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ABSTRACT

Network pruning is a promising avenue for compressing deep neural networks.
A typical approach to pruning starts by training a model and removing redundant
parameters while minimizing the impact on what is learned. Alternatively, a re-
cent approach shows that pruning can be done at initialization prior to training,
based on a pruning criterion called connection sensitivity. However, it remains
unclear exactly why pruning an untrained, randomly initialized neural network is
effective. In this work, by noting connection sensitivity as a form of gradients, we
formally characterize initialization conditions to ensure reliable connection sen-
sitivity measurements, which in turn yields effective pruning results. Moreover,
we analyze the signal propagation properties of the resulting pruned networks and
introduce a simple, data-free method to improve their trainability. Our modifica-
tions to the existing pruning at initialization method lead to improved results on
all tested network models for image classification tasks. Furthermore, we empir-
ically study the effect of supervision for pruning and demonstrate that our signal
propagation perspective, combined with unsupervised pruning, can be useful in
various scenarios where pruning is applied to non-standard arbitrarily-designed
architectures.

1 INTRODUCTION

Deep learning has made great strides in machine learning and been applied to various fields from
computer vision and natural language processing, to health care and playing games (LeCun et al.,
2015). Despite the immense success, however, it remains challenging to deal with the excessive
computational and memory requirements of large neural network models. To this end, lightweight
models are often preferred, and network pruning, a technique to reduce parameters in a network, has
been widely employed to compress deep neural networks (Han et al., 2016). Nonetheless, designing
pruning algorithms has been often purely based on ad-hoc intuition lacking rigorous underpinning,
partly because pruning was typically carried out after training the model as a post-processing step
or interwove with the training procedure, without adequate tools to analyze.

Recently, Lee et al. (2019) have shown that pruning can be done on randomly initialized neural net-
works in a single-shot prior to training (i.e., pruning at initialization). They empirically showed that
as long as the initial random weights are drawn from appropriately scaled Gaussians (e.g., Glorot &
Bengio (2010)), their pruning criterion called connection sensitivity can be used to prune deep neural
networks, often to an extreme level of sparsity while maintaining good accuracy once trained. How-
ever, it remains unclear as to why pruning at initialization is effective, how it should be understood
theoretically and whether it can be extended further.

In this work, we first look into the effect of initialization on pruning, and find that initial weights have
critical impact on connection sensitivity, and therefore, pruning results. Deeper investigation shows
that connection sensitivity is determined by an interplay between gradients and weights. Therefore
when the initial weights are not chosen appropriately, the propagation of input signals into layers of
these random weights can result in saturating error signals (i.e., gradients) under backpropagation,
and hence unreliable connection sensitivity, potentially leading to a catastrophic pruning failure.

This result leads us to develop a signal propagation perspective for pruning at initialization, and to
provide a formal characterization of how a network needs to be initialized for reliable connection
sensitivity measurements and in turn effective pruning. Precisely, we show that a sufficient condition
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to ensure faithful1 connection sensitivity and hence effective pruning is layerwise dynamical isome-
try, which is defined as all singular values of the layerwise Jacobians being concentrated around 1.
Notably, our signal propagation perspective is inspired by the recent literature on dynamical isome-
try and mean field theory (Saxe et al., 2014; Poole et al., 2016; Schoenholz et al., 2017; Pennington
et al., 2017), in which the general signal propagation in neural networks is studied. We extend this
result to understanding and improving pruning at initialization.

Moreover, we study signal propagation in the pruned sparse networks and its effect on trainability.
We find that pruning neural networks can indeed break dynamical isometry, and hence, hinders
signal propagation and degrades the training performance of the resulting sparse network. In order
to address this issue, we propose a simple, yet effective data-free method to recover the layerwise
orthogonality given the sparse topology, which in turn improves the training performance of the
compressed network significantly. Our analysis further reveals that in addition to signal propagation,
the choice of pruning method and sparsity level can influence trainability in sparse neural networks.

Perfect layerwise dynamical isometry cannot always be ensured in the modern networks that have
components such as ReLU nonlinearities (Pennington et al., 2017) and/or batch normalization (Yang
et al., 2019). Even in such cases, however, our experiments on various modern architectures (includ-
ing convolutional and residual neural networks) indicate that connection sensitivity computed based
on layerwise dynamical isometry is robust and consistently outperforms pruning based on other ini-
tialization schemes. This indicates that the signal propagation perspective is not only important to
theoretically understand pruning at initialization, but also it improves the results of pruning for a
range of networks of practical interest.

Furthermore, this signal propagation perspective for pruning poses another important question: how
informative is the error signal computed on randomly initialized networks, or can we prune neural
networks even without supervision? To understand this, we compute connection sensitivity scores
with different unsupervised surrogate losses and evaluate the pruning results. Interestingly, our re-
sults indicate that we can in fact prune networks in an unsupervised manner to extreme sparsity levels
without compromising accuracy, and it often compares competitively to pruning with supervision.
Moreover, we test if pruning at initialization can be extended to obtain architectures that yield better
performance than standard pre-designed architectures with the same number of parameters. In fact,
this process, which we call neural architecture sculpting, compares favorably against hand-designed
architectures, taking network pruning one step further towards neural architecture search.

2 PRELIMINARIES

Pruning at initialization. The principle behind conventional approaches for network pruning is to
find unnecessary parameters, such that by eliminating them the complexity of the model is reduced
while minimizing the impact on what is learned (Reed, 1993). Naturally, a typical pruning algorithm
starts after convergence to a minimum or training to some degree. This pretraining requirement
has been left unattended until Lee et al. (2019) recently showed that pruning can be performed on
untrained networks at initiailzation prior to training. They proposed a method called SNIP which
relies on a new saliency criterion, namely connection sensitivity, defined as follows:

sj(w;D) =
|gj(w;D)|∑m
k=1 |gk(w;D)| , where gj(w;D) =

∂L(c�w;D)

∂cj

∣∣∣∣
c=1

. (1)

Here, sj is the saliency of the parameter j, w ∈ Rm is the network parameters, c ∈ {0, 1}m is
the auxiliary indicator variables representing the connectivity of network parameters, m is the total
number of parameters in the network, and D is a given dataset. Also, gj is the derivative of the
loss L with respect to cj , which turns out to be an infinitesimal approximation of the change in the
loss with respect to removing the parameter j. Designed to be computed at initialization, pruning is
performed by keeping top-κ (where κ denotes a desired sparsity level) salient parameters based on
the above sensitivity scores.

