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ABSTRACT

As machine learning methods see greater adoption and implementation in high
stakes applications such as medical image diagnosis, the need for model inter-
pretability and explanation has become more critical. Classical approaches that
assess feature importance (e.g., saliency maps) do not explain 2ow and why a par-
ticular region of an image is relevant to the prediction. We propose a method
that explains the outcome of a classification black-box by gradually exaggerat-
ing the semantic effect of a given class. Given a query input to a classifier, our
method produces a progressive set of plausible variations of that query, which
gradually change the posterior probability from its original class to its negation.
These counter-factually generated samples preserve features unrelated to the clas-
sification decision, such that a user can employ our method as a “tuning knob”
to traverse a data manifold while crossing the decision boundary. Our method is
model agnostic and only requires the output value and gradient of the predictor
with respect to its input.

1 INTRODUCTION

With the explosive adoption of deep learning for real-world applications, explanation and model
interpretability have received substantial attention from the research community (Kim, 2015; Doshi-
Velez & Kim, 2017; Molnar, 2018; Guidotti et al., 2019). Explaining an outcome of a model in high
stake applications, such as medical diagnosis from radiology images, is of paramount importance to
detect hidden biases in data (Cramer et al., 2018), evaluate the fairness of the model (Doshi-Velez
& Kim, 2017), and build trust in the system (Glass et al., 2008). For example, consider evaluating
a computer-aided diagnosis of Alzheimer’s disease from medical images. The physician should be
able to assess whether or not the model pays attention to age-related or disease-related variations
in an image in order to trust the system. Given a query, our model provides an explanation that
gradually exaggerates the semantic effect of one class, which is equivalent to traversing the decision
boundary from side to another.

Although not always clear, there are subtle differences between interpretability and explana-
tion (Turner, 2016). While the former mainly focuses on building or approximating models that
are locally or globally interpretable (Ribeiro et al., 2016), the latter aims at explaining a predictor a-
posteriori. The explanation approach does not compromise the prediction performance. However, a
rigorous definition for what is a good explanation is elusive. Some researchers focused on providing
feature importance (e.g., in the form of a heatmap (Selvaraju et al., 2017)) that influence the outcome
of the predictor. In some applications (e.g., diagnosis with medical images) the causal changes are
spread out across a large number of features (i.e., large portions of the image are impacted by a
disease). Therefore, a heatmap may not be informative or useful, as almost all image features are
highlighted. Furthermore, those methods do not explain why a predictor returns an outcome. Others
have introduced local occlusion or perturbations to the input (Zhou et al., 2014; Fong & Vedaldi,
2017) by assessing which manipulations have the largest impact on the predictors. There is also
recent interest in generating counterfactual inputs that would change the black box classification de-
cision with respect to the query inputs (Goyal et al., 2019; Liu et al., 2019). Local perturbations of
a query are not guaranteed to generate realistic or plausible inputs, which diminishes the usefulness
of the explanation, especially for end users (e.g., physicians). We argue that the explanation should
depend not only on the predictor function but also on the data. Therefore, it is reasonable to train a
model that learns from data as well as the black-box classifier (e.g., (Chang et al., 2018; Dabkowski
& Gal, 2017; Fong & Vedaldi, 2017)).
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Our proposed method falls into the local explanation paradigm. Our approach is model agnostic and
only requires access to the predictor values and its gradient with respect to the input. Given a query
input to a black-box, we aim at explaining the outcome by providing plausible and progressive vari-
ations to the query that can result in a change to the output. The plausibility property ensures that
perturbation is natural-looking. A user can employ our method as a “’tuning knob” to progressively
transform inputs, traverse the decision boundary from one side to the other, and gain understand-
ing about how the predictor makes a decision. We introduce three principles for an explanation
function that can be used beyond our application of interested. We evaluate our method on a set
of benchmarks as well as real medical imaging data. Our experiments show that the counterfactu-
ally generated samples are realistic-looking and in the real medical application, satisfy the external
evaluation. We also show that the method can be used to detect bias in training of the predictor.

