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ABSTRACT

Deep reinforcement learning has succeeded in sophisticated games such as Atari,
Go, etc. Real-world decision making, however, often requires reasoning with par-
tial information extracted from complex visual observations. This paper presents
Discriminative Particle Filter Reinforcement Learning (DPFRL), a new reinforce-
ment learning framework for partial and complex observations. DPFRL encodes
a differentiable particle filter with learned transition and observation models in a
neural network, which allows for reasoning with partial observations over multiple
time steps. While a standard particle filter relies on a generative observation model,
DPFRL learns a discriminatively parameterized model that is training directly
for decision making. We show that the discriminative parameterization results in
significantly improved performance, especially for tasks with complex visual obser-
vations, because it circumvents the difficulty of modeling observations explicitly. In
most cases DPFRL outperforms state-of-the-art POMDP RL models in Flickering
Atari Games, an existing POMDP RL benchmark, and in Natural Flickering Atari
Games, a new, more challenging POMDP RL benchmark that we introduce. We
further show that DPFRL performs well for visual navigation with real-world data.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has attracted significant interest with applications ranging from
game playing (Mnih et al.| 2013} [Silver et al., 2017) to robot control and visual navigation (Levine
et al.,[2016; Kahn et al.,[2018}; |Savva et al., 2019). However, more natural or real-world environments
pose significant challenges for current DRL methods (Arulkumaran et al.||2017), in part because they
require (1) reasoning in a partially observable environment (2) reasoning with complex observations,
e.g. visually rich images. For example, a robot navigating in a new environment has to (1) localize
and plan a path having only partial information of the environment (2) extract the traversable space
from image pixels, where the relevant geometric features are tightly coupled with irrelevant visual
features, such as wall textures and lighting.

Decision making under partial observability can be formulated as a partially observable Markov
decision process (POMDP). Solving POMDPs requires tracking the posterior distribution of the states,
called the belief. Most POMDP RL methods track the belief, represented as a vector, using a recurrent
neural network (RNN) (Hausknecht & Stone, |2015; Zhu et al., 2018)). RNNs are model-free generic
function approximators, and without appropriate structural priors they may need large amounts of
data to learn tracking a complex belief.

Model-based DRL methods aim to reduce the sample complexity by learning and environment model
simultaneously with the policy. In particular, to deal with partial observability, [Ig] et al.| (2018))
recently proposed DVRL that learns a generative observation model incorporated into the policy
through a Bayes filter. Because the Bayes filter tracks the belief explicitly, DVRL performs much
better than generic RNNs under partial observability. However, a Bayes filter normally assumes
a generative observation model, that defines the probability p(o | k) of receiving an observation
o = o, given the history h,; of past observations and actions (Fig. [Ip). Learning this model can be
very challenging. When o; is an image, p(o | h:) is a distribution over all possible images, e.g.,
parameterized by independent pixel-wise Gaussians with learned mean and variance. This means,
e.g., to navigate in a previously unseen environment, we need to learn the distribution of all possible
environments with their visual appearance, lighting condition, etc. — possibly a much harder task
than learning to extract features relevant to navigation, e.g. the traversable space.
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Figure 1: (a) DPFRL tracks a learned latent belief with a differentiable particle filter and learns a policy
conditioned on the particle belief. (b) Generative models learn distribution p(o | h¢) over the entire observation
space o and evaluate an observation sample o; to get a likelihood estimate. (c) The discriminatively parameterized
observation model of DPFRL predicts observation likelihood values directly, using a neural network fobs(0¢, ht),
where o; and h; are inputs.

We introduce the Discriminative Particle Filter Reinforcement Learning (DPFRL), a POMDP RL
method that learns to explicitly track a latent belief, while circumventing the difficulty of generative
observation modelling, and learns to make decisions based on features of the latent belief (Fig. [Th).
DPFRL approximates the belief by a set of weighted learnable latent particles {(hi, w?)}X |, and
it tracks the particle belief by a non-parametric Bayes filter algorithm, a particle filter, encoded as
a differentiable computational graph in the neural network architecture. Transition and observation
models for the particle filter are neural networks learned jointly end-to-end, optimized for the overall
policy. Importantly, we use a discriminatively parameterized observation model, fops(0t, ht), a neural
network that takes in o; and h; and outputs a single value, a direct estimate of the log-likelihood as
shown in Fig.[Tk. The discriminative parameterization avoids having to explicitly model complex
observations with a generative distribution. The intuition is similar to that of, e.g., energy-based
models (LeCun et al.| 2006) and contrastive predictive coding (Oord et al., [2018)), but here the
learning signal comes directly from the RL objective, backpropagating through the differentiable
particle filter, thus fops(o¢, he) only needs to model the observation features relevant to decision
making. In addition, to summarize the particle belief, we introduce novel learnable features based on
Moment-Generating Functions (MGFs) (Bulmer, [1979). MGF features are computationally efficient
and permutation invariant, and they can be directly optimized to provide useful higher-order moment
information for learning the policy. MGF features could be also used as learned features of any
empirical distribution in application beyond RL.

