ(π). In this work, we focus on modifying the observation function wθ : S → W ,
where the agent receives input from the high dimensional observation spaceW while keeping the
rest of the MDP family parts fixed.

Let Θ̂train = {θi, . . . , θn} be a set of n i.i.d. samples from Θ, and suppose we train π to optimize
reward against {Mθ : θ ∼ Θ̂train}. The objective J(π) maximized is the average reward over this
empirical sample, JΘ̂(π) = 1

|Θ̂train|

∑
θi∈Θ̂train

Rθi(π). We want to generalize to all θ ∈ Θ, which

can be expressed as the average episode reward R over the full distribution, JΘ(π) = Eθ∼Θ [Rθ(π)].
Thus it follows to define the generalization gap in RL as JΘ̂(π)− JΘ(π).

2.2 SETUP

We can model the effects of Figure 1 more generally, not specific to sidescroller games. We assume
that there is an underlying state s (e.g. xy-locations of objects in a game), whose features may be
very well structured, but that this state has been projected to a high dimensional observation space by
wθ. To abstract the notion of generalizable and non-generalizable features, we construct a simple and
natural candidate class of functions, where wθ(s) = h(f(s), gθ(s)).

wθ(s) = h(f(s), gθ(s)) (1)

In this setup, f(·) is a function invariant for the entire MDP population Θ, while gθ(·) is a function
dependent on the sampled parameter θ. h is a ”combination” function which combines the two
outputs of f and g to produce a final observation. While f projects this latent data into salient and
important, invariant features such as the avatar, monsters, and items, gθ projects the latent data
to unimportant features that do not contribute to extra generalizable information, and can cause
overfitting, such as the changing background or textures. A visual representation is shown in Figure
2.2. This is a simplified but still insightful model relevant in more realistic settings. For instance, in
settings where g does matter, learning this separation and task-identification (Yu et al., 2017; Peng
et al., 2018) could potentially help fast adaptation in meta-learning (Finn et al., 2017). From now on,
we denote this setup as the fg-scheme.

This setting also leads to more interpretable generalization bounds - Lemma 2 of (Wang
et al., 2019) provides a high probability (1 − δ) bound for the “intrinsic” generalization gap
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when m levels are sampled: gap ≤ Radm(Rπ) + O
(√

log(1/δ)
m

)
, where Radm(Rπ) =

E(θ1,...,θm)∼Θm

[
Eσ∈{−1,+1}

[
supπ

1
m

∑m
i=1 σiRθi(π)

] ]
is the Rademacher complexity under the

MDP, where θi are the ζi parameters used in the original work, and the transition T and initial-
ization I are fixed, therefore omitted, to accommodate our setting. For most RL benchmarks,
this is not interpretable due to multiple confounding factors such as the varying level dynamics.
However, in our case, because the environment parameters θ are only from gθ, the Rademacher
complexity is directly based on how much the policy “looks at” gθ. A generalized optimal
policy π∗ therefore should not be affected by changes in gθ; i.e. ∇θπ∗(wθ(s)) = 0 ∀s and
Rθ(π

∗) = Rconst ∀θ, which implies that the environment parameter θ has no effect on the reward;
hence Radm(Rπ) = Eσ∈{−1,+1}

[
supπ

1
m

∑m
i=1 σiRconst

]
= 0.

2.3 ARCHITECTURE AND IMPLICIT REGULARIZATION

Normally in a MDP such as a game, the concatenation operation may be dependent on time (e.g.
textures move around in the frame). In the scope of this work, we simplify the concatenation effect
and assume h(·) is a static concatenation, but still are able to demonstrate insightful properties. 1

This setting is naturally attractive to analyzing architectural differences, as it is more closely related
in spirit to image classifiers and SL. One particular line of work to explain the effects of certain
architectural modifications in SL such as overparametrization and residual connections is implicit
regularization (Neyshabur, 2017; Neyshabur et al., 2018b), as overparametrization through more
layer depth and wider layers has proven to have no `p-regularization equivalent (Arora et al., 2019),
but rather precondition the dynamics during training. Thus, in order to fairly experimentally measure
this effect, we always use fixed hyperparameters and only vary based on architecture. 2

3 EXPERIMENTS

3.1 WARMUP - LQR

We start with a a principled example in the deterministic classic control setting, by using the linear
quadratic regulator (LQR) as a basis for the underlying MDP. We use full gradient descent through the
loss, ignoring confounding aspects of RL (exploration, entropy, γ, noise, stochastic gradients, etc.).
Furthermore, all minima are global minima, and hence asymptotic training performance is always the
same. For a given θ, we let f(s) = Wconstant · s, while gθ(s) = Wθ · s where Wconstant,Wθ are
semi-orthogonal matrices, to prevent information loss relevant to outputting the optimal action, as the
state is transformed into observation. We sample Wθ randomly, using a scalar integer θ as the seed for
random generation. In terms of dimensions, if s is of shape dstate, then f also projects to a shape of
dstate, while gθ projects to a much larger shape dnoise, implying that the observation to the agent is
of dimension dsignal + dnoise. In our experiments, we set as default (dsignal, dnoise) = (100, 1000).