Dynamical isometry and mean field theory. The success of training deep neural networks is due
in large part to the initial weights (Hinton & Salakhutdinov, 2006; Glorot & Bengio, 2010; Pascanu

1 The term faithful is used to describe signals propagating in a network isometrically with minimal amplifi-
cation or attenuation, and borrowed from Saxe et al. (2014), the first work to introduce dynamical isometry.
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et al., 2013). In essence, the principle behind these random weight initializations is to have the mean
squared singular value of a network’s input-output Jacobian close to 1, so that on average, an error
vector will preserve its norm under backpropagation; however, this is not sufficient to prevent am-
plification or attenuation of an error vector on worse case. A stronger condition that having as many
singular values as possible near 1 is called dynamical isometry (Saxe et al., 2014). Under this con-
dition, error signals backpropagate faithfully and isometrically through the network, approximately
preserving its norm and all angles between error vectors. Alongside dynamical isometry, mean field
theory is used to develop a theoretical understanding of signal propagation in neural networks with
random parameters (Poole et al., 2016). Precisely, the mean field approximation states that preacti-
vations of wide, untrained neural networks can be captured as a Gaussian distribution. Recent works
revealed a maximum depth through which signals can propagate at initialization, and verified that
networks are trainable when signals can travel all the way through them (Schoenholz et al., 2017;
Yang & Schoenholz, 2017; Xiao et al., 2018).

3 SIGNAL PROPAGATION PERSPECTIVE TO PRUNING RANDOM NETWORKS

Problem setup. Consider a fully-connected, feed-forward neural network with weight matrices
Wl ∈ RN×N , biases bl ∈ RN , pre-activations hl ∈ RN , and post-activations xl ∈ RN , for l ∈
{1 . . .K} up to K layers. Now, the feed-forward dynamics of a network can be written as,

xl = φ(hl) , hl = Wlxl−1 + bl , (2)

where φ : R→ R is an elementwise nonlinearity, and the input is denoted by x0. Given the network
configuration, the parameters are initialized by sampling from a probability distribution, typically a
zero mean Gaussian with scaled variance (LeCun et al., 1998; Glorot & Bengio, 2010).

3.1 EFFECT OF INITIALIZATION ON PRUNING

It is observed in Lee et al. (2019) that pruning results tend to improve when initial weights are drawn
from a scaled Gaussian, or so-called variance scaling initialization (LeCun et al., 1998; Glorot &
Bengio, 2010; He et al., 2015). As we wish to better understand the role of these random initial
weights in pruning, we will examine the effect of varying initialization on the pruning results.

In essence, variance scaling schemes introduce normalization factors to adjust the variance σ of the
weight sampling distribution, which can be summarized as σ → α

ψl
σ, where ψl is a layerwise scalar

that depends on an architecture specification such as the number of output neurons in the previous
layer (e.g., fan-in), and α is a global scalar throughout the network. Notice in case of a network
with layers of the same width, the variance can be controlled by a single scalar γ = α

ψ as ψl = ψ

for all layers l. In particular, we take both linear and tanh multilayer perceptron networks (MLP)
of layers K = 7 and width N = 100 on MNIST with σ = 1 as the default, similar to Saxe et al.
(2014). We initialize these networks with different γ, compute the connection sensitivity, prune it,
and then visualize layerwise the resulting sparsity patterns c as well as the corresponding connection
sensitivity used for pruning in Figure 1.

It is seen in the sparsity patterns that for the tanh network, unlike the linear case, more parameters
tend to be pruned in the later layers than the earlier layers. As a result, this limits the learning capa-
bility of the subnetwork critically when a high sparsity level is requested; e.g., for κ̄ = 90%, only a
few parameters in later layers are retained after pruning. This is explained by the connection sensi-
tivity plot. The sensitivity of parameters in the nonlinear network tends to decrease towards the later
layers, and therefore, choosing the top-κ parameters globally based on the sensitivity scores results
in a subnetwork in which retained parameters are distributed highly non-uniformly and sparsely to-
wards the end of the network. This result implies that the initial weights have a crucial effect on the
connection sensitivity, and from there, the pruning results.

3.2 GRADIENT SIGNAL IN CONNECTION SENSITIVITY

We posit that the unreliability of connection sensitivity observed in Figure 1 is due to the poor signal
propagation: an initialization that projects the input signal to be strongly amplified or attenuated in
the forward pass will saturate the error signal under backpropagation (i.e., gradients), and hence will

3



Under review as a conference paper at ICLR 2020

κ̄ linear (K=7) tanh (K=7)

10

30

50

70

90

2 3 4 5 6 2 3 4 5 6
layer layer

linear (K=7)

2 3 4 5 6
layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
S

(×
10

−
5 )

tanh (K=7)

2 3 4 5 6
layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
S

(×
10

−
5 )

Figure 1: (left) layerwise sparsity patterns c ∈ {0, 1}100×100 obtained as a result of pruning for the
sparsity level κ̄ = {10, .., 90}%. Here, black(0)/white(1) pixels refer to pruned/retained parameters;
(right) connection sensitivities (CS) measured for the parameters in each layer. All networks are
initialized with γ = 1.0. Unlike the linear case, the sparsity pattern for the tanh network is non-
uniform over different layers. When pruning for a high sparsity level (e.g., κ̄ = 90%), this becomes
critical and leads to poor learning capability as there are only a few parameters left in later layers.
This is explained by the connection sensitivity plot which shows that for the nonlinear network
parameters in later layers have saturating, lower connection sensitivities than those in earlier layers.

result in poorly calibrated connection sensitivity scores across layers, which will eventually lead to
poor pruning results, potentially with complete disconnection of signal paths (e.g., entire layer).