We evaluate DPFRL on a range of POMDP RL domains: a continuous control task from [Igl et al.
(2018)), Flickering Atari Games (Hausknecht & Stone| |2015), Natural Flickering Atari Games, a
new domain with more complex observations that we introduce, and the Habitat visual navigation
domain using real-world data (Savva et al.,|2019). DPFRL outperforms state-of-the-art POMDP RL
methods in most cases. Results show that the particle filter structure is effective for handling partial
observations, and the discriminative parameterization allows for complex observations.

We summarize our contributions as follows. 1) We introduce a differentiable particle filter based
method with a discriminatively parameterized observation model for RL with partial and complex
observations. 2) We introduce effective MGF features for empirical distributions, such as particles of a
particle filter. 3) We introduce a new RL benchmark, Natural Flickering Atari Games, that introduces
both partial observability and complex visual observations to the popular Atari domain. We will open
source the code to enable future work.

2 RELATED WORK

Real-world decision-making problems are often formulated as POMDPs given the partial observations.
POMDPs are notoriously hard to solve; in the worst case, they are computationally intractable (Pa-
padimitriou & Tsitsiklis| [1987). Approximate POMDP solvers have made dramatic progress on
solving large-scale POMDPs (Kurniawati et al., 2008)). Particle filters have been widely adopted as
belief tracker for POMDP solvers (Silver & Veness, 2010; [Somani et al., 2013) with the flexibility to
model complex and multi-modal distributions, compared to Gaussian and Kalman filters. However, a
predefined model and state representations are required for these methods (see e.g.|Bai et al.|(2015)).

Given the advance in generative neural network models, various neural models (Chung et al., 2015}
Maddison et al., 2017; Le et al.,[2018; Naesseth et al., 2018)) have been proposed for belief tracking.
DVRL (Igl et al., 2018) uses Variational Sequential Monte-Carlo method (Naesseth et al., [2018)),
which is similar to the particle filters that we use, for belief tracking in reinforcement learning.
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Figure 2: DPFRL Network. In DPFRL, latent particles {(hi, wi)}<, are maintained by a differentiable
discriminative particle filter algorithm, which includes transition function fiyans, discriminative observation
function fobs, and a differentiable soft-resampling. The policy and value function is conditioned on the belief,
which is summarized by the mean particle /;, and m moment generating function features, M} ™

This gives better belief tracking capabilities, but as we demonstrate in our experiments, generative
modeling is not robust in complex observation spaces with high-dimensional irrelevant features.

Learning a robust latent representation and avoiding reconstructing observations are of great interest
for RL (Oord et al., 2018} Hung et al.|[2018}; |Gregor et al.|[2019; |Gelada et al.| [2019). Discriminative
RNNs have also been widely used for belief approximation in partially observable domains (Bakker,
2002; Wierstra et al., 2007} |Foerster et al., |2016). The latent representation is directly optimized for
the policy p(a|h;) that skips observation modeling. In particular, Hausknecht & Stone{(2015); Zhu
et al.| (2018)) tackle the partially observable Flickering Atari Games by extending DQN (Mnih et al.,
2013) with an LSTM memory. Our experiments demonstrate that the additional structure provided by
using a particle filter to track beliefs can give improved performance in reinforcement learning.

Embedding algorithms into neural networks to allow end-to-end discriminative training have gained
attention recently. For belief tracking, the idea has been used in the differentiable histogram fil-
ter (Jonschkowski & Brock}2016), Kalman filter (Haarnoja et al.l 2016) and particle filter (Karkus
et al., 2018)). [Karkus et al.| (2017) combined a learnable histogram filter with the Value Iteration
Network (Tamar et al.,[2016) and introduced the learnable POMDP planner, QMDP-net. However,
these methods require a predefined state representation and are limited to relatively small state
spaces. Ma et al.| (2019) integrated the particle filter algorithm with standard RNNs, e.g., LSTM, and
introduced a discriminative PF-RNNs for sequence prediction. We build on the work in (Ma et al.|
2019) demonstrating its advantages for reinforcement learning with complex partial observations and
introducing MGF features to the method for improved decision making from particle beliefs. The
discriminative reinforcement framework and algorithms proposed in this paper can be applied to all
discriminative particle filters, including most of the methods mentioned here.

3 DISCRIMINATIVE PARTICLE FILTER REINFORCEMENT LEARNING

We introduce DPFRL, a framework for reinforcement learning under partial and complex observations.
The DPFRL architecture is shown in Fig. [2] It has two main components, a discriminative particle
filter that tracks a latent belief b;, and an actor network that learns a policy p(a | b;) conditioned on
the belief b;.

3.1 DISCRIMINATIVE PARTICLE FILTER FOR TRACKING THE LATENT BELIEF

State Representation. In DPFRL, we use a fully differentiable particle filter algorithm to maintain
a belief state b,. More specifically, we approximate the belief state with a set of weighted latent
particles by &~ {(h, wi)} |, where {hi}X | are K latent states learned by policy-oriented training,
and {w?} | represents the corresponding weights. Each latent state h! stands for a hypothesis in the
belief; the set of latent particles approximates the statistics of the belief.