A key insight is that that a policy in high dimensional policyK acting on observationWs is equivalent
to a low-dimensional policy Kstate = KW acting on state s. We begin with a theorem which implies
that a high dimensional observational space directly contributes to overfitting:

Theorem 3.1 For LQR’s whose observation consists of (dsignal, dnoise)-dimensional vectors con-
structed with the fg-scheme and fixed number of training levels m, the generalization gap upper
bound scales with O(

√
dnoise) with high probability.

We empirically verify that this bound is tight in Figure 3 and defer the detailed proof to Ap-
pendix A.4.3. Denote ‖·‖, ‖·‖1, ‖·‖F as the spectral, `1, and Frobenius norms respectively
of a matrix. Furthermore, the continuity of the cost function (Fazel et al., 2018) states that

1We note that this inductive bias on h allows explicit regularization to trivially solve this problem, by
penalizing a policy’s first layer that is used to “view” gθ(s) (Appendix A3), hence we only focus on implicit
regularizations.

2In this work, we only refer to architectural implicit regularization techniques, which do not have a explicit
regularization equivalent. Some techniques e.g. coordinate descent (Bradley et al., 2011) are equivalent to
explicit `1-regularization.
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C(Kstate) − C(K ′state) ≤ O(‖Kstate −K ′state‖
3
), which implies that gap ≤

√
O(‖Kstate‖3)

m .
By semi-orthogonality ‖W‖ ≤ 1, hence ‖KW‖ ≤ ‖K‖. Since the spectral norm ‖K‖ of a random
matrix scales with its dimension d by d1/3, thus the generalization gap also scales with the size of√

(d
1/3
noise)

3 =
√
dnoise.

Note the significant difference from SL bounds: C(K)− C(K ′) ≤ O(‖K −K ′‖d), where d = 3
for our LQR case, whereas classification only uses d = 1 bounds and are mainly concerned with
the Lipschitz constant. We conjecture that this difference is key to why SL bounds do not properly
bound the RL generalization gap, especially shown in our overparametrization results shown below.
To the best of our knowledge, our problem is not equivalent to any of the well-studied problems in
overparametrization.

Experimentally, we added more (100× 100) linear layers K = K0K1, ...,Kj and increased widths
for a 2-layer case (Figure 3), and observe that both settings reduce the generalization gap, and also
reduce the norms (spectral, nuclear, Frobenius) of the final end-to-end policy K, without changing
its expressiveness. This suggests that gradient descent under overparametrization implicitly biases
the policy towards a “simpler” model in the LQR case. However, how do we quantify this intuition
by bounding the generalization performance of the final policy K in terms of norm functions of the
layers K0, ...,Kj? For instance, from examining the distribution of singular values on K (Appendix
A1), we find that more layers does not bias the policy towards a low rank solution in the nonconvex
LQR case, unlike (Arora et al., 2018) which shows this does occur for matrix completion, and in
general, convex losses.

Since our setup is similar to SL in that “LQR levels” which may be interpreted as a dataset, we
use bounds of the form ∆ · Φ, where ∆ is a “macro” product term ∆ =

∏j
i=0 ‖Ki‖ ≥

∥∥∥∏j
i=0Ki

∥∥∥
derivable from the fact that ‖AB‖ ≤ ‖A‖ ‖B‖ in the linear case, and Φ is a weight-counting

term which deals with the overparametrized case, such as Φ =
∑j
i=0

‖Ki‖2F
‖Ki‖2

(Neyshabur et al.,

2018a) or Φ =

(∑j
i=0

(
‖Ki‖1
‖Ki‖

)2/3
)3

(Bartlett et al., 2017). While gap ≤
√
O(‖Kraw‖3) ≤

O(
∏j
i=0 ‖Ki‖

3
2 ) = ∆3/2, we may replace any SL perturbation bounds |fw(x) − fw′(x)| with

C(K)− C(K ′) ≤ O(‖K −K ′‖3), which can grant us expressions similar to Φ, but with different
exponents. However, the Φ terms increase too rapidly as shown in Figure 3.

Terms such as Frobenius product (Golowich et al., 2018) and Fischer-Rao (Liang et al., 2019) are
effective for the SL depth case, but are both ineffective in the LQR depth case. For width, the only
product which is effective is the nuclear norm product.