2 METHOD

Consider a black box classifier that maps an input space X’ (e.g., images) to an output space Y (e.g.,
labels). In this paper, we consider binary classification problems where )V = {—1,+1}. To model
the black-box, we use f(x) = P(y|x) to denote the posterior probability of the classification. We
assume that f is a differentiable function and we have access to its value as well as its gradient with
respect to the input Vi f(x).
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Figure 1: (a) The schematic of the method: f is the black-box function producing the posterior probability.
Zr(x,0) is an explainer function for f, which shifts the value of f(x) by 4. The E(-) is an encoder that maps
the data manifold M, to the embedding manifold M... x5 is an abbreviation for Z¢(x, ). (b) The architecture
of our model: E is the encoder, G} denotes the conditional generator G(-, ¢y (, §)), f is the black-box and D
is the discriminator. The circles denote loss functions.

We view the (visual) explanation of the black-box as a generative process that produces an input
for the black-box that slightly perturbs current prediction (f(x) + ¢) while remaining plausible and
realistic. By repeating this process towards each end of the binary classification spectrum, we can
traverse the prediction space from one end to the other and exaggerate the underlying effect. We
conceptualize the traversal from one side of the decision boundary to the other as walking across a
data manifold, M,. We assume the walk has a fixed step size and each step of the walk makes §
change to the posterior probability of the the classifier, f. Since the output of f is bounded between
[0, 1], we can take at-most L%J steps. Each positive (negative) step increases (decreases) the posterior
probability of the previous step. We assume that there is a low-dimensional embedding space (M)
that encodes the walk. An encoder, E : M, — M, maps an input, x, from the data manifold,
M, to the embedding space. A generator, G : M, — M,, takes both the embedding coordinate
and the number of steps and maps it back to the data manifold (see Figurel).
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We use Z¢(-, ) to denote the explainer function. Formally, Z¢(x,0) : (X¥,R) — X is a function
that takes two arguments: a query image x and the desired perturbation §. This function generates a
perturbed image which is then passed through function f. The difference between the outputs of f
given the original image and the perturbed image should be the desired change i.e., f(x5) — f(x) =
J. We use x; to denote Z(x,d). This formulation enables us to use ¢ as a knob to exaggerate the
visual explanations of the query sample while it is crossing the decision boundary given by function
f. Our proposed interpretability function Z; should satisfy the following properties:

1. Data Consistency: perturbed samples generated by Z; should lie on the data manifold,
M, to be consistent with real data. In other words, the generated samples should look
realistic when compared to other samples.

2. Compatibility with f: changing the second argument in Z(x, -) should produce the de-
sired outcome from classifier f, i.e., f(Z;(x,9)) ~ f(x) + 0.

3. Self Consistency: Applying reverse perturbation should bring x back to its original form
i.e., Tp(Zy(x,0), —6) = x. Also, applying setting ¢ to zero should return the query, i.e.,
T¢(x,0) = x.

Each criterion is enforced via a loss function which are discussed in the following sections.

2.1 DATA CONSISTENCY

We adopt the Generative Adversarial Networks (GANs) framework for our model (Goodfellow et al.,
2014). The GANs implicitly model the underlying data distribution by setting up a min-max game
between generative (G) and discriminative (D) networks:

£GAN(D7 G) = ]EX,CNP(X) [log (D(X)>] + IEZNPZ [IOg (1 - D(G<Z))>]7

where z and P, are the noise distribution and the corresponding canonical distribution. There has
been significant progress toward improving GANS stability as well as sample quality (Brock et al.,
2019; Karras et al., 2019). The advantage of GANSs is that they produce realistic-looking samples
without an explicit likelihood assumption about the underlying probability distribution. This prop-
erty is appealing for our application.

Furthermore, we need to provide the desired amount of perturbation to the black-box, f. Hence,
we use a Conditional GAN (cGAN) that allows the incorporation of a context as a condition to the
GAN (Mirza & Osindero, 2014; Miyato & Koyama, 2018). To define the condition, we fix the step
size, 0, and descritize the walk which effectively cuts the posterior probability range of the predictor
(i.e., [0,1]) into | § | equally-sized bins. Hence, one can view the perturbation from f(x) to f(x)+§
as changing the bin index from the current value c(x, 0) to ¢ (x, d) where cs(x, d) returns the bin
index of f(x) + . We use cf(x, d) as a condition to the cGAN.