Precisely, we give the relationship between the connection sensitivity and the gradients as follows.
From Equation 1, connection sensitivity is a normalized magnitude of gradients with respect to
the connectivity parameters c. Here, we use the vectorized notation where w denotes all learnable
parameters and c denotes the corresponding connectivity parameters. From chain rule, we can write:

∂L(c�w;D)

∂c

∣∣∣∣
c=1

=
∂L(c�w;D)

∂(c�w)

∣∣∣∣
c=1

�w =
∂L(w;D)

∂w
�w . (3)

Therefore, ∂L/∂c is the gradients ∂L/∂w amplified (or attenuated) by the corresponding weights
w, i.e., ∂L/∂cj = ∂L/∂wj wj for all j ∈ {1 . . .m}. Considering ∂L/∂cj for a given j, since
wj does not depend on any other layers or signal propagation, the only term that depends on signal
propagation in the network is the gradient term ∂L/∂wj . Hence, a necessary condition to ensure
faithful ∂L/∂c (and connection sensitivity) is that the gradients ∂L/∂w need to be faithful. In
the following section, we formalize this from a signal propagation perspective, and characterize an
initial condition that ensures reliable connection sensitivity measurement.

3.3 LAYERWISE DYNAMICAL ISOMETRY

3.3.1 GRADIENTS IN TERMS OF JACOBIANS

From the feed-forward dynamics of a network in Equation 2, the network’s input-output Jacobian
corresponding to a given input x0 can be written, by the chain rule of differentiation, as:

J0,K =
∂xK

∂x0
=

K∏
l=1

DlWl , (4)

where Dl ∈ RN×N is a diagonal matrix with entries Dl
ij = φ′(hli)δij , with φ′ denoting the deriva-

tive of nonlinearity φ, and δij = 1[i = j] is the Kronecker delta. Here, we will use Jk,l to denote the
Jacobian from layer k to layer l. Now, we give the relationship between gradients and Jacobians:

Proposition 1. Let ε = ∂L/∂xK denote the error signal and x0 denote the input signal. Then,

1. the gradients satisfy:
gTwl = εJl,KDl ⊗ xl−1 , (5)

where Jl,K = ∂xK/∂xl is the Jacobian from layer l to the output and⊗ is the Kronecker product.
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Table 1: Jacobian singular values and resulting sparse networks for the 7-layer tanh MLP network
considered in section 3.1. SG, CN, and Sparsity refer to Scaled Gaussian, Condition Number (i.e.,
smax/smin, where smax and smin are the maximum and minimum Jacobian singular values), and a ratio
of pruned prameters to the total number of parameters, respectively. SG (γ=10−2) is equivalent to the
variance scaling initialization as in LeCun et al. (1998); Glorot & Bengio (2010). The failure cases
correspond to unreliable connection sensitivity resulted from poorly conditioned initial Jacobians.

Jacobian singular values Sparsity in pruned network (across layers)
Initialization Mean Std CN 1 2 3 4 5 6 7 Error

SG (γ=10−4) 2.46e−07 9.90e−08 4.66e+00 0.97 0.80 0.80 0.80 0.80 0.81 0.48 2.66

SG (γ=10−3) 5.74e−04 2.45e−04 8.54e+00 0.97 0.80 0.80 0.80 0.80 0.81 0.48 2.67

SG (γ=10−2) 4.49e−01 2.51e−01 5.14e+01 0.96 0.80 0.80 0.80 0.81 0.81 0.49 2.67

SG (γ=10−1) 2.30e+01 2.56e+01 2.92e+04 0.96 0.81 0.82 0.82 0.82 0.80 0.45 2.61
SG (γ=100) 1.03e+03 2.61e+03 3.34e+11 0.85 0.88 0.99 1.00 1.00 1.00 0.91 90.2
SG (γ=101) 3.67e+04 2.64e+05 inf 0.84 0.95 1.00 1.00 1.00 1.00 1.00 90.2

2. additionally, for linear networks, i.e., when φ is the identity:

gTwl = εJl,K ⊗
(
J0,l−1x0 + a

)
, (6)

where J0,l−1 = ∂xl−1/∂x0 is the Jacobian from the input to layer l−1 and a ∈ RN is a constant
term that does not depend on x0.

Proof. This can be proved by an algebraic manipulation of the chain rule while using the feed-
forward dynamics in Equation 2. We provide the full derivation in Appendix A.

Notice that the gradient at layer l constitutes both the backward propagation of the error signal ε up
to layer l and the forward propagation of the input signal x0 up to layer l−1. Moreover, especially in
the linear case, the signal propagation in both directions is governed by the corresponding Jacobians.
We believe that this interpretation of gradients is useful as it sheds light on how signal propagation
affects the gradients. To this end, we next analyze the conditions on the Jacobians, which would
guarantee faithful signal propagation in the network, and consequently, faithful gradients.

3.3.2 ENSURING FAITHFUL GRADIENTS

Here, we first consider the layerwise signal propagation which would be useful to derive properties
on the initialization to ensure faithful gradients. To this end, let us consider the layerwise Jacobian:

Jl−1,l =
∂xl

∂xl−1
= DlWl . (7)

Note that it is sufficient to have layerwise dynamical isometry in order to ensure faithful signal
propagation in the network.

Definition 1. (Layerwise dynamical isometry) Let Jl−1,l = ∂xl

∂xl−1 ∈ RNl×Nl−1 be the Jacobian
matrix of layer l. The network is said to satisfy layerwise dynamical isometry if the singular values
of Jl−1,l are concentrated near 1 for all layers, i.e., for a given ε > 0, the singular value σj satisfies
|1− σj | ≤ ε for all j.