Figure 3: (Left) We show that the generalization gap vs noise dimension is tight as the noise dimension
increases, showing that this bound is accurate. (Middle and Right) LQR Generalization Gap vs
Number of Intermediate Layers. We plotted different Φ =

∑j
i=0

‖A‖∗
‖A‖ terms without exponents, as

powers of those terms are monotonic transforms since ‖A‖∗‖A‖ ≥ 1 ∀A and ‖A‖∗ = ‖A‖F , ‖A‖1. We
see that the naive spectral bound diverges at 2 layers, and the weight-counting sums are too loose.
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3.2 PROJECTED GYM ENVIRONMENTS

In Section 3.1, we find that observational overfitting exists and overparametrization potentially helps
in the linear setting. We perform the fg-scheme again on nonlinear, common Gym Environments,
and use Proximal Policy Gradient (Schulman et al., 2017) for optimization. We observe empirically
that the underlying state dynamics has a significant effect on generalization performance as the policy
nontrivially increased test performance such as in CartPole-v1 and Swimmer-v2, while it could not
for others. This suggests that the Rademacher complexity and the weight-perturbation bound for
rewards vary highly for different environments.

Figure 4: Observational overfitting occurring for Gym. Full Plots in A2.

Switching between ReLU and Tanh activations produces different results during overparametrization.
For instance, increasing Tanh layers improves generalization on CartPole-v1, and width increase
with ReLU helps on Swimmer-v2. Tanh is noted to consistently improve generalization performance.
However, stacking Tanh layers comes at a cost of also producing vanishing gradients which can
produce subpar training performance, for e.g. HalfCheetah. To allow larger depths, we use ReLU
residual layers, which also improves generalization and stabilizes training.

Previous work (Zhang et al., 2018c) did not find such an architectural pattern for GridWorld environ-
ments, suggesting that this effect may exist primarily for observational overfitting cases. While there
have been numerous works which avoid overparametrization on simplifying policies (Rajeswaran
et al., 2017a; Mania et al., 2018) or compactifying networks (Choromanski et al., 2018; Gaier &
Ha, 2019), we instead find that there are generalization benefits to overparametrization even in the
nonlinear control case.

Figure 5: Effects of Depth.

Figure 6: Effects of Width.

3.3 DECONVOLUTIONAL PROJECTIONS

From the above results with MLP’s, one may wonder if similar results may carry to convolutional
networks, as they are mainly used for vision-based RL tasks. As a ground truth reference for our
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experiment, we the canonical networks proven to generalize well in the dataset CoinRun, which are
from worst to best, NatureCNN Mnih et al. (2013), IMPALA Espeholt et al. (2018), and IMPALA-
LARGE (IMPALA with more residual blocks and higher convolution depths), which have respective
parameter numbers (600K, 622K, 823K).

We setup a similar fg-scheme appropriate for the inductive bias of convolutions, by projecting the
state latent to a fixed length, reshaping it into a square, and replacing f and gθ both with the same
orthogonally-initialized deconvolution architecture to each produce a 84×84 image (but gθ’s network
weights are still generated by θ1, ..., θm similar to before). We combine the two outputs by using one
half of the ”image” from f , and one half from gθ, as shown back in Figure 2.2.

Figure 7: (Top) Performance of architectures in the synthetic Gym-Deconv dataset. To cleanly depict
test performance, training curves are replaced with horizontal (max env. reward) and vertical black
lines (avg. timestep when all networks reach max reward). (Bottom) We only show the observation
from gθ(s), which tests memorization capacity on Swimmer-v2.

Figure 7 shows that the same ranking between the three architectures exists as well on the Gym-
Deconv dataset. This consistency in results suggests that the observational overfitting framework is
correlated with the generalization issues found in CoinRun. Furthermore, this also suggests that the
RL generalization quality of a convolutional architecture is not limited to real world data, as our test
purely uses numeric observations - i.e. the observation is simply unintelligible static if represented in
human format.

We also perform a memorization test by only showing gθ’s output to the policy. This makes the
dataset impossible to generalize to, as the policy network cannot invert every single observation
function gθ1(·), gθ2(·), ... simultaneously. (Zhang et al., 2018c) also constructs a memorization test
for mazes and grid-worlds, and showed that more parameters increased the memorization ability of
the policy. We show in the bottom figure that this is perhaps not a complete picture when implicit
regularization becomes involved.

