
Under review as a conference paper at ICLR 2020

LINEAR SYMMETRIC QUANTIZATION OF NEURAL
NETWORKS FOR LOW-PRECISION INTEGER HARD-
WARE

Anonymous authors
Paper under double-blind review

ABSTRACT

With the proliferation of specialized neural network processors that operate on
low-precision integers, the performance of Deep Neural Network inference be-
comes increasingly dependent on the result of quantization. Despite plenty of
prior work on the quantization of weights or activations for neural networks, there
is still a wide gap between the software quantizers and the low-precision accel-
erator implementation, which degrades either the efficiency of networks or that
of the hardware for the lack of software and hardware coordination at design-
phase. In this paper, we propose a learned linear symmetric quantizer for integer
neural network processors, which not only quantizes neural parameters and acti-
vations to low-bit integer but also accelerates hardware inference by using batch
normalization fusion and low-precision accumulators (e.g., 16-bit) and multipli-
ers (e.g., 4-bit). We use a unified way to quantize weights and activations, and
the results outperform many previous approaches for various networks such as
AlexNet, ResNet, and lightweight models like MobileNet while keeping friendly
to the accelerator architecture. Additional, we also apply the method to object de-
tection models and witness high performance and accuracy in YOLO-v2. Finally,
we deploy the quantized models on our specialized integer-arithmetic-only DNN
accelerator to show the effectiveness of the proposed quantizer. We show that even
with linear symmetric quantization, the results can be better than asymmetric or
non-linear methods in 4-bit networks. In evaluation, the proposed quantizer in-
duces less than 0.4% accuracy drop in ResNet18, ResNet34, and AlexNet when
quantizing the whole network as required by the integer processors.

1 INTRODUCTION

Deep neural networks have shown excellent performance on various computer vision and natural
language processing tasks, such as classification (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; He et al., 2016), object detection (Girshick, 2015; Redmon et al., 2016; He et al., 2017),
segmentation (Long et al., 2015; Noh et al., 2015), machine translation (Zhang et al., 2018b), speech
recognition (Nassif et al., 2019), etc. While the past few years witnessed the success of DNNs
on cloud and server-end computers, neural networks have been recently pushed to embedded and
mobile areas to enable edge intelligence. For these scenarios, the power provision and computational
strength on the edge computing devices are limited. As a result, it is essential to have more efficient
network architectures and less expensive inference overhead. Therefore, there is increasing attention
from the research community to study the compression of modern deep neural networks that are
typically over-parameterized and computationally costly.

Several categories of approaches are proposed to decrease the computational overhead of neural net-
works, such as lightweight neural network architectures (Howard et al., 2017), neural architecture
search (NAS) (Elsken et al., 2018), and network pruning (Han et al., 2015; 2016; Wen et al., 2016;
Molchanov et al., 2017). Besides these techniques, quantizing high-precision floating-point net-
works to lower bitwidth representation can also drastically decrease both the static parameters and
the intermediate data generated during the network inference, resulting in reduced memory footprint
and also computational intensity. And this paper focuses on the quantization of neural networks.

1

Under review as a conference paper at ICLR 2020

Table 1: Comparison between different quantizers: All-Layer (AL) denotes quantizing all the pa-
rameters of all the operators in networks, including weights, bias, activations, and the scaling factor
for low-precision networks; BN donates that the BN operation is only invoked in training but merged
into weights and induces no overhead in integer inference; Linear-Symmetric (LS) denotes linear
symmetric quantization; Activation Functions (AF) donates the support of Leaky ReLU and activa-
tion functions besides ReLU. Structure-Intact (SI) indicates the network structure is unmodified.

