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ABSTRACT

Recent deep generative models are able to provide photo-realistic images as well
as visual or textual content embeddings useful to address various tasks of computer
vision and natural language processing. Their usefulness is nevertheless often
limited by the lack of control over the generative process or the poor understanding
of the learned representation. To overcome these major issues, very recent works
have shown the interest of studying the semantics of the latent space of generative
models. In this paper, we propose to advance on the interpretability of the latent
space of generative models by introducing a new method to find meaningful
directions in the latent space of any generative model along which we can move
to control precisely specific properties of the generated image like position or
scale of the object in the image. Our method is weakly supervised and particularly
well suited for the search of directions encoding simple transformations of the
generated image, such as translation, zoom or color variations. We demonstrate the
effectiveness of our method qualitatively and quantitatively, both for GANs and
variational auto-encoders.

Figure 1: Images generated with our approach and a BigGAN model (Brock et al., 2018), showing
that the position of the object can be controlled within the image.

1 INTRODUCTION

With the success of recent generative models to produce high-resolution photo-realistic images (Karras
et al., 2018; Brock et al., 2018; Razavi et al., 2019), an increasing number of applications are emerging
such as image in-painting, dataset-synthesis, deep-fakes... However, the use of generative models
is often limited by the lack of control over the generated images. Indeed, more control could, for
instance, be used to improve existing approaches which aim at generating new training examples
(Bowles et al., 2018) by allowing the user to choose more specific properties of the generated images.
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First attempts in this direction showed that one can modify an attribute of a generated image by
adding a learned vector on its latent code (Radford et al., 2015) or by combining the latent code of two
images (Karras et al., 2018). Moreover, the study of the latent space of generative models provides
insights about its structure which is of particular interest as generative models are also powerful
tools to learn unsupervised data representations. For example, Radford et al. (2015) observed on
auto-encoders trained on datasets with labels for some factors of variations, that their latent spaces
exhibit a vector space structure where some directions encode the said factors of variations.

We suppose that images result from underlying factors of variation such as the presence of objects,
their relative positions or the lighting of the scene. We distinguish two categories of factors of
variations. Modal factors of variation are discrete values that correspond to isolated clusters in the
data distribution, such as the category of the generated object. On the other hand, the size of an
object or its position are described by Continuous factors of variations, expressed into a range of
possible values. As humans, we naturally describe images by using factors of variations suggesting
that they are an efficient representation of natural images. For example, to describe a scene, one likely
enumerates the objects seen, their relative positions and relations and their characteristics (Berg et al.,
2012). This way of characterising images is also described in Krishna et al. (2016). Thus, explaining
the latent space of generative models through the lens of factors of variation is promising. However,
the control over the image generation is often limited to discrete factors and requires both labels and
an encoder model. Moreover, for continuous factors of variations described by a real parameter t,
previous works do not provide a way to get precise control over t.

In this paper, we propose a method to find meaningful directions in the latent space of generative
models that can be used to control precisely specific continuous factors of variations while the
literature has mainly tackled semantic labeled attributes like gender, emotion or object category
(Radford et al., 2015; Odena et al., 2016). We test our method on image generative models for three
factors of variation of an object in an image: vertical position, horizontal position and scale. Our
method has the advantage of not requiring a labeled dataset nor a model with an encoder. It could be
adapted to other factors of variations such as rotations, change of brightness, contrast, color or more
sophisticated transformations like local deformations. However, we focused on position and scale as
these are quantities that can be evaluated, allowing us to measure quantitatively the effectiveness of
our method. We demonstrate both qualitatively and quantitatively that such directions can be used
to control precisely the generative process and show that our method can reveal interesting insights
about the structure of the latent space. Our main contributions are:

• We propose a new method to find interpretable directions in the latent space of generative
models, which correspond to parametrizable continuous factors of variations of the generated
image.

• We show that properties of generated images can be controlled precisely by sampling latent
representations along linear directions.

• We propose a novel reconstruction loss for inverting generative models with gradient descent.

• We give insights of why inverting generative models with optimization can be difficult by
reasoning about the geometry of the natural image manifold.