The cGAN optimizes the following loss function:
‘CCGAN(D7 G) = EX,CNP(X,C) [k)g (D(X7 C))] + IEZNPZ7CNPC [log (1 - D(G(Zy C)a C))] ) (1)

where c denotes a condition. Instead of generating random samples from P,, we use the output of
an encoder, F(x), as input to the generator. Finally, the explainer function is defined as:

Zy(x,0) = G(E(x), ¢5(x,0)). (2)

Our architecture is based on Projection GAN (Miyato & Koyama, 2018), a modification of cGAN.
An advantage of the Projection GAN is that it scales well with the number of classes allowing § — 0.
The Projection GAN imposes the following structure on the discriminator loss function:

pdata(c‘x) + log pdata(x)

q(cfx) q(x)

where L.gan(D, G) indicates the loss function in Eq. 1 when G is fixed, ¢(-) and 1(-) are networks
producing vector (feature) and scalar outputs respectively. The r(c|x) is a conditional ratio function
which will be discussed in Section 2.2.

Leoan(D, G)(x,¢) = log = r(c|x) + ¥(p(G(z))), (3)
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2.2  COMPATIBILITY WITH THE BLACK BOX

In our model, the condition c is an ordered variable i.e., ¢ (x, 61) < ¢s(x, d2) when d; < 2. There-
fore, we adapt the first term in Eq. 3 to account for ordinal multi-class regression by transforming
cf(x,0) into [ ] — 1 binary classification terms (Frank & Hall, 2001):

r(c=klx) = ZviT(;b(x), 4

i<k
where ¢(+) is the feature network in Eq. 3 and v;’s are parameters. We also need to ensure that
plugging x5 into f(-) yields f(x) + 0 (i.e., compatible with f). This condition is enforce by a

KullbackLeibler (KL) divergence loss term. Adding the KL loss and the conditional ratio function
we arrive at the following loss:

Ly(D,G) = r(clx) + Dxv (f(x) + 0| f(Zs(x,9))) -

While the first term is a function of both G and D, the second term influences only the generator G.

2.3 SELF CONSISTENCY

We use a reconstruction loss term to enforce encoder-decoder consistency and satisfy the identity
constraint of x = Zy(x,0),

Liee(G) = |[x — G (E(x),cr(x,0)) [[1, &)

We also require that the perturbation is reversible (i.e., Zy(Z¢(x,0), —6) = x). We use a cycle-
consistency (Zhu et al., 2017) loss to reconstruct the input from its corresponding perturbed image,

Leye(G) =[x = G(E(x5), ¢5(x, 0))]]1- (6)

Note that the conditions for the generators in Eq. 5 and 6 are the same. However, in the former,
we are reconstructing the input x from its latent space, but in the latter, we perturb x5 from the bin
index ¢y (x, ¢) back to original bin index c(x, 0).

2.4 OBIJECTIVE FUNCTIONS

We adapted the hinge version of the adversarial loss for L.gan(G, D).
Lean(D) = ~Exnpy, [min(0, =1 + D(x, ¢4(x,0)))]

By eyl [0, 1~ DG(E), e e 0),es(x,0))]
Lan(GL E) = ~Ey s (x0)elo,2] [D(G(E(x), ¢ (x,9)), ¢r(x,6))] ®)

The overall objective function is
%118 max AGANLGAN(D, G) + A Lf(D, G) + AecLrec (G) + AcyeLeye (G) )

where AcGan; Af, Arec, Acye are the hyper-parameters that balance the importance of the loss terms.

3 RELATED WORK

Our work broadly relates to literature in interpretation methods that are designed to provide a visual
explanation of the decisions made by a black-box function f, for a given query sample x.