Method AL BN LS AFe SI
Deep Compression (Han et al., 2016)b 3

WQ (Park et al., 2017)b 3
LQ-Nets (Zhang et al., 2018a) 3
Min-Max Linear Quantizationa 3 3

DoReFa (Zhou et al., 2016)c 3 3
RQ (Louizos et al., 2019) 3 3 3

WRPN (Mishra et al., 2018) 3 3 3
PACT (Choi, 2018)d 3 3 3

LLSQ(ours) 3 3 3 3 3
a Naive linear quantization, which finds min-max value at runtime.
b Clustering-based approaches to quantize weights.
c DoReFa falls into linear asymmetric quantizer due to the need for offset.
d In Choi (2018), they use PACT to quantize activations, and DoReFa to quantize weights.
e DoReFa, RQ, WRPN, and PACT are designed for ReLU, but they can be extended to support other

activation functions in theory.

Quantization technique is also closely related to the implementation of specialized hardware that
maps the procedure of network inference onto the energy-efficient low-precision integer or fixed-
point arithmetic circuits. In the hardware perspective, low-precision integer accelerators or proces-
sors are dominating the solutions targeted on neural network inference, especially for mobile and
embedded scenarios. Google’s Tensor Processing Unit 1.0 (TPU) (Jouppi et al., 2017), Unified Deep
Neural Network Accelerator (UNPU) (Lee et al., 2018), Eyeriss (Chen et al., 2018), Stripes (Judd
et al., 2016), Pragmatic(Albericio et al., 2017) and many other newly proposed hardware implemen-
tations are generally reliant on the effectiveness of the underlying quantization techniques, which are
especially crucial for the low-precision integer hardware designed to process binary, ternary, 4-bit or
8-bit networks. In other words, quantization is not only a method to reduce the memory footprint as
in traditional work, but also a mandatory step to make the network deployable on integer hardware.

Though there is a lot of prior work that investigates low-precision quantization, they mainly target
on reducing the memory overhead caused by floating or high precision data representation in the
networks, but not focus on specialized integer hardware for network inference. To enable the neural
network processors to work with low-precision integer operands and minimize the accuracy losses,
a good network quantizer must satisfy the constraints as enlisted in Table 1.

First, all the parameters, including weights, bias, activations, partial results that eventually accumu-
late to an activation, and even the scaling factors, which are indispensable for low-precision networks
like binary and ternary representation, must be quantized into low bitwidth integers as required by
the underlying specialized hardware. In some prior work (Zhou et al., 2016; Zhu et al., 2017; Zhang
et al., 2018a; Mishra et al., 2018; Choi, 2018), they either leave bias and scaling factors unquan-
tized or keep the first and last layer in full or high precision. Except that, some designs rely on
high-precision internal register or ALUs to support high-precision partial results that are generated
during computation before the final output of activations or features. For example, Krishnamoorthi
(2018), which quantizes the weights and activations to 8-bit, directly use 32-bit accumulators to
cache the intermediate values or partial results to avoid overflows. However, for 4-bit and lower
bitwidth, the integer accelerators cannot afford high bitwidth accumulators, which indicates higher
silicon area and power cost. For integer-only-arithmetic, we quantize the bias to fixed-point numbers
by using a straight-forward method. The value range of these numbers is wide, resulting in over-
flows of the low bitwidth accumulators. To overcome this problem, we quantize the bias to 8-bit and
finetune the bias of the model. As shown in Figure 1, the bitwidth of accumulators can be reduced
to 16-bit.

2

Under review as a conference paper at ICLR 2020

Second, the BatchNorm (BN) layer does not necessarily need to be processed during inference for
the reduction of computation and memory cost. For most of the convolutional neural networks, BN
layers are often after the Conv or FC layers. In these situations, BN can be merged into the weights
and biases of the corresponding Conv or FC layers. However, in Zhou et al. (2016); Zhang et al.
(2018a), they use asymmetric or non-linear quantization, causing barriers to BN fusion. There are
two ways to overcome this obstacle. One is “BN folded training”(Krishnamoorthi, 2018), which
adopts BN fusion before weights quantization in every training step; the other is to use symmetric
linear quantization. However, the first method doubles the training time, while the second one has
no additional computational overhead, which will be introduced in Section 3.4.