• We study the impacts of disentanglement on the controllability of generative models.

2 LATENT SPACE DIRECTIONS OF A FACTOR OF VARIATION

We argue that it is easier to modify a property of an image than to obtain a label describing that
property. For example, it is easier to translate an image than to determine the position of an object
within said image. Hence, if we can determine the latent code of a transformed image, we can
compute its difference with the latent code of the original image to find the direction in the latent
space which corresponds to this specific transformation as in Radford et al. (2015).

Let us consider a generative model G : z ∈ Z → I, with Z its latent space of dimension d and I
the space of images, and a transformations Tt : I → I characterized by a continuous parameter t.
For example if T is a rotation, then t could be the angle, and if T is a translation, then t could be
a component of the vector of the translation in an arbitrary frame of reference. Let z0 be a vector
of Z and I = G(z0) a generated image. Given a transformation TT , we aim at finding zT such
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that G(zT ) ≈ TT (I) to then use the difference between z0 and zT in order to estimate the direction
encoding the factor of variation described by T .

2.1 LATENT SPACE TRAJECTORIES OF AN IMAGE TRANSFORMATION

Given an image I ∈ I, we want to determine its latent code. When no encoder is available we can
search an approximate latent code ẑ that minimises a reconstruction error L between I and Î = G(ẑ)

(Î can be seen as the projection of I on G(Z)) i.e.

ẑ = arg min
z∈Z

L(I,G(z)) (1)

Solving this problem by optimization leads to solutions located in regions of low likelihood of the
distribution used during training. It causes the reconstructed image Î = G(ẑ) to look unrealistic1.
Since z follows a normal distribution N (0, Id) in a d-dimensional space, we have ||z|| ∼ χd. Thus,
limd→+∞ E [||z||] =

√
d and limd→+∞ V ar (||z||) = 0. Hence, when d is large, the norm of z is

approximately equal to
√
d. This can be used to regularize the optimization by constraining z to

verify ||z|| ≤
√
d:

ẑ = arg min
z∈Z,||z||≤

√
d

L(I,G(z)) (2)

2.1.1 CHOICE OF THE RECONSTRUCTION ERROR L

One of the important choice regarding this optimization problem is that of L. In the literature, the
most commonly used are the pixel-wise Mean Squared Error (MSE) and the pixel-wise cross-entropy
as in Lipton & Tripathi (2017) and Creswell & Bharath (2016). However in practice, pixel-wise losses
are known to produce blurry images. To address this issue, other works have proposed alternative
reconstruction errors. However, they are based on an alternative neural network (Boesen Lindbo
Larsen et al., 2015; Johnson et al., 2016) making them computationally expensive.

The explanation usually given for the poor performance of pixel-wise mean square error is that it favors
the solution which is the expected value of all the possibilities (Mathieu et al., 2015)2. We propose to
go deeper into this explanation by studying the effect of the MSE on images in the frequency domain.
In particular, our hypothesis is that due to its limited capacity and the low dimension of its latent
space, the generator can not produce arbitrary texture patterns as the manifold of textures is very high
dimensional. This uncertainty over texture configurations explains why textures are reconstructed as
uniform regions when using pixel-wise errors. In Appendix A, by expressing the MSE in the Fourier
domain and assuming that the phase of high frequencies cannot be encoded in the latent space, we
show that the contribution of high frequencies in such a loss is proportional to their square magnitude
pushing the optimisation to solutions with less high frequencies, that is to say more blurry. In order to
get sharper results we therefore propose to reduce the weight of high frequencies into the penalisation
of errors with the following loss:

L(I1, I2) = ||F{I1 − I2}F{σ}||2 = ||(I1 − I2) ∗ σ||2 (3)

where F is the Fourier transform, ∗ is the convolution operator and σ is a Gaussian kernel. With a
reduced importance given to the high frequencies to determine ẑ when one uses this loss in equation 2,
it allows to benefit from a larger range of possibilities for G(z), including images with more details
(i.e with more high frequencies) and appropriate texture to get more realistic generated images. A
qualitative comparison of some reconstruction errors and choices of σ can be found in Appendix C.