Perturbation-based methods: These methods provide interpretation by showing what minimal
changes are required in x to induce a desirable output of f. Some methods employed image manip-
ulation via the removal of image patches (Zhou et al., 2014) or the occlusion of image regions (Zhou
et al., 2014) to change the classification score. Recently, the use of influence function, as proposed
by (Koh & Liang, 2017) are applied as a form of data perturbation to modify a classifier’s response.
The authors in (Fong & Vedaldi, 2017) proposed the use of optimal perturbation, defined as remov-
ing the smallest possible image region in x that results in the maximum drop in classification score.
In another approach, (Chang et al., 2019) proposed a generative process to find and fill the image
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regions that correspond to the largest change in the decision output of a classifier. To switch the
decision of a classifier, (Goyal et al., 2019) suggested generating counterfactuals by replacing the
regions of x with patches from images with a different class label. All of the aforementioned works
perform pixel- or patch-level manipulation to x, which may not result in natural-looking images.
In contrast, our model enforces that the perturbed data be consistent with the unperturbed data to
ensure that the perturbation is plausible. Furthermore, our method can be applied to general data
and is not restricted to the imaging domain.

Saliency map-based methods: Saliency maps explains the decision of f on x by highlighting the
relevant regions of x. Some earlier work in this direction(Simonyan et al., 2013; Springenberg et al.,
2014; Bach et al., 2015) focuses on computing the gradient of the target class with respect to x
and considers the image regions with large gradients as most informative. Building on this work,
the class activation map (CAM) (Zhou et al., 2016) and its generalized version Grad-CAM Selvaraju
etal. (2017) and other variants such as LPR (Bach et al., 2015) use a linear or non-linear combination
of the activation layers to derive relevance score for every pixel in an image. These gradient-based
methods are not model-agnostic and require access to intermediate layers. Recently, Adebayo et al.
(2018) have shown that some saliency methods are independent both of the model and of the data
generating process. We used their propose evaluation to validate our interpretation model. The
saliency maps are also prone to adversarial attacks as shown by Ghorbani et al. (2019) and Kinder-
mans et al. (2017). Furthermore, if the causal effect of a class is distributed across an image, which
is the case in radiology images, the saliency approaches highlight large sections of the image, which
greatly reduce the usefulness of the interpretation.

Generative explanation-based methods: These are a class of interpretation models that uses a
generative process to produce visual explanations. A recently proposed contrastive explanations
method (CEM) (Dhurandhar et al., 2018) generates explanations that show minimum regions in x
which must be present/absent for a particular classification decision. In another work, (Liu et al.,
2019; Joshi et al., 2019; Samangouei et al., 2018) generates explanations that highlight what features
should be changed in x so that the classifier confidence in the prediction is strengthen (prototype)
or weakened (counterfactual). Our approach is aligned with these latter lines of work, although
our method and model architecture is different. Our method allows for the gradual change of the
class effect, and our consistency criteria result in high-quality feasible perturbation in x. We also
rigorously evaluate our method on real medical imaging applications, in addition to the curated
computer vision datasets.

4 EXPERIMENTS

We set up four experiments to evaluate our method. First, we assess if our method satisfies the
three criteria of the explainer function introduced in the Section 2. We report both qualitative and
quantitative results. Second, we apply our method on a medical image diagnosis task. We use
external domain knowledge about the disease to perform a quantitative evaluation of the explanation.
Third, we train two classifiers on biased and unbiased data and examine the performance of our
method in identifying the bias. While our method does not produce a saliency map, in our last
experiment we use the two counterfactual samples on the boundary [0, 1] to generate a saliency map
and compare with the other methods.

Our experiments are conducted on the CelebA (Liu et al., 2014) and CheXpert (Irvin et al., 2019)
datasets. CelebA contains 200K celebrity face images, each with forty attribute labels. We consid-
ered binary classifier trained on the “smiling” and “young” attributes. CheXpert is a medical dataset
containing 224K chest x-ray images from 65K patients and has labels for fourteen radio-graphic ob-
servations. We considered Cardiomegaly as the target class for generating explanations. All images
are re-sized to 128 x 128 before processing.

4.1 EVALUATING THE CRITERIA OF THE EXPLAINER

Figure 2 reports the qualitative results on three datasets. Given a query image x at inference time, our
model generates a series of images X as visual explanations, which gradually increase the posterior
probability f(xs) (top label). We show results for three prediction tasks: smiling or not-smiling,
young or old, and Cardiomegaly or healthy. The values on the top of each figure report the f(xs)’s.
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For Cardiomegaly, we show the outlines of the heart as well as its normalized size (values inside the
parenthesis), which is indicative of the disease.