Belief Update. We update the latent particles according to particle filter algorithm

i ~ foans(hi_1, a, ui(0g)) = p(h | hi_y, az, ui(or)) (D
K

wi = nfobs(otv hi)wiflv n= 1/ sz ()
i—1

{(h{, wi) ) = Soft-Resampling({ (hf, w})}/,) 3)



Under review as a conference paper at ICLR 2020

Transition update. Eqn. Ilmplements the transition update step. We sample the next state h¢ from
forans(hi_1, as,ui (o)) = p(h | hi_y, ar,us(or)), where ay is the agent action and uy (o) parameter-
ized function that can learn the environment dynamics. This formulation assumes a fully controlled
system where a learned latent state that captures the dynamics of both the agent and the environment.
Similar formulation has been used for sequence prediction (Ma et al., [2019). In our experiments,
fobs 1s implemented by a gated function following PF-GRU (Ma et al [2019)), where features are
extracted from o, with a neural network designed according to the observation space of the tasks.
Further details are in the Appendix.

Measurement update. Eqn. [2]implements the measurement update. We directly replace the observation
likelihood function p(o | h%) with a discriminative function fops(h¢, 0;). This formulation avoids
modeling the whole observation space, like generative observation models. It is optimized directly for
the policy p(a | b;), skipping modeling p(o | h%), and learns to extract only the relevant features for
decision making. In our experiment, f,ps is a fully connected layer that takes the h} and the encoded
observation o; as the inputs, and output a single value that estimates the observation likelihood. Note
that more complex network architectures could be considered to further improve the capability of the
fobs and we leave it for future study.

Differentiable Particle Resampling. To avoid particle degeneracy, i.e., most of the particles having
near-zero weight, we adopt the differentiable soft-resampling strategy (Karkus et al [2018; Ma
et al., 2019). Instead of sampling from p;(i) = w?, we sample particles {h}'} X, from a softened
proposal distribution (i) = aw} + (1 — a)1/K, where « is an trade-off parameter. The new weights
distribution as { (h}}, w; )} K| = Soft—Resampling({(h;7 wi)}E ). As aresult, fops can be optimized
with global belief information and model shared useful features across multiple time steps.

are derived using importance sampling: w’ i = . We can have the final particle belief

3.2 BELIEF-CONDITIONAL ACTOR NETWORK

Conditioning a policy directly onto a particle belief distribution is non-trivial. To feed it to the
networks, we need to summarize it into a single vector.

We introduce a novel feature extraction method for empirical distributions based on Moment-
Generating Functions (MGFs). The MGF of an n-dimensional random variable X is given by
Mx(v) = E[e"TX], v € R"™. In statistics, MGF is an alternative specification of its probability
distribution (Bulmer, |1979). Since particle belief distribution bt is an empirical distribution, the

moment generating function of b; can be denoted as M, (v) = Z wiev Thi

In DPFRL, we treat v as learnable parameters, and define m MGF features, determined by vl
The j-th MGF feature is given by M; J (v7). For a clean notation, we use M; 7 in place of M; J (VJ )

As aresult, we summarize the belief distribution with by ~ [h¢, M}™], where hy = Z wih! is the

mean particle. The mean particle A, as the first-order moment, and m additional MGF features give
a summary of the belief distribution characteristics. The number of MGF features, m, controls how
much additional information we extract from the belief and we will empirically study the influence of
MGEF features in ablation studies.

Compared to Ma et al.| (2019) that uses the mean as the belief estimate, MGF features provide
additional features from the empirical distribution. Compared to DVRL (Igl et al.,[2018) that treats
the Monte-Carlo samples as a sequence and merge them by an RNN, MGF features are permutation-
invariant, computationally efficient and easy to optimize, especially when the particle set is large.

Given b, &~ [hy, M}™], we compute the policy p(a | b;) with a policy network 7(b; ). In actor-critic
setups, an additional value network V' (b;) is introduced to assist learning. In our experiment, we
evaluated on the A2C algorithm (Mnih et al.| 2016).

4 EXPERIMENTS

We evaluate DPFRL in a range of POMDP RL domains with increasing belief tracking and observation
modeling complexity. We first use benchmark domains from the literature, Mountain Hike and 10
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Figure 4: Results for Mountain Hike where useful observations are concatenated with a noise vector of length [.

different Flickering Atari Games. We then introduce a new, more challenging domain, Natural
Flickering Atari Games, that use a random video stream as the background. Finally we apply DPFRL
to a challenging visual navigation domain with RGB-D observations rendered from real-world data.

We compare DPFRL with a GRU network, a state-of-the-art POMDP RL method, DVRL, and
ablations of the DPFRL architecture. As a brief conclusion, we show that: 1) DPFRL significantly
outperforms GRU in most cases because of its explicit structure for belief tracking; 2) DPFRL outper-
forms the state-of-the-art DVRL in most cases even with simple observations, and its benefit increases
dramatically with more complex observations because of DPFRL’s discriminative observation model;
3) MGEF features are more effective for summarizing the latent particle belief than alternatives from
the literature.