This would guarantee that the signal from layer l to l − 1 (or vice versa) is propagated without am-
plification or attenuation in any of its dimension. From Proposition 1 and Equation 7, by induction,
it is easy to show that if the layerwise signal propagation is faithful, the error and input signals will
faithfully propagate throughout the network, resulting in faithful gradients.

For linear networks, Jl−1,l = W l. Therefore, one can initialize the weight matrix to be orthogonal
such that (Wl)TWl = I, where I is the identity matrix of dimension N . In this case, all singular
values of Wl are exactly 1 (i.e., exact dynamical isometry), and such an initialization guarantees
faithful gradients. While a linear network is of little practical use, we note that it helps to develop
theoretical analysis and provides intuition as to why dynamical isometry is a useful measure.

For nonlinear networks, the diagonal matrix Dl needs to be accounted for as it depends on the
pre-activations hl at layer l. In this case, it is important to have the pre-activations hl fall into
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the linear region of the nonlinear function φ. Precisely, mean-field theory assumes that for large-N
limit, the empirical distribution of the pre-activations hl converges to a Gaussian with zero mean and
variance ql, where the variance follows a recursion relation (Poole et al., 2016). Therefore, to achieve
layerwise dynamical isometry, the idea becomes to find a fixed point q∗ such that hl ∼ N (0, q∗)
for all l ∈ {1 . . .K}. Such a fixed point makes Dl = D for all layers, and therefore, the pre-
activations are placed in the linear region of the nonlinearity.2 Then, given the nonlinearity, one can
find a rescaling such that (DWl)T (DWl) = (Wl)TWl/σ2

w = I. The procedure for finding the
rescaling σ2

w for various nonlinearities are discussed in Pennington et al. (2017; 2018). Also, this
easily extends to convolutional neural networks using the initialization method in Xiao et al. (2018).

We note that dynamical isometry is in fact a weaker condition than layerwise dynamical isometry.
However, in practice, the initialization suggested in the existing works (Pennington et al., 2017; Xiao
et al., 2018), i.e., orthogonal initialization for weight matrices in each layer with rescaling based on
mean field theory, satisfy layerwise dynamical isometry, even though this term was not mentioned.

Now, recall from Section 3.1 that a network is pruned with a global threshold based on connection
sensitivity, and from Section 3.2 that the connection sensitivity is the gradients scaled by the weights.
This in turn implies that the connection sensitivity scores across layers are required to be of the same
scale. To this end, we require the gradients to be faithful and the weights to be in the same scale for
all the layers. Notice, this condition is trivially satisfied when the layerwise dynamical isometry is
ensured, as each layer is initialized identically (i.e., orthogonal initialization) and the graidents are
guaranteed to be faithful.

Finally, we verify the failure of pruning cases presented in Section 3.1 based on the signal prop-
agation perspective. Specifically, we measure the singular value distribution of the input-output
Jacobian (J0,K) for the 7-layer tanh MLP network, and the results are reported in Table 1. Note that
while connection sensitivity based pruning is robust to moderate changes in the Jacobian singular
values, it failed catastrophically when the condition number of the Jacobian is very large (> 1e+11).
In fact, these failure cases correspond to the completely disconnected networks, as a consequence of
pruning with unreliable connection sensitivity resulted from poorly conditioned initial Jacobians. As
we will show subsequently, these findings extend to modern architectures, and layerwise dynamical
isometry yields well-conditioned Jacobians and in turn the best pruning results.

4 SIGNAL PROPAGATION IN SPARSE NETWORKS

So far, we have shown empirically and theoretically that layerwise dynamical isometry can improve
the process of pruning at initialization. One remaining question to address is the following: how
well do signals propagate in the pruned sparse networks? In this section, we first examine the effect
of sparsity on signal propagation after pruning. We find that indeed pruning can break dynamical
isometry, degrading trainability of sparse networks. Then we follow up to present a simple, but
effective data-free method to recover approximate dynamical isometry on sparse networks.

Setup. The overall process is summarized as follows: Step 1. Initialize a network with a variance
scaling (VS) or layerwise dynamical isometry (LDI) satisfying orthogonal initialization. Step 2.
Prune at initialization for a sparsity level κ̄ based on connection sensitivity (CS); we also test random
(Rand) and magnitude (Mag) based pruning for comparison. Step 3. (optional) Enforce approximate
dynamical isometry, if specified. Step 4. Train the pruned sparse network using the standard SGD.
We measure signal propagation (e.g., Jacobian singular values) on the pruned sparse network right
before Step 4, and observe training behavior during Step 4. Different methods are named as {A}-
{B}-{C}, where A, B, C stand for initialization scheme, pruning method, (optional) approximate
isometry, respectively. We perform this on 7-layer linear and tanh MLP networks as before.

Effect of pruning on signal propagation and trainability. Let us first check signal propagation
measurements in the pruned networks (see Figure 2a). In general, Jacobian singular values decrease
continuously as the sparsity level increases (except for {·}-{·}-AI which we will explain later),
indicating that the more parameters are removed, the less faithful a network is likely to be with regard
to propagating signals. Also, notice that the singular values drop more rapidly with random pruning

2 Dynamical isometry can hold for antisymmetric sigmoidal activation functions (e.g., tanh) as shown
in Pennington et al. (2017). A recent work by Tarnowski et al. (2019) have also shown that dynamical isometry
is achievable irrespective of the activation function in ResNets.
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Figure 2: (a) Signal propagation (mean Jacobian singular values) in sparse networks pruned for
varying sparsity levels κ̄, and (b) training behavior of the sparse network at κ̄ = 90%. Signal
propagation, pruning scheme, and overparameterization affect trainability of sparse neural networks.
We train using the standard SGD with the initial learning rate of 0.1 decayed by 1/10 at every 20k
iterations. All results are the average over 10 runs. We provide other singular value statistics (max,
min, std), accuracy plot, extended training results for random and magnitude pruning in Appendix C.

compared to connection sensitivity based pruning methods (i.e., {·}-Rand vs. {·}-CS). This means
that pruning using connection sensitivity is more robust to destruction of dynamical isometry and
preserve better signal propagation in the sparse network than random pruning. We further note that,
albeit marginal, layerwise dynamical isometry allows more faithful signal propagation than variance
scaling initialization, with relatively higher mean singular values (and lower standard deviation; see
Appendix C).