Using the underlying MDP as a Swimmer-v2 environment, we see that NatureCNN, IMPALA,
IMPALA-LARGE have reduced memorization performances. IMPALA-LARGE, which has more
depth parameters and more residual layers (and thus technically has more capacity), memorizes less
than IMPALA due its inherent inductive bias. Another memorization test where an LQR is used as
underlying MDP is shown in Appendix A.1.2, with similar results. We hypothesize that these extra
residual blocks may be implicitly regularizing the network. This is corroborated by the fact that
residual layers are also explained as an implicit regularization technique (Neyshabur, 2017) for SL.
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4 OVERPARAMETRIZATION IN COINRUN

We test our hypothesis from the above to the CoinRun benchmark, using unlimited levels for training.
For MLP networks, we downsized CoinRun from native 64 × 64 to 32 × 32, and flattened the
32× 32× 3 image for input to an MLP. Two significant differences from previous cases are that 1.
inherent dynamics are changing per level in CoinRun, and 2. the relevant and irrelevant CoinRun
features change locations across the 1-D input vector. Regardless, we show that overparametrization
can still improve generalization in this more realistic RL benchmark, much akin to Neyshabur et al.
(2018b) which showed that overparametrization for MLP’s improved generalization on 32× 32× 3
CIFAR-10.

Figure 8: Overparametrization improves generalization for CoinRun.

While we also extend the case of large-parameter convolutional networks using ImageNet networks
in Appendix A.2.1, an important question is how to predict the generalization gap only from the
training phase. A particular set of metrics, popular in the SL community are margin distributions
(Jiang et al., 2018; Bartlett et al., 2017), as they deal with the case for softmax outputs which do
not explicitly penalize the weight norm of a network, by normalizing the ”confidence” margin of
the logit outputs. While using margins on state-action pairs (from an on-policy replay buffer) is not
technically rigorous, one may be curious to see if they have predictive power, especially as MLP’s
are relatively simple to norm-bound. We plotted these margin distributions in Appendix A.2.2, but
found that the weight norm bounds used in SL are simply too dominant for this RL case. This, with
the bound results found earlier for the LQR case, suggests that current norm bounds are simply too
loose for the RL case even though we have shown overparametrization helps generalization in RL,
and hopefully this motivates more of the study of such theory.

5 CONCLUSION

We have identified and isolated a key component of overfitting in RL as the particular case of “obser-
vational overfitting”, which is particularly attractive for studying architectural implicit regularizations.
We have analyzed this setting extensively, by examining 3 main components:

1. The analytical case of LQR and linear policies under exact gradient descent, which lays the
foundation for understanding theoretical properties of networks in RL generalization.

2. The empirical but principled Projected-Gym case for both MLP and convolutional networks
which demonstrates the effects of neural network policies under nonlinear environments.

3. The large scale case for CoinRun, which can be interpreted as a case where relevant features
are moving across the input, where empirically, MLP overparametrization also improves
generalization.

We noted that current network policy bounds using ideas from SL are unable to explain over-
parametrization effects in RL, which is an important further direction. In some sense, this area
of RL generalization is an extension of static SL classification from adding extra RL components.
For instance, adding a nontrivial “combination function” between f and gθ that is dependent on
time (to simulate how object pixels move in a real game) is both an RL generalization issue and
potentially video classification issue, and extending results to the memory-based RNN case will
also be highly beneficial. Extending the analysis to off-policy methods such as Q-learning and also
ES-based methods is also important. We believe that this work provides an important initial step
towards solving these future problems.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. CoRR, abs/1811.11214, 2018.
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Chiyuan Zhang, Oriol Vinyals, Rémi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. CoRR, abs/1804.06893, 2018c. URL http://arxiv.org/abs/
1804.06893.

12

http://proceedings.mlr.press/v97/wang19o.html
http://www.roboticsproceedings.org/rss13/p48.html
http://arxiv.org/abs/1804.06893
http://arxiv.org/abs/1804.06893


Under review as a conference paper at ICLR 2020

A.1 FULL PLOTS FOR LQR, FG-GYM-MLP, FG-GYM-DECONV

A.1.1 LQR

Figure A1: (a,b): Singular Values for varying depths and widths. (c,d): Train and Test Loss for
varying widths and depths. (e): Train and Test Loss for varying Noise Dimensions.

(a) (b)

(c) (d)

(e)

13



Under review as a conference paper at ICLR 2020

A.1.2 EXTENDED fg-SCHEME RESULTS

Figure A2: Each Mujoco task is given 10 training levels (randomly sampling gθ parameters). We used
a 2-layer Tanh policy, with 128 hidden units each. Dimensions of outputs of (f, g) were (30, 100)
respectively.

(a)

We further verify that explicit regularization (norm based penalties) also reduces generalization gaps.
However, explicit regularization may be explained due to the bias of the synthetic tasks, since the
first layer’s matrix may be regularized to only ”view” the output of f , especially as regularizing the
first layer’s weights substantially improves generalization.

Figure A3: Explicit Regularization on layer norms.