4.1 EXPERIMENTAL SETUP

We plot the accumulated rewards and all reported results are averages
over 3 different random seeds. The curves are smoothed over time
and averaged over parallel environment executions.

To be comparable with the GRU and DVRL baselines we train
DPFRL with the same A2C algorithm, and use a similar network
architecture and hyperparameters as the original DVRL implementa-
tion. DPFRL and DVRL differ in the particle belief update structure,
but they use the same latent particle size dim(%) and the same num-
ber of particles K as in the DVRL paper (dim(h) = 128 and K =30 _, -
for Mountain Hike, dim(h) = 256 and K = 15 for Atari games and F1gure 3: Mountain Hike Task.
visual navigation). The effect of the number of particles is discussed ?n agent navigates on the map
. . . . rom the start position (white dot)
1n.Sect. We train gll models fo.r the same num.bey of iterations "o goal (green dot with the
using the RMSProp (Tieleman & Hinton, [2012) optimizer. Learning  gpaded area as the threshold). Par-
rates and gradient clipping values are chosen based on a search in  tja] observation is disturbed by
the BeamRider Atari game independently for each model. Further a Gaussian noise and appended
details on the network structures and training setup can be found in  with a long noise vector of length
the Appendix. l. The reward r(x, y) for position
(z,y) is given by the heat map.

We have not performed additional search for the network architecture
and other hyper-parameters, nor tried other advanced RL algorithm,
such as PPO (Schulman et al.| 2017), which may all improve our
results.

4.2 MOUNTAIN HIKE.

Mountain Hike has been introduced by [Igl et al.| (2018) to demonstrate the benefit of belief tracking
for POMDP RL. It is a continuous control problem where an agent navigates on a fixed 20 x 20 map
under partial observability due to observation noise. In the original task observations correspond
to the agent’s location with additive noise. To illustrate the effect of observation complexity in
natural environments, we concatenate the original observation vector with a random noise vector. The
complexity of the optimal policy remains unchanged, but the relevant information is now coupled
with irrelevant observation features. More specifically, the state space and action space in Mountain
Hike are defined as S = A = R?, where s; = [4,:] and a; = [0y, 5y;]. Transitions of the
agent are stochastic with an additive Gaussian noise: s;11 = s; + a; + €,, where €, ~ N (0, 0.25).
The observation space is @ = R?*! where [ is a predefined constant and [ = 0 corresponds
to the original setting. Observations are o; = [0f, 0}, where 0f = s; + €5,€65 ~ N(0,1), and
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Figure 5: Partially Observable Atari Games. In Flickering Atari Games frames are randomly dropped and
replaced with a blank frame. In Natural Flickering Atari Games the background is replaced with a random video
stream and the Atari components of the image are randomly dropped.

Table 1: Results for Flickering Atari Games and Natural Flickering Atari Games

Flickering Atari Games Natural Flickering Atari Games
DPFRL DVRL(Igl et al.|2018) GRU! Igl et al.|[2018) DPFRL DVRL GRU

Pong 15.40£0.76 18.1742.67 6.33£3.03 15.65+1.99 -19.78+0.06 2.62+0.93

ChopperCommand ~ 8,086£159.1 6,602-£449 5,150+ 488.1 1,566+67.03 1,068+128.9 1,418+5.08
MsPacman 3,028-£545.3 2,221£199 2,3124+358 2,106+123.9  1,358+1554  1,8331+45.45
Centipede 4,849+291.4 4,240+116 4,395+224 4,164+23.0 3,154+3359  3,679+116.4
BeamRider 3,940+107.4 1,663+183 1,801465 682.91+37.42  437.34+46.31 525.6425.25
Frostbite 293.5+5.06 297.0+7.85 254.0+0.45 260.21+4.60 252.446.48 254.3+9.20
Bowling 33.89+0.34 29.53 £0.23 30.0+0.18 29.45+0.13 24.80+0.31 27.13+0.41
IceHockey -4.06£0.02 -4.88+0.17 -7.10£0.60 -6.08+0.18 -8.79+£0.12 -5.30£0.66
DDunk -11.25£1.25 -5.95+1.25 -15.88+0.34 -15.36+£0.96 -17.62+0.16 -14.31+0.37
Asteroids 1,948+202.6 1,539473 1,545451 1,489+15.76 1,406+132.3 1,675+571.5

o € R! is sampled from a uniform distribution 2/(—10, 10). The reward for each step is given by
ry = r(x¢,y¢) — 0.01||as|| where 7 (¢, y;) is shown in Fig.|3| Episodes end after 75 steps.

We train models for different settings of the noise vector length /, from [ = 0 to [ = 100. Results are
shown in Fig. ] Detailed results are in the Appendix. We observe that DPFRL learns faster than the
DVRL and GRU in all cases, including the original setting [ = 0. Importantly, as the noise vector
length increases, the performance of DVRL and GRU degrades, while DPFRL is unaffected. This
demonstrates the ability of DPFRL to track a latent belief without having to explicitly model complex
observations.