Now, we look into the relation between signal propagation and trainability of the sparse networks.
Figure 2b shows training behavior of the pruned networks (κ̄ = 90%) obtained by different methods.
We can see a clear correlation between signal propagation capability of a network and its training
performance; i.e., the better a network propagates signals, the faster it converges during training.
For instance, compare the trainability of a network before and after pruning. That is, compared to
LDI-Dense (κ̄ = 0), LDI-{CS, Mag, Rand} decrease the loss much slowly; random pruning starts to
decrease the loss around 4k iteration, and finally reaches to close to zero loss around 10k iterations
(see Appendix C), which is more than an order of magnitude slower than a network pruned by
connection sensitivity. Recall that the pruned networks have much smaller singular values.

Enforcing approximate dynamical isometry. The observation above indicates that the better
signal propagation is ensured on sparse networks, the better their training performs. This motivates
us to think of the following: what if we can repair the broken isometry, before we start training
the pruned network, such that we can achieve trainability comparable to that of the dense network?
Precisely, we consider the following:

min
Wl
‖(Cl �Wl)T (Cl �Wl)− Il‖F , (8)

where Cl, Wl, Il are the sparse mask obtained by pruning, the corresponding weights, the identity
matrix at layer l, respectively, and ‖ · ‖F is the Frobenius norm. We optimize this for all layers
identically using gradient descent. Given the sparsity topology Cl and initial weights Wl, this data-
free method attempts to find an optimal W∗ such that the combination of the sparse topology and
the weights to be layerwise orthogonal, potentially to the full rank capacity. This simple method
(i.e., {·}-{·}-AI, where AI is named for Approximate Isometry) turns out to be highly effective. The
results are provided in Figure 2, and we summarize our key findings below:

• Signal propagation (LDI-{CS, Rand} vs. LDI-{CS, Rand}-AI). The decreased singular values
(by pruning κ̄ > 0) bounce up dramatically and become close to the level before pruning. This
means that orthogonality enforced by Equation 8 is achieved in the sparse topology of the pruned
network (i.e., approximate dynamical isometry), and therefore, signal propagation on the sparse
network is likely to behave similarly to the dense network. As expected, the training performance
increased significantly (e.g., compare LDI-CS with LDI-CS-AI for trainability). This works more
dramatically for random pruning; i.e., even for randomly pruned sparse networks, training speed
increases significantly, implying the benefit of ensuring signal propagation.
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Table 2: Pruning results for various neural networks on different datasets. All networks are pruned at
initialization for the sparsity κ̄ = 90% based on connection sensitivity scores as in Lee et al. (2019).
We report orthogonality scores (OS) and generalization errors (Error) on CIFAR-10 (VGG16,
ResNets) and Tiny-ImageNet (WRN16); all results are the average over 5 runs. The first and second
best results are highlighted in each column of errors. The orthogonal initialization with enforced
approximate isometry method (i.e., LDI-AI) achieves the best results across all tested architectures.

VGG16 ResNet32 ResNet56 ResNet110 WRN16
Initialization OS Error OS Error OS Error OS Error OS Error

VS-L 13.72 8.16 4.50 11.96 4.64 10.43 4.65 9.13 11.99 45.08
VS-G 13.60 8.18 4.55 11.89 4.67 10.60 4.67 9.17 11.50 44.56
VS-H 15.44 8.36 4.41 12.21 4.44 10.63 4.39 9.08 13.49 46.62
LDI 13.33 8.11 4.43 11.55 4.51 10.08 4.57 8.88 11.28 44.20
LDI-AI 6.43 7.99 2.62 11.47 2.79 9.85 2.92 8.78 6.62 44.12

Table 3: Pruning results for VGG16 and ResNet32
with different activation functions on CIFAR-10. We
report generalization errors (avg. over 5 runs), and
the first and second best results are highlighted.

VGG16 ResNet32
Initialization tanh l-relu selu tanh l-relu selu

VS-L 9.07 7.78 8.70 13.41 12.04 12.26
VS-G 9.06 7.84 8.82 13.44 12.02 12.32
VS-H 9.99 8.43 9.09 13.12 11.66 12.21
LDI 8.76 7.53 8.21 13.22 11.58 11.98
LDI-AI 8.72 7.47 8.20 13.14 11.51 11.68

Table 4: Unsupervised pruning results for
K-layer MLP networks on MNIST. All
networks are pruned for sparsity κ̄ = 90%
at orthogonal initialization. We report gen-
eralization errors (avg. over 10 runs).

Loss Superv. K=3 K=5 K=7

GT 3 2.46 2.43 2.61
Pred. (raw) 7 3.31 3.38 3.60
Pred. (softmax) 7 3.11 3.37 3.56
Unif. 7 2.77 2.77 2.94

• Structure (LDI-Rand-AI vs. LDI-CS-AI). Even if the approximate dynamical isometry is en-
forced identically, the network pruned using connection sensitivity shows better trainability than
the randomly pruned network. This potentially means that the structure of a network (by different
pruning methods) also matters, in addition to signal propagation characteristics.

• Overparameterization (LDI-Dense vs. LDI-{CS, Rand}-AI). Even though the singular values
are restored to a level close to before pruning with approximate isometry, the non-pruned dense
network converges faster than pruned networks. We hypothesize that in addition to signal propa-
gation, overparameterization helps in optimization taking less time to find a minimum.

While being simple and data free (thus fast), our signal propagation perspective not only can be used
to improve trainability of sparse neural networks, but also to supplement a common explanation for
decreased trainability of compressed networks which is often attributed merely to a reduced capacity.