1We could have used a L2 penalty on the norm of z to encode a centered Gaussian prior on the distribution
of z. However the L2 penalty requires an additional hyper-parameter β that can be difficult to choose.

2Indeed, if we model the value of pixel by a random variable x then argminx E
[
(x− x)2

]
= E [x]. In

fact, this problem can easily generalized at every pixel-wise loss if we assume that nearby pixels follows
approximately the same distribution as argminx E [L(x, x)] will have the same value for nearby pixels.

3



Under review as a conference paper at ICLR 2020

Algorithm 1: Create a dataset of trajectories in the latent space which corresponds to a transformation
T in the pixel space. The transformation is parametrized by a parameter δt which controls a degree
of transformation. We typically use N = 10 with (δtn)(0≤n≤N) distributed regularly on the interval
[0, T ].
Input: number of trajectories S, generator G, transformation function T , trajectories length N ,

threshold Θ.
Result: dataset of trajectories D
for i ∈ J1, SK do

D ← {} ;
z0 ∼ N (0, I) ;
I0 ← G(z0) ;
zδt ← z0 ;
for n ∈ [1, N ] do

zt ← arg minz L(G(z), Tδtn(I0)) ;
if L(G(z), Tδtn(I0)) < Θ then

D ← D ∪ {(z0, zδt, δtn)} ;
end

end
end

2.1.2 RECURSIVE ESTIMATION OF THE TRAJECTORY

Using equation 2, our problem of finding zT such that G(zT ) ≈ TT (I), given transformation TT ,
can be solve through the following optimisation problem:

zT = arg min
z∈Z,||z||≤

√
d

L(G(z), TT (I)) (4)

In practice, this problem is difficult and an “unlucky” initialization can lead to a very slow convergence.
Zhu et al. (2016) proposed to use an auxiliary network to estimate zT and use it as initialization.
Training a specific network to initialize this problem is nevertheless costly. One can easily observe
that a linear combination of natural images is usually not a natural image itself, this fact highlights
the highly curved nature of the manifold of natural images in pixel space. In practice, the trajectories
corresponding to most transforms in pixel space may imply small gradients of the loss that slowdown
the convergence of problem of Eq. ( 2) (see Appendix E). To address this, we guide the optimization
on the manifold by decomposing the transformation TT into smaller transformations [Tδt0 , . . . , TδtN ]
such that Tδt0=0 = Id and δtN = T and solve sequentially:

zn = arg min
z∈Z

L (G (z; zinit = zn−1) , Tδtn (G (z0))) for n = 1, . . . , N (5)

each time initializing z with the result of the previous optimization. In comparison to Zhu et al.
(2016), our approach does not require extra training and can thus be used directly without training a
new model. We compare qualitatively our method to a naive optimisation in Appendix C.

A transformation on an image usually leads to undefined regions in the new image (for instance, for
a translation to the right, the left hand side is undefined). This is why we designed L to ignore the
value of the undefined regions of the image. Another difficulty is that often the generative model
cannot produce arbitrary images. For example a generative model trained on a given dataset is not
expected to be able to produce images where the object shape position is outside of the distribution
of object shape positions in the dataset. This is an issue when applying our method because as we
generate images from a random start point, we have no guarantee that the transformed images is
still on the data manifold. To reduce the impact of such outliers, we discard latent codes that give a
reconstruction error above a threshold in the generated trajectories. In practice, we remove one tenth
of the latent codes which leads to the worst reconstruction errors. It finally results into Algorithm 1
to generate trajectories in the latent space.
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2.2 ENCODING MODEL OF THE FACTOR OF VARIATION IN THE LATENT SPACE.

After generating trajectories with Algorithm 1, we search regularities in these trajectories to find a
direction u ∈ Z which encodes a the parameter t of specific factor of variation in the latent space.
Assuming a model f : Z → R that describes how factors of variations are encoded in the latent
space, we pose t = f(z) = g(〈z,u〉), with g : R→ R and 〈·, ·〉 the euclidean scalar product in Rd,
to formulate the hypothesis that a factor of variation is encoded in a direction u in the latent space.