Figure A4: Another deconvolution memorization test, using an LQR as the underlying MDP. While
fg-Gym-Deconv shows that memorization performance is dampened, this test shows that there can
exist specific hard limits to memorization. Specifically, NatureCNN can memorize 30 levels, but not
50; IMPALA can memorize 2 levels but not 5; IMPALA-LARGE cannot memorize 2 levels at all.
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A.2 EXTENDED LARGE RL RESULTS

A.2.1 LARGE IMAGENET MODELS FOR COINRUN

We experimentally verify in table (1) that large ImageNet models perform very differently in RL than
during SL. We note that default network with the highest test reward was IMPALA-LARGE-BN
(IMPALA-LARGE, with Batchnorm) at ≈ 5.5 test score.

In order to verify that this is inherently a feature learning problem rather than a combinatorial
problem involving objects, such as in (Santoro et al., 2018), we show that state-of-the-art attention
mechanisms for RL such as Relational Memory Core (RMC) using pure attention on raw 32× 32
pixels does not perform well here, showing that a large portion of generalization and transfer must be
based on correct convolutional setups.

Architecture Coinrun-100
(Train, Test)

AlexNet-v2 (10.0, 3.0)
CifarNet (10.0, 3.0)
IMPALA-
LARGE-BN (10.0, 5.5)

Inception-ResNet-v2 (10.0, 6.5)
Inception-v4 (10.0, 6.0)
MobileNet-v1 (10.0, 5.5)
MobileNet-v2 (10.0, 5.5)
NASNet-
CIFAR (10.0, 4.0)

NASNet-
Mobile (10.0, 4.5)

ResNet-v2-50 (10.0, 5.5)
ResNet-v2-101 (10.0, 5.0)
ResNet-v2-152 (10.0, 5.5)
RMC32x32 (9.0, 2.5)
ShakeShake (10.0, 6.0)
VGG-A (9.0, 3.0)
VGG-16 (9.0, 3.0)

Table 1: Raw Network Performance (rounded to nearest 0.5) on CoinRun, 100 levels. Images scaled
to default image sizes (32×32 or 224×224) depending on network input requirement. See Appendix
A5 for training curves.
We provide the training/testing curves for the ImageNet/large convolutional models used. Note the
following:

1. RMC32x32 projects the native image from CoinRun from 64× 64 to 32× 32, and uses all
pixels as components for attention, after adding the coordinate embedding found in (Santoro
et al., 2018). Optimal parameters were (mem slots = 4, head size = 32, num heads = 4,
num blocks = 2, gate style = ’memory’).

2. Auxiliary Loss in ShakeShake was not used during training, only the pure network.
3. VGG-A is a similar but slightly smaller version of VGG-16.
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Figure A5: Large Architecture Training/Testing Curves (Smoothed).

A.2.2 DO STATE-ACTION MARGIN DISTRIBUTIONS PREDICT GENERALIZATION IN RL?

A conceptual difference between CoinRun and our other tasks is due to the discrete action space
of CoinRun. We verify in Figure A6, that indeed, simply measuring the raw norms of the policy
network is a poor way to predict generalization, as it generally increases even as training begins to
plateau. This is inherently because the softmax on the logit output does not penalize arbitrarily high
logit values, and hence proper normalization is needed.

We are curious in measuring the margin distribution of action logits, as this has been used extensively
to empirically predict the generalization properties of classifiers (). For a policy, the the margin
distribution will be defined as (s, a) → Fπ(s)a−maxi6=y Fπ(x)i

Rπ‖S‖2/n
, where Fπ(s)a is the logit value of

action a given input s, before the softmax, and S is the matrix of states in the replay buffer, andRπ
is the norm-based Lipschitz bound on the policy network logits. We used the Spectral, Sharpness and
Bartlett bounds, for Rπ, and we replace the classical supervised learning pair (x, y) = (s, a) with
the state action pairs found on-policy.

We used the following metricsRπ (after removing irrelevant constants)

1. Bartlett Bound:
(∏d

i=1 ‖Wi‖
)(∑d

i=1
‖Wi‖2/31

‖Wi‖2/3

)3/2

2. Sharpness Bound:

√∑d
i=1‖Wi−W 0

i ‖2F+ln(2m/δ)

m
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3. Spectral Bound:

√
ln(d)

∏d
i=1‖Wi‖22

∑d
j=1

‖Wj−W0
j ‖2F

‖Wj‖22
+ln( 6m

δ )

m

Unlike the other metrics mentioned, the margin distribution converges to a fixed distribution even long
after training has plateaued. However, unlike SL, the margin distribution is conceptually not fully
correlated with RL generalization on the total reward, as a policy overconfident in some state-action
pairs does not imply bad testing performance. This correlation is stronger if there are Lipschitz
assumptions on state-action transitions, as noted in Wang et al. (2019). For empirical datasets such
as CoinRun, a metric-distance between transitioned states is ill-defined however. Nevertheless, the
distribution over the on-policy replay buffer at each policy gradient iteration is a rough measure of
overall confidence.