Third, linear quantization is necessary for state-of-the-art accelerators. There are many non-linear
quantization methods which achieve excellent bitwidth reduction efficacy and accuracy tradeoffs.
In these cases, it requires additional transformation to have correct arithmetic results after quantiz-
ing the value into non-linear distribution. For example, as in Han et al. (2016); Park et al. (2017),
it necessitates the operation of table lookup to have correct multiplication between quantized val-
ues. However, the linear quantization can make full use of the low-precision arithmetic compo-
nents in off-the-shelf accelerators. Further, linear quantization can be divided into symmetric mode
and asymmetric mode. Asymmetric quantization has one more parameter (e.g., zero-point (Kr-
ishnamoorthi, 2018)) than symmetric quantization, and it requires additional subtraction or linear-
operation before multiplication. As a result, the symmetrical mode is compatible with the main-
stream integer accelerator chip design and do not require the redesign of datapath in these hardware.

Fourth, different CNNs or applications usually use a variety of activation functions. For instance,
the object detection model Redmon et al. (2016) typically uses Leaky ReLU. And the bottleneck
of ResNet block does not use any activation function. The quantization methods are expected to
be adapted to these situations. However, Zhang et al. (2018a); Park et al. (2017) only focus on
the quantization of activations after ReLU. In this paper, we demonstrate our method is friendly to
different activation methods such as Leaky ReLU.

Some of the previous researches change the network structure for better quantization performance,
e.g., Mishra et al. (2018) double or even triple the convolutional filters to reduce accuracy degrada-
tion. For the energy-efficient integer neural network chips, it needs to remap the changed network
architecture to hardware and adds to computational and memory access overhead due to the in-
creased filters and parameters. As a result, keeping the network structure intact is important.

Concerning all the factors above, in this paper, we present a learned linear symmetric quantiza-
tion (LLSQ) method and also evaluate it on a low-precision neural network accelerator through
hardware-software co-design. Specifically, our mainly contributions are:

• Unlike most of other quantization methods, we quantize the whole network including the
first and last layers. We also quantize bias and scaling factors, in support of the low bitwidth
integer arithmetic units and accumulators on the accelerator.

• We adopt learned linear symmetric quantization schemes which are hardware friendly (such
as the convenience of BN fusion implementation) while achieving state-of-the-art predic-
tion accuracy.

• We design a specialized low-precision CNN inference accelerator to validate the methodol-
ogy, which supports 2/4/8 integer operating and work with high efficiency. We then deploy
our quantization model on the accelerator to illustrate the efficacy of the workflow.

2 MOTIVATION

Edge or embedded neural network accelerators are generally having three primary design goals—
small-footprint, high-throughput/low-latency, and low-power. For different applications and sce-
narios, the prior researches on specialized deep learning processors are often falling into different
categories: cloud-oriented hardware for warehouse machines, low power mobile processors and
ultra-low power accelerators for IoT or cyber-physical devices.

For mobile and embedded usage, specialized neural network processors are becoming increasingly
popular as an efficient hardware solution of inference. DianNao (Chen et al., 2014) is proposed
for fast inference of DNNs and it uses 16-bit fixed-point multipliers for small silicon area and low-

3

Under review as a conference paper at ICLR 2020

energy. Later, ShiDianNao (Du et al., 2015) is introduced and it burns extremely low energy con-
sumption by putting all weights onto the SRAM to eliminate considerable DRAM accesses. Eye-
riss (Chen et al., 2018) is also another representative of low-power accelerators. And it presents a
row-stationary (RS) dataflow to minimize data movement energy consumption on a spatial archi-
tecture. To further reduce computation overhead, EIE (Han et al., 2016) exploits the sparsity and
low-bit compression of the NNs and achieves better throughput, energy and area efficiency. These
typical edge neural network processors are accepting fixed-point data input and using fixed-point
processing elements to reduce the power and chip area overhead caused by floating-point arithmetic
components and memory. For the cloud scenarios, specialized architectures like TPU (Jouppi et al.,
2017) and FPGA-based accelerator cards are also replacing conventional GPGPU and CPU for high-
throughput inference tasks. Even for cloud-oriented inference architectures, fixed-point processing
architectures like TPU are favored because they are able to deliver much higher throughput for the
given power budget and silicon area overhead.