For instance, if we consider the factor corresponding to the horizontal position of an object x in an
image, and the dSprite dataset, we have x that follows a uniform distribution U(−0.5, 0.5) while the
projection of z onto an axis u follows a normal distribution N (0, 1). Thus, it is natural to choose a
model of the form:

x = f(z) = g(〈z,u〉) =

∫ 〈u,z〉
0

N (t; 0, 1)dt =
1

2
erf
(
〈u, z〉√

2

)
with ||u|| = 1 (6)

In general, the distribution of the parameter t of a factor of variation is not known. A simple approach
is to suppose that t follows a centered Gaussian distribution (which results in a linear model as z is
sampled from a centered Gaussian too). It is also possible to use a model which does not rely on such
prior by learning g:

t = f(θ,u)(z) = gθ (〈u, z〉) with ||u|| = 1 (7)

with gθ : R → R and (θ, u) trainable parameters of the model. We typically used piece-wise
linear functions for gθ. However, this model cannot be trained directly as we do not have access
to t (in the case of horizontal translation the x-coordinate for example) but only to the difference
δt = tG(z1) − tG(z0) between an image G(z0) and its transformation G(z1) (δx or δy in the case of
translation). We solve this issue by reformulating the problem as:

δt = f(θ,u)(z1)− f(θ,u)(z0) with ||u|| = 1 and gθ(0) = 0 (8)

Hence, u and θ are estimated by training f(θ,u) with gradient descent on a dataset produced by
Algorithm 1 for a given transformation.

An interesting application of this method is the estimation of the distribution of the images generated
byG. Indeed, when z is normally distributed, then 〈u, z〉 ∼ N (0, 1). With our model, t = gθ(〈u, z〉)
thus, when gθ is an monotonic differentiable function, the distribution ϕ : R → R+ of t can be
estimated by:

ϕ(t) = N (g−1θ (t); 0, 1)

∣∣∣∣ ddtg−1θ (t)

∣∣∣∣ (9)

With the knowledge of gθ we can also choose how to sample images. For instance, let say that
we want to have t ∼ φ(t), with φ : R → R+ an arbitrary distribution, we can simply transform
z ∼ N (0, 1) as follows:

z ← z − 〈z,u〉u + (hφ ◦ ψ)(〈z,u〉)u (10)

with hφ : [0, 1]→ R and ψ such that:

ψ(x) =

∫ x

−∞
N (t; 0, 1)dt ; h−1φ (x) =

∫ x

−∞
φ(gθ(t))

∣∣∣∣ ddtgθ(t)
∣∣∣∣ dt (11)

These results are interesting to bring control not only on a single output of a generative model but
also on the distribution of its outputs. Moreover, since generative models reflect the datasets on which
they have been trained, the knowledge of these distributions could be applied to the training dataset
to reveal potential bias.

3 EXPERIMENTS

Datasets: We performed experiments on two datasets. The first one is dSprites (Matthey et al., 2017),
composed of 737280 binary 64× 64 images containing a white shape on a dark background. Shapes
can vary in position, scale and orientations making it ideal to study disentanglement. The second
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dataset is ILSVRC (Russakovsky et al., 2015), containing 1.2M natural images from one thousand
different categories.

Implementation details: All our experiments have been implemented with TensorFlow 2.0 (Abadi
et al., 2015) and the corresponding code is available at https://anonymised.for.review.
We used a BigGAN model (Brock et al., 2018) whose weights are taken from TensorFlow-Hub
allowing easy reproduction of our results. The BigGAN model takes two vectors as inputs: a latent
vector z ∈ R128 and a one-hot vector to condition the model to generate images from one category.
The latent vector z is then splited into six parts which are the inputs at different scale levels in
the generator. The first part is injected at the bottom layer while next parts are used to modify the
style of the generated image thanks to AdaIN layers (Huang & Belongie, 2017). We also trained
several β-VAEs (Higgins et al., 2017) to study the importance of disentanglement in the process of
controlling generation. The exact β-VAE architecture used is given in Appendix B. The models were
trained on dSprites (Matthey et al., 2017) with an Adam optimizer during 1e5 steps with a batch size
of 128 images and a learning rate of 5e−4.