Figure A6: Margin Distributions at the end of training.

We note that there are two forms of modifications, network dependent (explicit modifications to the
policy - norm regularization, dropout, etc.) and data dependent (modifications only to the data in
the replay buffer - action stochasticity, data augmentation, etc.). Ultimately however, we find that
current norm bounds Rπ become too dominant in the fraction, leading to the monotonic decreases in
the means of the distributions as we increase parametrization.

Figure A7: Margin Distributions at the end of training.
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A.2.3 GYM-RETRO (SONIC)

In the Gym-Retro benchmark (Sonic), the agent is given 47 training levels with rewards corresponding
to increases in horizontal location. The policy is trained until 5k reward. At test time, 11 unseen
levels are partitioned into starting positions, and the rewards are measured and averaged.

We briefly mention that the agent strongly overfits to the scoreboard (i.e. an artifact correlated with
progress in the level), which may be interpreted as part of the output of gθ(·). In fact, the agent is still
able to train to 5k reward from purely observing the timer as the observation. By blacking out this
scoreboard with a black rectangle, we see an increase in test performance.

Settings IMPALA NatureCNN
Blackout 1250± 40 1141± 40
NoBlackout 1130± 40 1052± 40

Table 2: IMPALA vs NatureCNN test rewards, with and without Blackout.

A.3 HYPERPARAMETERS AND EXACT SETUPS

A.3.1 EXACT INFINITE LQR

For infinite horizon case, see (Fazel et al., 2018) for the the full solution and notations. Using the
same notation (A,B,Q,R), denote C(K) =

∑
x0∼D x

T
0 PKx0 as the cost and ut = −Kxt as the

policy, where PK satisifies the infinite Algebraic-Ricatti equation:

PK = Q+KTRK + (A−BK)TPK(A−BK) (2)

We may calculate the precise LQR cost by vectorizing (i.e. flattening) both sides’ matrices and using
the Kroncker product ⊗, which leads to a linear regression problem on PK , which has a precise
solution, implementable in TensorFlow:

vec(PK) = vec(Q) + vec(KTRK) +
[
(A−BK)T ⊗ (A−BK)T )

]
vec(PK) (3)

[
In2 − (A−BK)T ⊗ (A−BK)T

]
vec(PK) = vec(Q) + vec(KTRK) (4)

Parameter Generation
A Uniform Random from set of orthogonal matrices on n× n, scaled 0.99
B In
Q In
R In
n 10

Table 3: Hyperparameters for LQR

A.3.2 PROJECTION METHOD

The basis for producing f, gθ outputs is due to using batch matrix multiplication operations, or ”BMV”,
where the same network architecture uses different network weights for each batch dimension, and
thus each entry in a batchsize of B will be processed by different network weights. This is to simulate
the effect of gθi - The numeric ID i of the environment is used as an index to collect a specficic set of
network weights θi from a global memory of network weights (e.g. using tensorflow.gather).
We did not use nonlinear activations for the BMV architectures, as they did not change the outcome
of the results.

Architecture Setup
BMV-Deconv (filtersize = 2, stride = 1, outchannel = 8, padding = ”VALID”)

(filtersize = 4, stride = 2, outchannel = 4, padding = ”VALID”)
(filtersize = 8, stride = 2, outchannel = 4, padding = ”VALID”)
(filtersize = 8, stride = 3, outchannel = 3, padding = ”VALID”)

BMV-Dense f : Dense 30, g : Dense 100
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A.3.3 IMAGENET MODELS

For the networks used in the supervised learning tasks, we direct the reader to the following
repository: https://github.com/tensorflow/models/blob/master/research/
slim/nets/nets_factory.py. We also used the RMC: deepmind/sonnet/blob/
master/sonnet/python/modules/relational_memory.py

A.3.4 PPO PARAMETERS

For the projected gym tasks, we used for PPO2 Hyperparameters:

PPO2 Hyperparameters Values
nsteps 2048
nenvs 16
nminibatches 64
λ 0.95
γ 0.99
noptepochs 10
entropy 0.0
learning rate 3 · 10−4

vf coeffiicent 0.5
max-grad-norm 0.5
total time steps Varying

See (Cobbe et al., 2018) for the default parameters used for CoinRun. We only varied nminibatches in
order to fit memory onto GPU. We also did not use RNN additions, in order to measure performance
only from the feedforward network - the framestacking/temporal aspect is replaced by the option to
present the agent velocity in the image.

A.4 THEORETICAL RESULTS (LQR)

See (Fazel et al., 2018) for more extensive LQR notation and statements that we will use. Below
proofs of certain overfitting properties in the LQR case, which give more rigorous bounds.