Query Image Generated Visual Explanations

Desired f(x):  [0.0-0.1) [0.2-0.3) [0.3-0.4) [0.5-0.6) [0.6-0.7) [0.7-0.8) [0.9-01.0]
Not-smiling Smiling

fix): 1.0

CelebA: Smiling

CelebA: Young

Healthy Cardiomegaly
0.45(1.0) 0.47(1.02) 0.47(1.11) 0.63(1.1) 0.65(1.14) 0.7(1.17) 0.78(1.25)

0.81(1.07

X-Ray: Cardiomegaly

0.12|0.99i

Figure 2: Visual explanations generated for three prediction tasks: smiling/not-smiling face (first two rows),
young/old face (middle two rows) and Cardiomegaly/healthy chest x-ray (bottom two rows). The first column
shows the query image, followed by the corresponding generated explanations. The values above each image
are the output of the classifier f. For Cardiomegaly, we show the segmentation of the heart (yellow edge) and
report normalized heart size (values in parenthesis), which is indicative of the disease.

Data Consistency: The generated explanations are synthesized variations of the query image. To
quantitatively compare their visual quality, we consider Fréchet Inception Distance (FID) (Heusel
et al,, 2017). We compared our results against the counterfactual explanations produced by
xGEM (Joshi et al., 2018). In the absence of the source code for the xGEM model, we implemented
a baseline architecture for xGEM. We divided the real and fake (i.e., generated explanations) images
into two groups by partitioning on the output of the classifier f and the reported the FID for each
group and the overall score. XGEM does not produce a series of progressively modified images,
so we compare methods on images residing on the boundaries of the [0, 1] interval. Our method
significantly outperforms xXGEM, producing crisper and more realistic-looking images.

Compatibility with the black-box f: To quantify whether the generation process is aligned with
the desire perturbation d, we plotted the expected outcome f(x) + J against the actual response of
the classifier for the generated explanations, f(x;). Figure 3 shows how our model performs when
generating a series of explanations starting from a wide range of initial query images. The perfor-
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CelebA:Smiling CelebA:Young Xray:Cardiomegaly

Target Class xGEM  Ours xGEM Ours xGEM Ours
Present (f(xs) €0.9,1]) 79.2 523 92.6 69.0 3414 55.1
Absent (f(xs) € [0,0.1])  80.6 50.2 95.4 71.2  340.6 88.4
Overall (f(x5) € [0,1]) 80.7 23.1 804  41.6 3373 50.2

Table 1: The Fréchet Inception Distance (FID) score, measuring the quality of the generated explanations for
the three prediction tasks. Lower FID corresponds to better image quality. Top (bottom) row corresponds the
top (bottom) 10% of the decision interval.

mance is almost perfect for Young/Old, but less so for more challenging classification problems such
as Smiling or Cardiomegaly. The plot also validates that we are producing perturb images covering
the entire classification range, [0, 1].

CelebA(Smiling) CelebA(Young) XRay(Cardiomagely)
1.0
0.8
Query f(x)
06 ‘/' —e— 0.0-0.2
= X p| —— 0204
04 /i:;/ —— 0.4-0.6
— 0.6-0.8
e’
02 == — 0.8-1.0
i/./o”/
0.0[*°
00 02 04 06 08 1000 02 04 06 08 1.000 02 04 06 08 10
fix)+6 fix)+6 fix)+6

Figure 3: Plot of the expected outcome from the classifier, f(x)+9, against the actual response of the classifier
on generated explanations, f(xs). The monotonically increasing trend shows a positive correlation between
f(x) + d and f(xs), and thus the generated explanations are consistent with the expected condition.

Identity preservation: The generated explanations should differ only in semantic features associ-
ated with the target class, while retaining the identity of the query image. We extracted the latent
embedding for real images (F(x)) and their corresponding explanations (E(xs)), for different val-
ues of 6. We calculated identity preservation accuracy as the percentage of the times, x; is closest
to the query image x as compared to other generated explanations

Vo, x € X, [[E(x)— E(xs)ll2 < |E(x5) — E(m)][2, (10)

min
meZs (X —{x},0)

where, m € Z;(X — {x},0)) is the set of explanations generated for all the real images excluding
the query image x. Table 2 summarizes the results. Our method achieved high identity preservation
on localized attribute “smiling”, which alters a relatively small region of the face image as compare
to attribute “age” which affects the entire face. Medical images like chest x-ray have very fine grain
details which are difficult to preserve in the generative process of GAN. Our explainer function
preserves the high level features like shape and size of the lung, but it struggles to retain the low
level features like anatomy of the breast and shape of the collar bones. Also, it should be noted
that both the datasets have multiple images for same person, but we ignore this information in our
analysis and treat each image as a different identity.