3.1 QUANTITATIVE EVALUATION METHOD

Evaluating quantitatively the effectiveness of our method on complex datasets is intrinsically difficult
as it is not always trivial to measure a factor of variation directly. We focused our analysis on two
factors of variations: position and scale. On simple datasets such as dSprites, the position of the
object can be estimated effectively by computing the barycenter of white pixels. However, for natural
images sampled with the BigGAN model, we have to use first saliency detection on the generated
image to produce a binary image from which we can extract the barycenter. For saliency detection,
we used the model provided by Hou et al. (2016) which is implemented in the PyTorch framework
(Paszke et al., 2017). The scale is evaluated by the proportion of salient pixels. The evaluation
procedure is:

1. Get the direction u which should describe the chosen factor of variation with our method.

2. Sample latent codes z from a standard normal distribution.

3. Generate images with latent code z − 〈z,u〉u + tu with t ∈ [−T, T ].

4. Estimate the real value of the factor of variation for all the generated images.

5. Measure the standard deviation of this value with respect to t.

Jahanian et al. (2019) proposed an alternative method for quantitative evaluation that relies on an
object detector. Similarly to us, it allows an evaluation for x and y shift as well as scale but is
restricted to image categories that can be recognized by a detector trained on some categories of
ILSVRC. We thus gain in genericity with our approach.

3.2 RESULTS ON BIGGAN

We performed quantitative analysis on ten chosen categories for which the object can be easily
segmented by using saliency detection approach. Results are presented in Figure 2 (top). We observe
that for the chosen categories of ILSVRC, we can control the position and scale of the object relatively
precisely by moving along directions of the latent space found by our method.

However, one can still wonder whether the directions found are independent of the category of interest.
To answer this question, we merged all the datasets of trajectories into one and learned a common
direction on the resulting datasets. Results for the ten test categories are shown in Figure 2 (bottom).
This figure shows that the directions which correspond to some factors of variations are indeed
shared between all the categories. Qualitative results are also presented in Figure 3 for illustrative
purposes. We also checked which parts of the latent code are used to encode position and scale.
Indeed, BigGAN uses hierarchical latent code which means that the latent code is split into six parts
which are injected at different level of the generator. We wanted to see by which part of the latent
code these directions are encoded. The squared norm of each part of the latent code is reported in
Figure 4 for horizontal position, vertical position and scale. This figure shows that the directions
corresponding to spatial factors of variations are mainly encoded in the first part of the latent code.
However, for the y position, the contribution of level 5 is higher than for the x position and the scale.
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Figure 2: Quantitative results on the ten categories of the ILSVRC dataset used for training (Top) and
for ten other categories used for validation (Bottom) for three geometric transformations: horizontal
and vertical translations and scaling. In blue, the distribution of the measured transformation
parameter and in red the standard deviation of the distribution with respect to t. Note that for
large scales the algorithm seems to fail. However, this phenomenon is very likely due to the poor
performance of the saliency model when the object of interest covers almost the entire image (scale
≈ 1.0). (best seen with zoom)

We suspect that it is due to correlations between the vertical position of the object in the image and its
background that we introduced by transforming the objects because the background is not invariant
by vertical translation because of the horizon.

3.3 THE IMPORTANCE OF DISENTANGLED REPRESENTATIONS

To test the effect of disentanglement on the performance of our method, we trained several β-
VAE (Higgins et al., 2017) on dSprites (Matthey et al., 2017), with different β values. Indeed, β-VAE
are known for having more disentangled latent spaces as the regularization parameter β increases.
Results can be seen in Figure 5. The figure shows that it is possible to control the position of the
object on the image by moving in the latent space along the direction found with our method. As
expected, the effectiveness of the method depends on the degree of disentanglement of the latent
space since the results are better with a larger β. Indeed we can see on Figure 5 that as β increases,
the standard deviation decreases (red curve), allowing a more precise control of the position of the
generated images. This observation motivates further the interest of disentangled representations for
control on the generative process.