A.4.1 NOTATION AND SETTING

Let ‖·‖ be the spectral norm of a matrix (i.e. largest singular value). Suppose C(K) was the infinite
horizon cost for an (A,B,Q,R)-LQR where action at = −K · xt, xt is the state at time t, state
transition is xt+1 = A · xt +B · at, and timestep cost is xTt Qxt + aTt Rat.

C(K) for an infinite horizon LQR, while known to be non-convex, still possess the property that when
∇C(K∗) = 0, K is a global minimizer, or the problem statement is rank deficient. By varying the
observation projections, θ generates a population of Cθ(K) cost functions with all of the population
having the same minimizer K∗.

A.4.1.1 SMOOTHNESS BOUNDS

As described in Lemma 16 of (Fazel et al., 2018), we define

TK(X) =

∞∑
t=0

(A−BK)tX[(A−BK)T ]t (5)

and ‖TK‖ = supX
TK(X)
‖X‖ over all non-zero symmetric matrices X .

Lemma 27 of (Fazel et al., 2018) provides a bound on the difference C(K ′)−C(K) for two different
policies K,K ′ when LQR parameters A,B,Q,R are fixed. During the derivation, it states that when
‖K −K ′‖ ≤ min

(
σmin(Q)µ

4C(K)‖B‖(‖A−BK‖+1) , ‖K‖
)

, then

19

https://github.com/tensorflow/models/blob/master/research/slim/nets/nets_factory.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/nets_factory.py
deepmind/sonnet/blob/master/sonnet/python/modules/relational_memory.py
deepmind/sonnet/blob/master/sonnet/python/modules/relational_memory.py


Under review as a conference paper at ICLR 2020

C(K ′)− C(K) ≤ E ‖x0‖2 ‖PK′ − PK‖ (6)
where PK =

∥∥TK(Q+KTRK)
∥∥, and ‖PK′ − PK‖ is bounded by the sum of two terms, which

are 2 ‖TK‖ (3 ‖K‖ ‖R‖ ‖K ′ −K‖) and 2 ‖TK‖2 2 ‖B‖ (‖A−BK‖+ 1) ‖K −K ′‖ ‖K‖2 ‖R‖.
Thus we have the bound

C(K ′)− C(K) ≤ 2 ‖TK‖ (2 ‖K‖ ‖R‖ ‖K ′ −K‖+ ‖R‖ ‖K ′ −K‖2)+

2 ‖TK‖2 2 ‖B‖ (‖A−BK‖+ 1) ‖K −K ′‖ ‖K‖2 ‖R‖
(7)

Lemma 17 also states that:

‖TK‖ ≤
C(K)

µσmin(Q)
(8)

where
µ = σmin(Ex0∼D[x0x

T
0 ]) (9)

Assuming that in our problem setup, x0, Q,R,A,B were fixed, this means many of the parameters
in the bounds are constant, and thus we conclude:

C(K ′)− C(K) ≤ O
(
C(K)2

[
‖K‖2 ‖K −K ′‖ (‖A−BK‖+ ‖B‖+ 1) + ‖K‖ ‖K −K ′‖2

])
(10)

Since ‖A−BK‖ ≤ 1 or else TK(X) is infinite and in this scheme O(‖K ′ −K‖) = O(‖K‖), we
thus finally collect the terms to get the bound we will use in the next sections:

C(K ′)− C(K) ≤ O
(
C(K)2 ‖K‖3

)
= O(C(K)2 ‖K ′ −K‖3) (11)

A.4.2 OBSERVATIONAL PROJECTIONS

Let C(·) be the cost function S → R for a policy acting on the state space, and without loss of
generality, normalize the constants in (11) so thatC(K ′)−C(K) ≤ ‖K ′ −K‖3. In the observational
projection case, we note that an observation of Ws with policy K is exactly the same as the case
when the observation is s and the policy is KW . In our experiments, a semi-orthogonal W is
sampled from combining two samples from f and g and normalizing. The experiments allowed
Wobs to be a matrix of size (dobs, dstate), and K size (daction, dobs). Using (11), we see that
C(KW

(1)
obs)− C(KW

(2)
obs) ≤ ‖KW1 −KW2‖3 ≤ ‖K‖3 ‖W1 −W2‖3.

The dominant term in this expression is ‖K‖. We can examine how much it scales as a function of
the dimension dobs, since for any random K since for any K, we can form an LQR with K as optimal
policy, which means random matrix theory can provide insights into the distribution of ‖KW‖. It
is established (Vu, 2007) that for random matrices of such dimensions dobs � daction, ‖K‖ scales
with the dimension, with growth bound of O(d

1/3
obs ).

A.4.3 GENERALIZATION BOUNDS FOR LQR LINEAR CASE

We can think of the semi-orthogonal samples W1,W2, ... as the “randomly sampled datapoints” from
a distribution Dobs analogous to supervised learning. If we fix A,B,Q,R, then we may write our
cost function in LQR as Ci(K) = C(KW ). Note that C(·) ∈ [0,M ] for some maximal value M
based on A,B,Q,R, x0.