4.3 ATARI GAMES WITH PARTIAL OBSERVABILITY.

Atari games are one of the most popular benchmark domains for RL. methods (Mnih et al., [2013)).
Their partially observable variants, Flickering Atari Games, have been used to benchmark POMDP
RL methods (Hausknecht & Stone, [2015;Zhu et al.,[2018; [Igl et al.,|2018])). Here image observations
are single frames randomly replaced by a blank frame with a probability of 0.5. In Flickering Atari
Games, the model is required to effectively aggregate the history information over the long observation
sequence while simultaneously making reasonable decisions with high sample efficiency. Another
variant, Natural Atari Games (Zhang et al.; 2018), replaces the simple black background of the frames
of an Atari game with a randomly sampled video stream. This modification brings the Atari domain
closer to the visually rich real-world, where relevant information is encoded in complex observations.
As shown by |[Zhang et al.| (2018)), this poses a significant challenge to existing RL methods.

We propose a new RL domain, Natural Flickering Atari Games, that introduces both challenges of
real-world environments to the Atari domain: partial observability simulated by flickering frames,
and complex observations simulated by random background videos. We sample the background video
from the ILSVRC dataset (Russakovsky et al.,[2015)). Examples for the BeamRider game are shown
in Fig.[5] Details are in the Appendix. We will publish our code to enable future research.

We evaluate DPFRL for both Flickering Atari Games and Natural Flickering Atari Games. We use
the same set of games as [Igl et al.| (2018)). To ensure a fair comparison, we take the GRU and DVRL
results from the paper for Flickering Atari Games, use the same training iterations as in [Igl et al.
(2018), and we use the official DVRL open source code to train for Natural Flickering Atari Games.
Results are summarized in Table[T} We highlight the best performance in bold where the difference is
statistically significant (p = 0.05). Detailed training curves are in the Appendix.
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Table 2: Visual Navigation Results

oY
-

SPL Success Rate Reward

J DPERL 0.79 0.88 12.82£5.82

DVRL 0.09 0.11 5204224

a2 GRU 0.63 0.74 10.14£2.82
PPO(Savva et al.|[2019) 0.70 0.80 _

Figure 6: RGB-D Habitat Observations

We observe that DPFRL significantly outperforms GRU in almost all games, which indicates the
importance of explicit belief tracking, and shows that DPFRL can learn a useful latent belief repre-
sentation. Despite the simpler observations, DPFRL significantly outperforms DVRL and achieves
state-of-the art results on 5 out of 10 standard Flickering Atari Games (ChopperCommand, MsPac-
man, BeamRider, Bowling, Asteroids), and it performs comparably in 3 other games (Centipede,
Frostbite, IceHockey). The strength of DFPRL shows even more clearly in the Natural Flickering
Atari Games, where it significantly outperforms DVRL on 7 out of 10 games, and performs similarly
in the rest. In some games, e.g. in Pong, DPFRL performs similarly with and without videos in
the background (15.65 vs. 15.40), while the DVRL performance degrades substantially (-19.78
vs. 18.17). These results show that while the architecture of DPFRL and DVRL are similar, the
policy-oriented discriminative observation model of DPFRL is much more effective for handling
complex observations, and the MGF features provide a more powerful summary of the particle belief
for decision making.

4.4 VISUAL NAVIGATION

We further evaluate DPFRL on a challenging domain, visual navigation in the Habitat Environ-
ment (Savva et al., [2019), using the real-world Gibson dataset (Xia et al.,|2018). In this domain a
robot needs to navigate to goals in previously unseen environments. In each time step it receives a
first-person RGB-D camera image, and its distance and relative orientation to the goal. The main
challenge lies in the partial and complex observations: first-person view images only provide partial
information about the unknown environment; and the relevant information for navigation, traversabil-
ity, is encoded in rich RGB-D observations along with many irrelevant features, e.g., the texture of
the wall. We use the full Gibson dataset (572 full buildings with 1447 floors, covering a total area of
211,000 m?) with the given training and validation splits.

We train models with the same architecture as for the Atari games, except for the observation function
that accounts for the different observation format. We evaluate models in unseen environments from
the validation split and compute the same set of metrics as in the paper, SPL and Success Rate, as
well as average rewards. Results are shown in Table 2] Further details and learning curves are in the
Appendix.

DPFRL significantly outperforms both DVRL and GRU in this challenging domain. DVRL performs
especially poorly, demonstrating the difficulty of learning a generative observation model in realistic,
visually rich domains. DPFRL also outperforms the PPO baseline from |Savva et al.[{(2019).

We note that submissions to the recently organized Habitat Challenge 2019 (Savva et al.| [2019), such
as (Chaplot et al.,[2019), have demonstrated better performance than the PPO baseline (while our
results are not directly comparable because of the closed test set of the competition). However, these
approaches rely on highly specialized structures, such as 2D mapping and 2D path planning, while
we use the same generic network as for Atari games. Future work may further improve our results by
adding task-specific structure to DPFRL or training with PPO instead of A2C.