However, for the fixed-point or integer hardware targeted on neural network acceleration, quantiza-
tion is prerequisite to convert the floating-point network model into the fixed-point format compati-
ble with the specialized hardware, and it is also a critical step to ensure the accuracy of the network
after conversion. Many prior quantization methods are intended to reduce the running overhead of
networks but ignore the architecture and working mechanism of integer neural network processors,
as illustrated in Table 1, and they sometimes face considerable accuracy losses, or performance
penalty or even fail to be supported on the realistic integer datapath due to the unconsciousness of
the underlying hardware. This problem becomes particularly important for the hardware that is de-
signed to run low bitwidth networks such as binary, ternary, and 2/4-bit models. For instance, Deep
compression and WQ are clustering-based quantization methods, and they still need high-precision
values to represent the weights, bias, and activations. As a result, they are not compatible with
the hardware that only supports low-precision computing. LQ-Nets uses non-linear quantization
based on the binary code and basis vector, and it can theoretically calculate the inner products be-
tween quantized weights and activations by bitwise operations only. However, it requires intensive
modifications to the design of current processors by adding a lot of look-up tables in the datapath.
Further, bias and scaling factors are not quantized in PACT and WRPN, resulting in performance
penalty when employing additional high-precision or float-point ALUs to deal with them. In con-
trast, our LLSQ is designed to ease the model quantization flow for the specialized integer neural
network processors by conforming to the constraint specified in Table 1. To validate the impor-
tance of hardware-aware quantizer and software/hardware co-design, we also design a specialized
CNN accelerator for wearable applications. And the specialized accelerator supports 2/4/8 integer
operation and adopts the dataflow of low latency and energy design.

3 NETWORKS WITH LEARNED LINEAR SYMMETRIC QUANTIZATION

In this section, we firstly give the overview of the proposed quantization scheme. Then we detail the
scheme including low-precision representation, quantized network training, and the deployment of
quantization model on our specialized integer-only CNN accelerator for fast inference.

3.1 OVERVIEW OF LLSQ

Many of the previous researches focus on the quantization-aware training in GPU, showing the po-
tential of low-bit quantization on CNNs. Han et al. (2016); Park et al. (2017); Zhang et al. (2018a)
propose non-linear quantization methods but lacks of a detailed description of the hardware feasibil-
ity. Krishnamoorthi (2018) provides a quantization scheme that quantizes weights and activations
into 8-bit integers and integer-arithmetic-only implementation on ARM CPUs. The method achieves
evident hardware acceleration effects, but does not fully exploit lower-precision quantization. Based
on the researches, we propose a quantization scheme for state-of-the-art specialized accelerators
operating on low-precision integers only. Figure 1 shows an overview of the proposed scheme.

Compared with prior work, our proposed quantization scheme pays more attention to the constraints
imposed by real hardware. We use a unified learned linear symmetric quantizer to quantize weights
and activations. And the quantizer has only one parameter, known as the scaling factor. Linear sym-
metric quantization consumes little additional resources based on the mainstream integer accelerator
designs while achieving state-of-the-art accuracy in various networks. After that, we adopt BN fu-