Then, for a fixed K, and drawing infinite samples of Wi, we define the following:
CDobs(K) = EW∼Dobs [C(KW )] (12)

Optimizing this infinite sample case is optimizing the ”true cost function”. However, if we have finite
samples Sm = {W1, ...,Wm}, we can define the average sample cost as

ĈSm(K) =
1

|S|
∑
Wi∈S

C(KWi) =
1

|S|
∑
i

Ci(K) (13)
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We apply the standard proof of generalization gap: From definition of supremum, for a fixed K ∈ K
denote

gap = CDobs(K)− ĈSm(K) ≤ sup
Kmax∈K

(
CDobs(Kmax)− ĈSm(Kmax)

)
(14)

Denote random variable ψ(S) = supKmax∈K

(
CDobs(Kmax)− ĈSm(Kmax)

)
. We need to under-

stand how much ψ changes as a result of changing the samples Wi.

A common approach to forming generalization gap bounds comes from the McDiarmid inequality:

Suppose K is fixed. If ψ(S) satisfies:

sup
W1,...,Wm

|ψ(W1, ...Wi, ...,Wm)− ψ(W1, ...Wi′ , ...,Wm)| ≤ ci (15)

Then
Pr[ψ(S)− ES [ψ(S)] ≥ ε] ≤ e−2ε2/

∑m
i=1 c

2
i (16)

Suppose that we only changed one of the samples Wi. Then we can use our main equation (11) above,
to get

ci =
1

m
O
(
C(KWi)

2 ‖K‖3
)

(17)

Plugging this in, we then get with probability at least 1− δ,

ψ(S) ≤ E[ψ(S)] +

√√√√( ln(1/δ)C(K)2 ‖K‖3

m

)
(18)

Note that this equation (A.4.3) essentially is the main term found in Theorem 3.1.

To bound ES [ψ(S)] from equation A.4.3, we use the standard definition of Rademacher complexity:

ES [ψ(S)] ≤ 2Rm(K) (19)

where Rademacher complexity is defined for our case as:

Rm(K) =
1

m
Eσ

[
sup
K∈K

m∑
i=1

σiCi(K)

]
(20)

To ease on notation, assume supK = supK∈K. We use the following technique:

Eσ1,...,σm−1

[
sup
K

m−1∑
i=1

σiCi(K)

]
(21)

= Eσ1,...,σm

[
1

2

(
sup
K

m−1∑
i=1

σiCi(K) + σmCm(K) + sup
K′

m−1∑
i=1

σiCi(K
′)− σmCm(K ′)

)]
(22)

= Eσ

[
sup
K,K′

1

2

(
m−1∑
i=1

σiCi(K) + σiCi(K
′) + σmCm(K)− σmCm(K ′)

)]
(23)

≤ Eσ

[
sup
K,K′

1

2

(
m−1∑
i=1

σiCi(K) + σiCi(K
′) + σm ‖(K −K ′)Wm‖

3

)]
(24)

which implies that after unrolling the induction step m times,

Eσ1,...,σm

[
sup
K

m∑
i=1

σiCi(K)

]
≤ Eσ

[
sup
K,K′

1

2

m∑
i=1

σi ‖(K −K ′)Wi‖
3

]
(25)
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= Eσ

[
sup
K

1

2

m∑
i=1

σi ‖KWi‖3
]

(26)

where the previous equality holds since K is a convex set, and thus the set of all possible differences
K −K = K.

This is upper bounded by:

Eσ

[
sup
K

1

2

m∑
i=1

σi ‖K‖3 ‖Wi‖3
]

= Eσ

[
sup
K

1

2
‖K‖3

m∑
i=1

σi

]
(27)

where the last equality follows since ‖Wi‖ = 1.

We note that if
∑m
i=1 σi < 0, then the optimum K satisfies ‖K‖ = 0, and otherwise ‖K‖3 is

maximized - abusing notation slightly, let supK ‖K‖
3

= ‖K‖3. Hence the previous term from (27)
is upper bounded by:

≤ Eσ ‖K‖3
[

1

2

∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]

= O(
√
m) (28)

where the last equation follows from a well known property of Rademacher variables, which then
follows thatRm(K) ≤ O(

√
m)

m = O( 1√
m

).

Hence it follows that gathering all terms, we have finally:

gap ≤ 2Rm(K) +

√√√√( ln(1/δ)C(K)2 ‖K‖3

m

)
≤ O

(
1√
m
‖K‖3/2

)
(29)

Since from A.4.2, ‖K‖ ∼ O(d
1/3
obs ), Theorem 3.1 presented from the main section follows.
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