5 VALIDATION AND EXTENSIONS

In this section, we aim to demonstrate the efficacy of our signal propagation perspective on a wide
variety of settings. We first evaluate the idea of employing layerwise dyanmical isometry on various
modern neural networks. In addition, we further study the role of supervision under the pruning at
initialization regime, extending it to unsupervised pruning. Our results show that indeed, pruning
can be approached from the signal propagation perspective at varying scale, bringing forth the no-
tion of neural architecture sculpting. All experiments were conducted using TensorFlow, and the
experiment settings used to generate the presented results are described in detail in Appendix B. We
will release the full code upon publication.

5.1 EVALUATION ON VARIOUS NEURAL NETWORKS AND DATASETS

Here, we verify that our signal propagation perspective for pruning neural networks at initialization
is indeed valid, by evaluating further on various modern neural networks and datasets. To this end,
we provide orthogonality scores (OS) and generalization errors of the sparse networks obtained by
different methods and show that layerwise dynamical isometry with enforced approximate isometry
results in the best performance; here, we define OS as 1

l

∑
l ‖(Cl�Wl)T (Cl�Wl)−Il‖F , which
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can be used to indicate how close are the weight matrices in each layer of the pruned network to
being orthogonal. All results are the average of 5 runs, and we do not optimize anything specific for
a particular case (see Appendix B for experiment settings). The results are presented in Table 2.

Note that the best pruning results are achieved when the approximate dynamical isometry is enforced
on the pruned sparse network (i.e., LDI-AI), across all tested architectures. Also, the second best re-
sults are achieved with the orthogonal initialization that satisfies layerwise dynamical isometry (i.e.,
LDI). Looking closely, it is evident that there exists a high correlation between the orthogonality
scores and the performance of pruned networks; i.e., the network initialized to have the lowest or-
thogonality scores achieves the best generalization errors after training. Note that the orthogonality
scores being close to 0, by definition, states how faithful a network will be with regard to letting
signals propagate without being amplified or attenuated. Therefore, the fact that a pruned network
with the lowest orthogonality scores tends to yield good generalization errors further validates that
our signal propagation perspective is indeed effective for pruning at initialization. Moreover, we
test for other nonlinear activation functions (tanh, leaky-relu, selu), and found that the orthogonal
initialization constantly outperforms variance scaling methods (see Table 3).

5.2 PRUNING WITHOUT SUPERVISION

So far, we have shown that pruning random networks can be approached from a signal propagation
perspective by ensuring faithful connection sensitivity. Another factor that constitutes connection
sensitivity is the loss term. At a glance, it is not obvious how informative the supervised loss
measured on a random network will be for connection sensitivity. In this section, we look into the
effect of supervision, by simply replacing the loss computed using ground-truth labels with different
unsupervised surrogate losses as follows: replacing the target distribution using ground-truth labels
with uniform distribution (Unif.), and using the averaged output prediction of the network (Pred.;
softmax/raw). The results for MLP networks are in Table 4. Even though unsupervised pruning
results are not as good as the supervised case, the results are still interesting, especially for the
uniform case, in that there was no supervision given. We thus experiment further for the uniform case
on other networks, and obtain the following results: 8.25, 11.69, 11.01, 8.82 errors (%) for VGG16,
ResNet32, ResNet56, ResNet110, respectively. Surprisingly, the results are often competitive to
that of pruning with supervision (i.e., compare to LDI results in Table 2). Notably, previous pruning
algorithms assume the existence of supervision a priori. Being the first demonstration, along with
the signal propagation perspective, this unsupervised pruning strategy can be useful in scenarios
where there are no labels or only weak supervision is available.

Table 5: Transfer of sparsity experiment results for
LeNet. We prune for κ̄ = 97% at orthogonal initial-
ization, and report gen. errors (average over 10 runs).

Dataset Error Error
Category prune train&test sup.→ unsup. (∆) rand

Standard MNIST MNIST 2.42→ 2.94 +0.52 15.56
Transfer F-MNIST MNIST 2.66→ 2.80 +0.14 18.03

Standard F-MNIST F-MNIST 11.90→ 13.01 +1.11 24.72
Transfer MNIST F-MNIST 14.17→ 13.39 -0.78 24.89

To demonstrate, we further conducted
transfer of sparsity experiments such as
transferring a pruned network from one task
to another (MNIST ↔ Fashion-MNIST).
Table 5 shows that, while pruning re-
sults may degrade if sparsity is transferred,
or done without supervision, less impact
is caused for unsupervised pruning when
transferred to a different task (i.e., 0.52 to
0.14 on MNIST, and 1.11 to −0.78 on F-
MNIST). This indicates that inductive bias exists in data, affecting transfer and unsupervised prun-
ing, and potentially, that “universal” sparse topology might be obtainable if universal data distribu-
tion is known (e.g., extremely large dataset in practice). This may help in situations where different
tasks from unknown data distribution are to be performed (e.g., continual learning). We also tested
two other unsupervised losses, but none performed as well as uniform loss (e.g., Jacobian norms
‖J‖1: 5.03, ‖J‖2: 3.00 vs. Unif.: 2.94), implying that if pruning is to be unsupervised, the uniform
loss would better be used, because other unsupervised losses depend on the input data (thus can
suffer from inductive bias). Random pruning degrades significantly at high sparsity for all cases.

5.3 NEURAL ARCHITECTURE SCULPTING

We have shown that the signal propagation perspective enables pruning of networks at initialization,
and can be effective when no supervision is provided. This begs the question of whether pruning
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needs to be limited to pre-shaped architectures or not. In other words, what if pruning is applied
to an arbitrarily bulky network and is treated as sculpting an archiecture? To seek for an answer,
we conduct the following experiments: we take a popular pre-designed architecture (ResNet20) as
a base network, and consider a range of variants that are originally bigger than the base model,
but pruned to have the same number of parameters as the base dense network. Specifically, we
consider the following equivalents: (1) the same number of residual blocks, but with larger widths;
(2) a reduced number of residual blocks with larger widths; (3) a larger residual block and the same
width. The results are presented in Figure 3.