4 RELATED WORKS

Our work aims at finding interpretable directions in the latent space of generative models to control
their generative process. We distinguish two families of generative models: GAN-like models which
do not provide an explicit way to get the latent representation of an image and auto-encoders which
provide an encoder to get the latent representation of images. From an architectural point of view,
conditional GANs (Odena et al., 2016) and InfoGan (Chen et al., 2016) allow the user to choose the
category of a generated object or some chosen properties of the generated image but these approaches
require a labeled dataset and use models which are explicitly designed to allow control. Our method
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Figure 3: Qualitative results for some categories of ILSVRC dataset for three geometric transforma-
tions: horizontal and vertical translations and scaling.

Figure 4: Squared norm of each part of the latent code for horizontal position, vertical position and
scale.

has the advantage of being model agnostic and of not directly requiring labels. A more recent attempt
at controlling generative models is described in Bau et al. (2018) in which the authors analyze the
activations of the network’s neurons to know which ones are causing the presence of specific objects
in the generated image. With their method, they managed to control the presence of objects in the
generated image. On the other side, our work focuses on the latent space and not on the intermediate
activations inside the generator.

One of our contribution and a part of our global method is a procedure to find the latent representation
of an image when an encoder is not available. Several previous works have studied how to invert
the generator of a GAN to find the latent code of an image. Creswell & Bharath (2016) showed on
simple datasets (MNIST (Lecun et al., 1998) and Omniglot (Lake et al., 2015)) that this inversion
process can be achieved by optimising the latent code to minimize the reconstruction error between
the generated image and the target image. Lipton & Tripathi (2017) introduced tricks to improve the
results on a more challenging dataset (CelebA (Liu et al., 2015)). However we observed that these
methods fail when applied on a more complex datasets (ILSVRC (Russakovsky et al., 2015)). In this
paper we introduce a new reconstruction loss adapted to this particular problem which improves the

8



Under review as a conference paper at ICLR 2020

Figure 5: Results of our evaluation procedure with four β-VAE for β = 1, 5, 10, 20. Note the erf
shape of the results which indicates that the distribution of the shape positions has been correctly
learned by the VAE. See Figure 2 for additional information on how to read this figure.

quality of reconstructions significantly. We also give a hint about why the problem of inverting a
generative model can be difficult compared to other optimization problems.

The closest works were released on ArXiv very recently (Goetschalckx et al., 2019; Jahanian et al.,
2019) indicating that finding interpretable directions in the latent space of generative models to
control their output is of high interest for the community. In these papers, the authors describe
a method to find interpretable directions in the latent space of the BigGAN model (Brock et al.,
2018). If their method exhibits similarities with ours (use of transformation, linear trajectories in the
latent space), it also differs on several points. From a technical point of view our training procedure
differs in the sense that we first generate a dataset of interesting trajectories to then train our model
while they train their model directly. Our evaluation procedure is also more general as we use a
saliency model instead of a MobileNet-SSD v1 Liu et al. (2016) trained on specific categories of the
ILSVRC dataset allowing us to measure performance on more categories. We provide additional
insight on how auto-encoders can also be controlled with the method, the impact of disentangled
representations on the control and on the structure of the latent space of BigGAN. Moreover we
also propose an alternative reconstruction error to invert generators. However, the main difference
we identify between the two works is the model of the latent space used. Our model allows a more
precise control over the generative process and can be being adapted to more cases.