4.5 ABLATION STUDY

We conduct an extensive ablation study on the Natural Flickering Atari Games to understand the
influence of each DPFRL component. The results are presented in Table 3]

Discriminative parameterization is more effective than generative parameterization. DPFRL-
generative replaces the discriminative observation function of DPFRL with a generative observation
function, where grayscale image observations are modeled by pixel-wise Gaussian distributions
with learned mean and variance. Unlike DVRL, DPFRL-generative only differs from DPFRL in the
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Table 3: Ablation Study Results for the Natural Flickering Atari Games

Envs DPFRL DPFRL-generative DPFRL-P1 DPFRL-mean = DPFRL-GRUmerge
Pong 15.65+1.99 -20.21£0.02 -18.60+0.08 -5.53+14.35 13.14+£4.01
ChopperCommand ~ 1,566-£67.03 1,027+ 12.94 1,287£255.0  1,091+109.9 1,530+29.31
MsPacman 2,106+£123.9 2,130+182.3 2,233+0.47 1,878+63.86 1,930+48.54
Centipede 4,164+23.0 3,194+339.4 3,557£398.1  3,599+439.8 4,093£76.4
BeamRider 682.9+37.42 498.1+£8.38 570.7£172.3  645.5+£227.4 603.8+£40.25
Frostbite 260.2+4.60 255.942.78 178.2+81.5 178.44+81.70 252.1+0.48
Bowling 29.45+0.13 24.68+0.13 25.94+0.55 26.0£0.81 29.50+0.33
IceHockey -6.08+0.18 -7.88+0.30 -6.02£1.03 -6.25+£1.96 -5.85+0.30
DDunk -15.36£0.96 -15.59£0.06 -13.28+0.96 -14.4240.18 -14.39£0.24
Asteroids 1,406£132.3 1,415+£5.33 1,618+64.45  1,433+40.73 1,397+11.44

parameterization of the observation function, the rest of the architecture and training loss remains
the same. In most cases, the performance for DPFRL-generative degrades significantly compared to
DPFRL. These results are aligned with our earlier observations and indicate that the discriminative
parameterization is indeed important to extract the relevant information from complex observations
without having to learn a more complex generative model.

More particles perform better. DPFRL with 1 particle performs poorly on most of the tasks (DPFRLL-
P1). This indicates that a single latent state is insufficient to represent a complex latent distribution
that is required for the task, and that more particles can be expected to improve performance.

MGF features are useful. We compare DPFRL using MGF features with DPFRL-mean that only uses
the mean particle, and with DPFRL-GRUmerge that uses a separate RNN to summarize the belief
similar to DVRL. Results show that DPFRL-mean does not work as well as the standard DPFRL,
especially for tasks that may need complex belief tracking, e.g., Pong. This can be attributed to the
more rich belief statistics provided by MGF features, and that they do not constrain the learned belief
representation to be always meaningful when averaged. Comparing to DPFRL-GRUmerge shows
that MGF features generally perform better. While an RNN may learn to extract the useful features
from the latent belief, optimizing the RNN parameters is harder, because they are not permutation
invariant to the set of particles and they result in a long backpropagation chain.

5 CONCLUSION

We have introduced DPFRL, a principled framework for POMDP RL in natural environments.
DPFRL combines the strength of Bayesian filtering and policy-oriented discriminative modeling: it
performs explicit belief tracking with discriminative learnable particle filters optimized directly for
the RL policy. DPFRL achieved state-of-the-art results on POMDP RL benchmarks from prior work,
Mountain Hike and a number of Flickering Atari Games, and it significantly outperformed alternative
methods in a new, more challenging domain, Natural Flickering Atari Games, as well as for visual
navigation using real-world data. We have also proposed a novel MGF feature extraction method to
extract statistics from an empirical distribution. MGF feature extraction could be applied beyond RL,
e.g., for general sequence prediction.

DPFRL does not perform well in some particular cases, e.g., in the game DoubleDunk. While our
discriminatively parameterized observation function is less susceptible to observation noise, unlike a
generative model, it does not allow for additional learning signals that improve sample efficiency,
e.g., through a reconstruction loss. A possible future direction would be to combine both generative
and discriminative modelling, for which the latent particle filter in DPFRL provides a promising,
principled framework.



Under review as a conference paper at ICLR 2020

REFERENCES

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware online pomdp
planning for autonomous driving in a crowd. In 2015 ieee international conference on robotics
and automation (icra), pp. 454-460. IEEE, 2015.

Bram Bakker. Reinforcement learning with long short-term memory. In Advances in neural
information processing systems, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Michael George Bulmer. Principles of statistics. Courier Corporation, 1979.

Devendra Singh Chaplot, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdinov. Modular visual
navigation using active neural mapping. Winner CVPR 2019 Habitat Navigation Challenge, 2019.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in Neural Information Processing
Systems, pp. 2980-2988, 2015.

Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communi-
cate to solve riddles with deep distributed recurrent q-networks. arXiv preprint arXiv:1602.02672,
2016.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deep-
mdp: Learning continuous latent space models for representation learning. arXiv preprint
arXiv:1906.02736, 2019.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron
van den Oord. Shaping belief states with generative environment models for rl. arXiv preprint
arXiv:1906.09237, 2019.

Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop KF: Learning discrimi-
native deterministic state estimators. In Advances in Neural Information Processing Systems, pp.
4376-4384, 2016.

Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps.
CoRR, abs/1507.06527, 7(1), 2015.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. arXiv preprint arXiv:1810.06721, 2018.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for POMDPs. In Proceedings of the International Conference on Machine
Learning, pp. 2117-2126, 2018.

Rico Jonschkowski and Oliver Brock. End-to-end learnable histogram filters. In NeurlPS Workshop
on Deep Learning for Action and Interaction, 2016.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised deep
reinforcement learning with generalized computation graphs for robot navigation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1-8. IEEE, 2018.

Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-net: Deep learning for planning under partial
observability. In Advances in Neural Information Processing Systems, pp. 46944704, 2017.

Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter networks with application to visual
localization. In Proceedings of the Conference on Robot Learning, pp. 169-178, 2018.



Under review as a conference paper at ICLR 2020

Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based pomdp planning by
approximating optimally reachable belief spaces. In Robotics: Science and systems, 2008.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential
monte carlo. 2018.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

Xiao Ma, Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter recurrent neural networks. arXiv
preprint arXiv:1905.12885, 2019.

Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih,
Arnaud Doucet, and Yee Teh. Filtering variational objectives. In Advances in Neural Information
Processing Systems, pp. 6573-6583, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the International Conference on Machine Learning, pp. 1928-1937,
2016.

Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential
monte carlo. In International Conference on Artificial Intelligence and Statistics, pp. 968-977,
2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 1987.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NeurlPS Autodiff Workshop, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied Al
research. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in neural
information processing systems, pp. 2164-2172, 2010.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 2017.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. DESPOT: Online POMDP planning with
regularization. In Advances in neural information processing systems, pp. 1772—-1780, 2013.

10



Under review as a conference paper at ICLR 2020

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Advances in Neural Information Processing Systems, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solving deep memory
pomdps with recurrent policy gradients. In International Conference on Artificial Neural Networks.
Springer, 2007.

Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: real-world perception for embodied agents. In Computer Vision and Pattern Recognition
(CVPR), 2018 IEEE Conference on. IEEE, 2018.

Amy Zhang, Yuxin Wu, and Joelle Pineau. Natural environment benchmarks for reinforcement
learning. arXiv preprint arXiv:1811.06032, 2018.

Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep reinforcement learning
for pomdps. arXiv preprint arXiv:1804.06309, 2018.

11



Under review as a conference paper at ICLR 2020

A EXPERIMENT DETAILS

A.1 IMPLEMENTATION DETAILS

Observation Encoders: For the observation encoders, we used the same structure with DVRL (Igl
et al., [2018) for a fair comparison. For Mountain Hike, we use two fully connected layers with batch
normalization and ReLU activation as the encoder. The dimension for both layers is 64. For the
rest of the domains, we first down-sample the image size to 84 x84, then we process images with 3
2D-convolution layers with channel number (32, 64, 32), kernel sizes (8, 4, 3) and stride (4, 2, 1),
without padding. The compass and goal information are a vector of length 2; they are appended after
the image encoding as the input.

Observation Decoders: Both DVRL and PFGRU-generative need observation decoders. For the
Mountain Hike, we use the same structure as the encoder with a reversed order. The transposed
2D-convolutional network of the decoder has the reversed structure. The decoder is processed by an
additional fully connected layer which outputs the required dimension (1568 for Atari and Habitat
Navigation, both of which have 84 x 84 observations).

Stochastic Transition Function: We directly use the transition function in PF-GRU (Ma et al.,[2019)
for p(h | hi_,,as, 0;), which is a stochastic function with GRU gated structure. Action a; is first
encoded by a fully connected layer with batch normalization and ReLU activation. The encoding
dimension for Mountain Hike is 64 and 128 for all the rest tasks. The mean and variance of the
normal distribution are learned again by two additional fully connected layers; for the variance, we
use Softplus as the activation function.

Observation Function: f,} is implemented by a single fully connected layer without activation.
In DVRL, the observation function is parameterized over the full observation space o and p(o |
hi_,,al)is assumed as a multivariate independent Bernoulli distribution whose parameters are again
determined by a neural network (Igl et al.,|2018)). For numerical stability, all the probabilities are
stored and computed in the log space and the particle weights are always normalized after each
weight update.

Soft-resampling: The soft-resampling hyperparameter « is set to be 0.9 for Mountain Hike and 0.5
for the rest of domains. Note that the soft-resampling is used only for DPFRL, not including DVRL.
DVRL averages the particle weights to 1/ K after each resampling step, which makes the resampling
step cannot be trained by the RL.