Dataset:Target Class Identity Preservation Accuracy

CelebA:Smiling 87.99%
CelebA:Young 81.63%
XRay:Cardiomegaly 27.94%

Table 2: Identity preserving performance on three prediction tasks.
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4.2 COUNTERFACTUAL EVALUATION ON MEDICAL DATA

The term Cardiomegaly refers to an abnormal enlargement of the heart (Brakohiapa et al., 2017).
We trained a UNet (Ronneberger et al., 2015) model for lung and heart segmentation using the
segmentation in chest radiograph (SCR) dataset (van Ginneken et al., 2006). Next, we applied the
trained UNet to our data to extract the heart masks. The masks are shown as outlines in Figure 2 with
their corresponding heart size (top values in parentheses). We registered each x with its associated
x5 and applied the resulting transformation to the heart masks of x to derive the heart masks for x;.

For population-level analysis, we plotted the average heart size of xs vs the condition used for
generation (f(x) + ¢) in Figure 4 (a). The plot shows a positive correlation between the heart size
and the response of the classifier f(x), which agrees with the definition of Cardiomegaly. To better
understand the results, we divided the population into two groups, the first group (x"; f(x") < 0.1)
consists of real images of healthy x-rays, while the second group (x°; f(x¢) > 0.9) contains real
images of abnormal x-rays positive for Cardiomegaly. For x” we generated counterfactual as X5
such that f(x§) > 0.9. Similarly, counterfactuals for x¢ are derived as x? such that f(x?) <
0.1. In Figure 4 (b), we show the distribution of heart size in the four groups. We reported the
dependent t-test statistics for paired samples (x” and x§), (x“and x%). A significant p-value <
0.01 rejected the null hypothesis (i.e., that the two groups have similar distributions). We also
reported the independent two-sample t-test statistics for healthy (xh and xg, p-value > 0.01) and
abnormal (x° and x§, p-value < 0.01) populations. Given higher p-values, we cannot reject the null
hypothesis of identical average distributions with high confidence. Our model derived explanations
successfully captured the change in heart size while generating counterfactual explanations.
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Figure 4: Cardiomegaly disease is associated with large heart size. In (a) we show the positive correlation
between the heart size and the response of the classifier f(x). (b) Comparison of the distribution of the heart
size in the four groups. (c) Plot to show the drop in accuracy of the classifier as we perturb the most relevant
pixels (relevance calculated from saliency map) in the image.

4.3 SALIENCY MAP

Saliency maps show the importance of each pixel of an image in the context of classification. Our
method is not designed to produce saliency maps as a continuous score for every feature of the
input. We extract an approximate saliency map by quantifying the regions that changed the most
when comparing explanations at the opposing ends of the classification spectrum. For each query
image, we generated two visual explanations corresponding to the two extremes of the decision
boundary (f(xs) = 0and f(x5) = 1). The absolute difference between these explanations is our
saliency map. Figure 5 shows the saliency map obtain from our method and its comparison with
popular gradient based methods. We restricted the saliency maps obtained from different methods
to have positive values and normalize them to range [0,1]. Subjective, the saliency maps produced
by our method are very localized and are comparable to the other methods.