5 CONCLUSIONS

Generative models are increasingly more powerful but suffer from little control over the generative
process and the lack of interpretability in their latent representations. In this context, we propose a
method to extract meaningful directions in the latent space of such models and use them to control
precisely some properties of the generated images. We show that a linear subspace of the latent space
of BigGAN can be interpreted in term of intuitive factors of variation (namely translation and scale).
It is an important step toward the understanding of the representations learned by generative models.
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A PENALTY ON THE AMPLITUDE OF FREQUENCIES DUE TO MSE

In Section 2.1, we consider a target image I ∈ I and a generated image Î = G(ẑ) to be determined
according to a reconstruction loss L (Equation 1). Let us note F{·} the Fourier transform. If L is the
usual MSE, from the Plancherel theorem, we have ||Î − I||2 = ||F{Î} − F{I}||2. Let us consider
a particular frequency ω in the Fourier space and compute its contribution to the loss. The Fourier
transform of I (resp. Î) having a magnitude r (resp. r̂) and a phase θ (resp. θ̂) at ω, we have:

|F{Î}(ω)−F{I}(ω)|2 = |r̂eiθ̂ − reiθ|2

= (r̂cos(θ̂)− rcos(θ))2 + (r̂sin(θ̂)− rsin(θ))2

= r̂2 + r2 − 2r̂r
(
cos(θ̂)cos(θ) + sin(θ̂)sin(θ)

)
= r̂2 + r2 − 2r̂r

(
cos(θ̂)cos(θ) + sin(θ̂)sin(θ)

) (12)

If we model the disability of the generator to model every high frequency patterns as an uncertainty
on the phase of high frequency of the generated image, i.e by posing θ̂ ∼ U([0, 2π]), the expected
value of the high frequency contributions to the loss is equal to:

E
[
|F{Î}(ω)−F{I}(ω)|2

]
= r̂2 + r2 − 2r̂r

E
[
cos(θ̂)

]
︸ ︷︷ ︸

=0

cos(θ) + E
[
sin(θ̂)

]
︸ ︷︷ ︸

=0

sin(θ)


= r̂2 + r2

(13)

The term r2 is a constant w.r.t the optimization of L and can thus be ignored. The contribution to
the total loss L thus directly depends on r̂2. While minimizing L, the optimization process tends to
favour images Î = G(ẑ) with smaller magnitudes in the high frequencies, that is to say smoother
images, with less high frequencies.

B β-VAE ARCHITECTURE

The β-VAE framework was introduced by Higgins et al. (2017) to discover interpretable factorised
latent representations for images without supervision. For our experiments, we designed a simple
convolutional VAE architecture to generate images of size 64x64, the decoder network is the opposite
of the encoder with transposed convolutions.

Encoder

Convolution + ReLU
filters=32 size=4 stride=2 pad=SAME

Convolution + ReLU
filters=32 size=4 stride=2 pad=SAME

Convolution + ReLU
filters=32 size=4 stride=2 pad=SAME

Convolution + ReLU
filters=32 size=4 stride=2 pad=SAME

Dense + ReLU
units=256

Dense + ReLU
units=256

µ: Dense + Identity
σ: Dense + Exponential

units=10

Decoder

Dense + ReLU
units=256

Dense + ReLU
units=256
Reshape

shape=4x4x32
Transposed Convolution + ReLU

filters=32 size=4 stride=2 pad=SAME
Transposed Convolution + ReLU

filters=32 size=4 stride=2 pad=SAME
Transposed Convolution + ReLU

filters=32 size=4 stride=2 pad=SAME
Transposed Convolution + Sigmoid
filters=1 size=4 stride=2 pad=SAME

Table 1: β-VAE architecture used during experiments with the dSprites dataset.
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C QUALITATIVE EXPERIMENTS WITH OUR RECONSTRUCTION ERROR

σ = 1 σ = 3 σ = 5 σ = 8

Figure 6: Reconstruction results with different σ values. We typically used a standard deviation of 3
pixels for the kernel.

Target image
With z unconstrained

With ||z|| ≤
√
d

MSE SSIM Our (σ = 5)

Figure 7: Reconstruction results obtained with different reconstruction errors: MSE, SSIM (Zhou
Wang et al., 2004) and our loss. With or without the constraint on ||z||. Note the artifacts when using
our loss without constraining z (best seen with zoom).

D QUALITATIVE COMPARISON BETWEEN OUR OPTIMIZATION METHOD AND
THE NAIVE METHOD.