Belief Summary: The GRU used in DVRL and DPFRL-GRUmerge is a single layer GRU with input
dimension equals the dimension of the latent vector plus 1, which is the corresponding particle weight.
The dimension of this GRU is exactly the dimension of the latent vector. For the MGF features, we
use fully connected layers with feature dimension as the number of MGF features. The activation
function used is the exponential function. We could potentially explore the other activation functions
to test the generalized-MGF features, e.g., ReLU.

Model Learning: For RL, we use a A2C algorithm with 16 parallel environments for both Mountain
Hike and Atari games; for Habitat Navigation, we only use 6 parallel environments due to the GPU
memory constraints. The loss function for DPFRL and GRU-based policy is just the standard A2C loss,
L2C = LA+ AV LY + ML where £ is the policy loss, £} is the value loss, £ is the entropy
loss for encouraging exploration, and AV and A are two hyperparameters. For all experiments, we use
Av = 0.5 and AT = 0.01. For DVRL, an additional encoding loss L¥ is used to train the sequential
VAE, which gives a loss function LPVRL = [A2C 1 \E£E “We follow the default setting provided
by/Igl et al.| (2018) and set A¥ = 0.1. The rest of the hyperparameters, including learning rate, gradient
clipping value and « in soft-resampling are tuned according to the BeamRider and directly applied to
all domains due to the highly expensive experiment setups. The learning rate for all the networks
are searched among the following values: (3 x 107°,5 x 107°,1 x 107%,2 x 107%4,3 x 10™%); the
gradient clipping value are searched among {0.5,1.0}; the soft-resampling « is searched among
{0.5,0.9}. The best performing learning rates were 1~* for DPFRL and GRU, and 2~ for DVRL;
the gradient clipping value for all models was 0.5; the soft-resampling « is set to be 0.9 for Mountain
Hike and 0.5 for Atari games.
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A.2 EXPERIMENT SETUPS

Natural Flickering Atari games We follow the setting of the prior works (Zhu et al.l | 2018; |Igl et al.
2018): 1) 50% of the frames are randomly dropped 2) a frameskip of 4 is used 3) there is a 0.25
chance of repeating an action twice. In our experiments, we sample background videos from the
ILSVRC dataset (Russakovsky et al.,|2015). Only the videos with the length longer than 500 frames
are sampled to make sure the video length is long enough to introduce variability. For each new
episode, we first sample a new video from the dataset, and a random starting pointer is sampled in
this video. Once the video finishes, the pointer is reset to the first frame (not the starting pointer we
sampled) and continues from there.

Experiment platform: We implement all the models using PyTorch (Paszke et al.|[2017) with CUDA
9.2 and CuDNN 7.1.2. Flickering Atari environments are modified based on OpenAl Gym (Brockman
et al., 2016)) and we directly use Habitat APIs for visual navigation. For Mountain Hike and Atari
games, we run our experiments on servers with 4 NVidia GTX1080Ti GPUs on each server. For
Habitat visual navigation, we run the experiment on servers with 4 NVidia RTX2080Ti GPUs on
each server.

B PF-GRU NETWORK ARCHITECTURE

We implement DPFRL with gated transition and observation functions for particle filtering similar to
PF-GRU (Ma et al., 2019).

In standard GRU, the memory update is implemented by a gated function:
ht = (1 - Zt) o tanh(nt) + z¢ 0 ht—la ng = Wn[Tt o ht—l; ft] + bn (4)
where W,, and b,, are the corresponding weights and biases, and z; 7; are the learned gates.

PF-GRU introduces stochastic cell update by assuming the update to the memory, n!, follows a
parameterized Gaussian distribution

ni=Wylriohl | x] +b, +€, € ~N(0,), Xi=Wx[hi |, 2] +bs (5)

With 2 = [f2,.(04), f&.(at)], we implement the transition function A} | ~ firans (R, 04, at), where

2 < 1s the encoding network for observation and fZ . is the encoding network for the actions.

For the observation function, we directly use a fully connected layer fops(hi, 0;) = W, [hi, ot] + b,
where W, and b, are the corresponding weights and biases.

C ADDITIONAL RESULTS

C.1 VISUAL NAVIGATION

We present the reward curve for habitat visual navigation task below. DPFRL outperforms both GRU-
based policy and DVRL given the same training time. DVRL struggles on training the observation
model and fails during the first half of the training time. GRU based policy learns fast; given only the
model-free belief tracker, it struggles to achieve higher reward after certain point.

We only provide the reward curve here as SPL and success rate are only evaluated after the training is
finished.

reward

0.0 0.5 1.0 15 2.0
Frames le7

Figure 7: Habitat Visual Navigation Reward
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C.2 FLICKEIRNG ATARI GAMES PLOTS
We provide the accumulated reward curves for Atari experiments in this section.
C.2.1 STANDARD FLICKERING ATARI GAMES

For the standard Flickering Atari Games, no validation environment is provided. We directly provide
the training curves below. Results for DVRL and GRU are directly taken from Igl et al.| (2018)).
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C.2.2 NATURAL FLICKERING ATARI GAMES

For Natural Flickering Atari Games, we have a separate validation set that contains videos different
from the training set. The validation environment step once after every 100 training iterations.
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