0 20 40 60 80 100
Sparsity (%)

7.6

7.7

7.8

7.9

8.0

8.1

Er
ro

r

Reference
Equivalent1
Equivalent2
Equivalent3

Figure 3: Neural architecture sculpting
results on CIFAR-10. We report gener-
alization errors (avg. over 5 runs). All
networks have the same number of pa-
rameters (269k) and trained identically.

Overall, the sparse equivalents record lower generaliza-
tion errors than the dense base model. Notice that some
models are pruned to extreme sparsity levels (e.g., Equiv-
alent 1 pruned for κ̄ = 98.4%). While all networks have
the same number of parameters, discovered sparse equiv-
alents significantly outperform the dense reference net-
work. This result is well aligned with recent research
findings in Kalchbrenner et al. (2018): large sparse net-
works can outperform the small dense network counter-
part, while enjoying increased computational and mem-
ory efficiency via a dedicated implementation for spar-
sity in practice. We further note that unlike existing prior
works, the sparse networks are discovered by sculpting
arbitrarily-designed architecture, without pretraining nor
supervision.

6 DISCUSSION AND FUTURE WORK

In this work, we have approached the problem of pruning neural networks at initialization from a
signal propagation perspective. Based on observations on the effect of varying the initialization,
we found that initial weights have a critical impact on connection sensitivity measurements and
hence pruning results. This led us to conduct theoretical analysis based on dynamical isometry
and a mean field theory, and formally characterize a sufficient condition to ensure faithful signal
propagation in a given nework. Moreover, our analysis on compressed neural networks revealed
that signal propagation characteristics of a sparse network highly correlates with its trainability, and
also that pruning can break dynamical isometry ensured on a network at initialization, resulting in
degradation of trainability of the compressed network. To address this, we introduced a simple, yet
effective data-free method to recover the orthogonality and enhance trainability of the compressed
network. Finally, throughout a range of validation and extension experiments, we verified that our
signal propagation perspective is effective for understanding and improving the task of pruning at
initialization across various settings. We believe that our results on the increased trainability of
compressed neural networks can take us one step towards finding “winning lottery ticket” (i.e., a set
of initial weights that given a sparse topology can quickly reach to a generalization performance that
is comparable to the uncompressed network, once trained) suggested in Frankle & Carbin (2019).

We point out, however, that there remains several aspects to consider. While pruning on enforced
isometry produces trainable sparse networks, the two-stage orthogonalization process (i.e., prune
first and enforce the orthogonality later) can be suboptimal especially at a high sparsity level. Also,
network weights change during training, which can affect signal propagation characteristics, and
therefore, dynamical isometry may not continue to hold over the course of training. We hypothesize
that a potential key to successful neural network compression is to address the complex interplay be-
tween optimization and signal propagation, and it might be immensely beneficial if an optimization
naturally takes place in the space of isometry. We believe that our signal propagation perspective
provides a means to formulate this as an optimization problem by maximizing the trainability of
sparse networks while pruning, and we intend to explore this direction as a future work.
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A GRADIENTS IN TERMS OF JACOBIANS

Proposition 1. Let ε = ∂L/∂xK denote the error signal and x0 denote the input signal. Then,

1. the gradients satisfy:
gTwl = εJl,KDl ⊗ xl−1 , (9)

where Jl,K = ∂xK/∂xl is the Jacobian from layer l to the output and⊗ is the Kronecker product.
2. additionally, for linear networks, i.e., when φ is the identity:

gTwl = εJl,K ⊗
(
J0,l−1x0 + a

)
, (10)

where J0,l−1 = ∂xl−1/∂x0 is the Jacobian from the input to layer l − 1 and a ∈ RN is the
constant term that does not depend on x0.

Proof. The proof is based on a simple algebraic manipulation of the chain rule. The gradient of the
loss with respect to the weight matrix Wl can be written as:

gwl =
∂L

∂Wl
=

∂L

∂xK
∂xK

∂xl
∂xl

∂Wl
. (11)

Here, the gradient ∂y/∂x is represented as a matrix of dimension y-size × x-size. For gradients
with respect to matrices, their vectorized from is used. Notice,

∂xl

∂Wl
=
∂xl

∂hl
∂hl

∂Wl
= Dl ∂h

l

∂Wl
. (12)

Considering the feed-forward dynamics for a particular neuron i,

hli =
∑
j

W l
ijx

l−1
j + bli , (13)

∂hli
∂W l

ij

= xl−1
j .

Therefore, using the Kronecker product, we can compactly write:

∂xl

∂Wl
= (Dl)T ⊗ (xl−1)T . (14)

Now, Equation 11 can be written as:

gwl = (εJl,KDl)T ⊗ (xl−1)T , (15)

gTwl = εJl,KDl ⊗ xl−1 .

Here, AT ⊗ BT = (A ⊗ B)T is used. Moreover, for linear networks Dl = I and xl = hl for all
l ∈ {1 . . .K}. Therefore, xl−1 can be written as:

xl−1 = φ(Wl−1φ(Wl−2 . . . φ(W1x0 + b1) . . .+ bl−2) + bl−1) , (16)

= Wl−1(Wl−2 . . . (W1x0 + b1) . . .+ bl−2) + bl−1 ,

=

l−1∏
k=1

Wkx0 +

l−1∏
k=2

Wkb1 + . . .+ bl−1 ,

= J0,l−1x0 + a ,

where a is the constant term that does not depend on x0. Hence, the proof is complete.

12



Under review as a conference paper at ICLR 2020

B EXPERIMENT SETTINGS

Pruning at initialization. By default, we perform pruning at initialization based on connection
sensitivity scores as in Lee et al. (2019). When computing connection sensitivity, we always use
all examples in the training set to prevent stochasticity by a particular mini-batch. Unless stated
otherwise, we set the default sparsity level to be κ̄ = 90% (i.e., 90% of the entire parameters in a
network is pruned away). For all tested architectures, pruning for such level of sparsity does not
lead to a large accuracy drop. Additionally, we perform either random pruning (at initialization)
or a magnitude based pruning (at pretrained) for comparison purposes. Random pruning refers
to pruning parameters randomly and globally for a given sparsity level. For the magnitude based
pruning, we first train a model and simply prune parameters globally in a single-shot based on
the magnitude of the pretrained parameters (i.e., keep the large weights while pruning small ones).
For initialization methods, we follow either variance scaling initialization schemes (i.e., VS-L, VS-
G, VS-H, as in LeCun et al. (1998); Glorot & Bengio (2010); He et al. (2015), respectively) or
(convolutional) orthogonal initialization schemes (Saxe et al., 2014; Xiao et al., 2018).