0 10 20 30 40 50 60 70 80 90 100

0 500 850 1000 1500 2000 2500 3000 3500 4000 4500

Figure 8: Comparison of the speed of convergence on a single example for our method (top) given
by equation 5 and a naive approach (bottom) given by equation 4. The numbers indicate the step of
optimization. Both experiences have been conducted with Adam optimizer with a learning rate of
1e−1.

13



Under review as a conference paper at ICLR 2020

E ON THE DIFFICULTY OF OPTIMISATION ON THE NATURAL IMAGE
MANIFOLD.

The curvature of the natural image manifold makes the optimisation problem of Equation 2 difficult to
solve. This is especially true for factors of variation which correspond to curved walks in pixel-space
(for example translation or rotation by opposition to brightness or contrast changes which are linear).

To illustrate this fact, we show that the trajectory described by an image undergoing common
transformations is curved in pixel space. We consider three types of transformations, namely
translation, rotation and scaling, and get images from the dSprites (Matthey et al., 2017) dataset
which correspond to the progressive transformation (interpolation) of an image. To visualize, we
compute the PCA of the resulting trajectories and plot the trajectories on the two main axes of the
PCA. The result of this experiment can be seen in Figure 9.

Figure 9: Two trajectories are shown in the pixel space, between an image and its transformed version,
for three types of transformations: translation, scale and orientation. Red: shortest path (interpolation)
between the two extremes of the trajectory. Blue: trajectory of the actual transformation. At each
position along the trajectories, we report the corresponding image (best seen with zoom).

In this figure, we can see that for large translations, the direction of the shortest path between two
images in pixel-space is near orthogonal to the manifold. The same problem occurs for rotation and,
at a smaller extent, for scale. However this problem does not exist for brightness for example, as its
change is a linear transformation in pixel-space. This is problematic during optimization of the latent
code because the gradient of the reconstruction loss with respect to the generated image is tangent
to this direction. Thus, when we are in the case of near orthogonality, the gradient of the error with
respect to the latent code is small.

Indeed, let us consider an ideal case where G is a bijection between Z and the manifold of natural
images. Let be z ∈ Z , a basis of vectors tangent to the manifold at point G(z) is given by(
∂G(z)
∂z1

, ..., ∂G(z)
∂zd

)
.

If ∇G(z)L(G(z), Itarget) is near orthogonal to the manifold then:

∀i ∈ 1, ..., d : 〈∇G(z)L(G(z), Itarget),
∂G(z)

∂zi
〉 = εi with εi ≈ 0 (14)

Thus,

‖∇zL(G(z), Itarget)‖ =

∥∥∥∥∂G(z)

∂z

∗
∇G(z)L(G(z), Itarget)

∥∥∥∥ =

√√√√ d∑
i=1

ε2i ≈ 0 (15)

It shows that when the direction of descent in pixel space is near orthogonal to the manifold described
by the generative model, optimization gets slowed down and can stop if the gradient of the loss with
respect to the generated image is orthogonal to the manifold.

For example, let assume we have an ideal GAN which generates a small white circle on a black
background, with a latent space of dimension 2 that encodes the position of the circle. Let consider a
generated image with the circle on the left of the image and we want to move it to the right. Obviously,
we thus have ∇z||G(z) − TT (G(z1))||2 = 0 if the intersection of the two circles is empty (see
Figure 9) since a small translation of the object does not change the reconstruction error.
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F ADDITIONAL QUALITATIVE EXAMPLES

We show qualitative examples for images generated with the BigGAN model for position, scale and
brightness. The images latent codes are sampled in the following way: z − 〈z,u〉u + αu with
α ∈ [−3, 3] and u the learned direction. We have chosen the categories to produce interesting results:
for position and scale categories are objects, for brightness categories are likely to be seen in a bright
or dark environment. Notice that for some of the chosen categories, we failed to control the brightness
of the image. It is likely due to the absence of dark images for these categories in the training data. for
position and scale, the direction is learned on the ten categories presented here while for brightness
only the five top categories are used.

Figure 10: Qualitative results for 10 categories of ILSVRC dataset for three geometric transformations
(horizontal and vertical translations and scaling) and for brightness.
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