We adapted the metric introduced in (Samek et al., 2016) to compare the different saliency maps.
In an iterative procedure, we progressively replace a percentage of the most relevant pixels in an
image (as given by the saliency map) with random values sampled from a uniform distribution. We
observe the corresponding change in the classification performance as shown in Figure 4 (c). All the
methods experienced a drop in the accuracy of the classifier with increase in the fraction of perturb
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Target Label
Black-box classifier ~Smiling Not-Smiling
fBiased Male: 0.52 Male: 0.18

Female: 0.48 Female: 0.82
Overall: 0.12 Overall: 0.35
JNo-biased Male: 0.48 Male: 0.47
Female: 0.52 Female: 0.53
Overall: 0.07 Overall: 0.08

Table 3: Confounding metric for biased detection. For target label “Smiling” and “Not-Smiling”,
the explanations are generated using condition f(x) +d > 0.9 and f(z) + & < 0.1 respectively.
The Male and Female values quantifies the fraction of the generated explanations classifier as male
or female, respectively by oracle classifier fgendger- The overall value quantifies the fraction of the
generated explanations who have different gender as compared to the query image. A small overall
value shows least bias.

pixels. The saliency maps produced by our model is significantly better than random maps and are
comparable to the other saliency map methods. It should be noted that, there are many ways to
quantify important regions in a image, using the series of explanations generated by our method.
We didn’t optimize to find the best saliency map and showed results for one such method.

Original : Grad-CAM Epsilon-LRP DeepLIFT (Rescale) Ours

Figure 5: Our comparison with popular gradient-based saliency map producing methods on the
prediction task of identifying smiling faces in CelebA dataset.

4.4 BIAS DETECTION

Our model can discover confounding bias in the data used for training the black-box classifier. Con-
founding bias provides an alternative explanation for an association between the data and the target
label. For example, a classifier trained to predict the presence of a disease may make decisions based
on hidden attributes like gender, race or age. In a simulated experiment, we trained two classifiers to
identify smiling vs not-smiling images in the CelebA dataset. The first classifier fpisseq 1S trained on
a biased dataset, confounded with gender such that all smiling images are of male faces. The second
classifier fNo-biased 1S trained on an unbiased dataset, with data uniformly distributed with respect
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Query Image Generated Visual Explanations
Desired fix):  [0.0-0.1) [0.2-0.3)  [03-0.4) [0.5-0.6)  [0.6-0.7) [0.7-0.8) [0.9-01.0]
Not-smiling/Female Smiling/Male

f(X5):0.0 0.23 0.32 0.38 0.49 0.69 0.94

f(x:00

Figure 6: The visual explanations for two classifiers, both trained to classify “Smiling” attribute on
CelebA dataset. For each example, the top row shows results from “Biased” classifier whose data
distribution is confounded with “Gender”. The bottom row shows explanations from ‘“No-Biased”
classifier with uniform data distribution w.r.t gender. The top label indicates output of the classifier
and the bottom label is the output of an oracle classifier for the con-founding attribute gender. The
visual explanations for the “Biased” classifier changes the gender as it adds smile on the face.

to gender. Note that we evaluate both the classifiers on the same validation set. Additionally, we
assume access to a proxy Oracle classifier fgenger that perfectly classifies the confounding attribute
i.e., gender. In Figure 6 we compare the explanations generated for the two classifiers. The visual
explanations for the “Biased classifier changes the gender as it increases the amount of “smile. We
adapted the confounding metric proposed in Joshi et al. (2018) to summarize our results in Table 3.
Given the data D = {(x;,v;,a;),%; € X,y;,a; € YV}, we quantify that a classifier is confounded
by an attribute a if the generated explanation 5 has a different attribute a, as compared to query
image x, when processed through the Oracle classifier fgenger- The metric is formally defined as
Ep[1(g*(xs) # a)]/|D|. For a biased classifier, the Oracle function predicted female class for ma-
jority of the images (0.82) while the un-biased classifier is consistent with the true distribution of
the validation set with respect to gender. Thus, the fraction of generated explanations that changed
the confounding attribute “gender’ (0.35 vs 0.08) was found to be high for the biased classifier

5 CONCLUSION

In this paper, we proposed a novel interpretation method which explains the decision of a black-
box classifier by producing natural looking, gradual perturbations of the query image, resulting in
an equivalent change in the output of the classifier. We evaluated our model on two very different
datasets, including a medical imaging dataset. Our model produces high quality explanations while
preserving the identity of the query image. Our analysis shows that our explanations are consistent
with the definition of the target disease, without explicitly using that information. Our method can
also be used to generate a saliency map in a model agnostic setting. In addition to the interpretability
advantages, our proposed method can also identify plausible confounding biases in a classifier.
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