Training and evaluation. Throughout experiments, we evaluate pruning results on MNIST,
CIFAR-10, and Tiny-ImageNet image classification tasks. For training of the pruned sparse net-
works, we use sgd with momentum and train up to 80k (for MNIST) or 100k (for CIFAR-10 and
Tiny-ImageNet) iterations. The initial learning is set 0.1 and is decayed by 1/10 at every 20k
(MNIST) or 25k (CIFAR-10 and Tiny-ImageNet). The mini-batch size is set to be 100, 128, 200 for
MNIST, CIFAR-10, Tiny-ImageNet, respectively. We do not optimize anything specific for a partic-
ular case, and follow the standard training procedure. For all experiments, we use 10% of training
set for the validation set, which corresponds to 5400, 5000, 9000 images for MNIST, CIFAR-10,
Tiny-IamgeNet, respectively. We evaluate at every 1k iteration, and record the lowest test error. All
results are the average of either 10 (for MNIST) or 5 (for CIFAR-10 and Tiny-ImageNet) runs.

Signal propagation and approximate dynamical isometry. We use the entire training set when
computing Jacobian singular values of a network. In order to enforce approximate dynamical isom-
etry when specified, given a pruned sparse network, we optimize for the objective in Equation 8
using gradient descent. The learning rate is set to be 0.1 and we perform 10k gradient update steps
(although it usually reaches to convergence far before). This process is data-free and thus fast; e.g.,
depending on the size of the network and the number of update steps, it can take less than a few
seconds on a modern computer.

All experiments were conducted using TensorFlow, and we will release our code upon publication.
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C SIGNAL PROPAGATION IN SPARSE NETWORKS: ADDITIONAL RESULTS
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(a) Signal propagation (all statistics)
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(b) Training behavior (loss and accuracy)

Figure 4: Full results for (a) signal propagation (all signular value statistics), and (b) training behav-
ior (including accuracy) for 7-layer linear and tanh MLP networks. We provide results of LDI-Rand,
LDI-Rand-AI, VS-CS, LDI-CS, LDI-CS-AI on the linear case for both singular value statistics and
training log. Also we plot results of LDI-Mag and LDI-Dense on the tanh case for trainability; the
definitions of acronyms are provided in the main text. The training results of non-pruned (LDI-
Dense) and magnitude (LDI-Mag) pruning are only reported for the tanh case, because the learning
rate had to be lowered for the linear case (otherwise explode), which makes the comparison for
convergence not entirely fair. We provide the singular value statistics for the magnitude pruning
in Figure 6 to avoid clutter. Also, extended training logs for random and magnitude based pruning
are provided separately in Figure 5 to illustrate the difference in convergence speed.
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(a) Training behavior

Figure 5: Extended training log (i.e., Loss and Accuracy) for random (Rand) and magnitude (Mag)
pruning. The sparse networks obtained by random or magnitude pruning take a much longer time to
train than that obtained by pruning based on connection sensitivity. All methods are pruned at the
layerwise orthogonal initialization, and trained the same way as before.

0 20 40 60 80 100
Sparsity (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

J. 
sin

gu
la
r v

al
ue

s (
m
ea

n) LDI-Mag

linear (K=7)

0 20 40 60 80 100
Sparsity (%)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

J. 
sin

gu
la

r v
al

ue
s (

m
ax

)

1e1

LDI-Mag

linear (K=7)

0 20 40 60 80 100
Sparsity (%)

0

1

2

3

4

J. 
sin

gu
la

r v
al

ue
s (

m
in

)

1e−2

LDI-Mag

linear (K=7)

0 20 40 60 80 100
Sparsity (%)

1

2

3

4

5

6

J. 
sin

gu
la
r v

al
ue

s (
st
d)

LDI-Mag

linear (K=7)

0 20 40 60 80 100
Sparsity (%)

1

2

3

4

5

J. 
sin

gu
la

  v
al

ue
s (

m
ea

n)

1e−1

LDI-Mag

tanh (K=7)

0 20 40 60 80 100
Sparsity (%)

0.2

0.4

0.6

0.8

1.0

1.2

J. 
sin

gu
la

r v
al

ue
s (

m
ax

)

1e2

LDI-Mag

tanh (K=7)

0 20 40 60 80 100
Sparsity (%)

0.0

0.5

1.0

1.5

2.0

J. 
 in

gu
la
r v

al
ue

  (
m
in
)

1e%6

LDI-Mag

tanh (K=7)

0 20 40 60 80 100
Sparsity (%)

0.5

1.0

1.5

2.0

2.5

3.0

J. 
sin

gu
la

r v
al

ue
s (

st
d)

LDI-Mag

tanh (K=7)

(a) Signal propagation (all statistics; magnitude based pruning)

Figure 6: Signal propagation measurments (all signular value statistics) for the magnitude based
pruning (Mag) on the 7-layer linear and tanh MLP networks. As described in the experiment settings
in Appendix B, the magnitude based pruning is performed on a pretrained model. Notice that unlike
other cases where pruning is done at initialization (i.e., using either random or connection sensitivity
based pruning methods), the singular value distribution changes abruptly when pruned (i.e., note of
the sharp change of singular values from 0 to 10% sparsity). Also, the singular values are not
concentrated (note of high standard deviations), which explains rather inferior trainability compared
other methods. We conjecture that naively pruning based on the magnitude of parameters in a single-
shot (without employing sophisticated tricks such as layerwise thresholding) can lead to a failure of
training compressed networks.
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