4

Under review as a conference paper at ICLR 2020

 Train W

Quan of W and A

BN Fusion

 Quan of B and S

Scale Buffer

W
ei

gh
t B

uff
er

+ psums

…
…

…
…

…
…M

c
x

4b
it

4

Mc x 4bit

4

Activation Buffer

X

X

…
…

4 4

+ psums
9

9

16bit

16bit
X

X

8bit

>>

24bit

24bit

>>

shift_B

4

4

Mc x 4bit

Mc = 32

MAC1
<latexit sha1_base64="SMQKRqSFQLr/LkCKTnxefoU56sw=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY/VXrwIFdy20C4lm2bb0Gx2SbJCWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvCARXBvH+UaFtfWNza3idmlnd2//oHx41NJxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjBszv/3ElOaxfDSThPkRGUoeckqMlbz7m0bf7ZcrTtWZA68SNycVyNHsl796g5imEZOGCqJ113US42dEGU4Fm5Z6qWYJoWMyZF1LJYmY9rP5sVN8ZpUBDmNlSxo8V39PZCTSehIFtjMiZqSXvZn4n9dNTXjtZ1wmqWGSLhaFqcAmxrPP8YArRo2YWEKo4vZWTEdEEWpsPiUbgrv88ipp1aruRbX2cFmp3+ZxFOEETuEcXLiCOtxBEzygwOEZXuENSfSC3tHHorWA8plj+AP0+QPfQY4R</latexit>

MACMc<latexit sha1_base64="DD/zFcLWTfxWvbYo4aPkOxWnyP4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6rvXgpVLAf0i5LNk3b0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhhzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNiTTmTtGmY4bQTK4pFyGk7HNdmfvuJKs0i+WAmMfUFHko2YAQbKz3Wb2pBWg/INCiW3LI7B1olXkZKkKERFL96/YgkgkpDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lEguq/XR+8BSdWaWPBpGyJQ2aq78nUiy0nojQdgpsRnrZm4n/ed3EDK79lMk4MVSSxaJBwpGJ0Ox71GeKEsMnlmCimL0VkRFWmBibUcGG4C2/vEpalbJ3Ua7cX5aqt1kceTiBUzgHD66gCnfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8AREWQDw==</latexit>

B
ia

s
B

uff
er

8

PE

PE

PE

PE

PE

PE

PE ArrayQuantization Schemes

R
et

ra
in

in
g

R
et

ra
in

in
g

32 x 7

Figure 1: An overview of LLSQ: using pre-trained weights for fast convergence; Retraining of the
network with quantized weights and activations; BN fusion for efficient inference; Quantization of
bias and scaling factors; Deployment of the quantized model to our accelerator. As shown in this
figure, weights, activations, bias, and scaling factors are quantized to low-bit integers. And the
bandwidth of accumulator can be set to lower (e.g., 16-bit in our experiments).

sion, which is also for fast inference on hardware. As for bias and scaling factors, we also quantize
them to low-bitwidth integers. The integer accelerator illustrated in Figure 1 is an illustrative case
of 4-bit quantization and hardware acceleration.

3.2 MAKING FULL USE OF THE PRE-TRAINED PARAMETERS

In experiments, we find that it is more efficient to start with the pre-trained full-precision parameters
before quantization. Louizos et al. (2019); Zhou et al. (2017) use pre-trained weights for fast con-
vergence and deployment, while Zhang et al. (2018a); Choi (2018); Cai et al. (2017) train quantized
network from scratch to show the robustness of the algorithm. However, for some object detection
models, the backbone models and pre-trained weights are essential to the detection performance.
Redmon et al. (2016) shows that the pre-trained high-resolution classification network gives an in-
crease of almost 4% mAP. To have better performance in classification, object detection, and other
CNN based tasks, in this paper, we use pre-trained parameters to initialize the networks.

3.3 LOW-PRECISION REPRESENTATION AND QUANTIZATION ALGORITHM

We adopt the symmetric linear quantization to quantize weights and activations into k bits
words(e.g., 4-bit), which can be defined as

q =
xq

α
= clamp(bx

r

α
e,−2k−1, 2k−1 − 1) (1)

where xr ∈ R, the variable α ∈ R+ is the quantization parameter, known as the scaling factor, while
q ∈ {−2k−1, . . . , 0, 1, . . . , 2k−1 − 1} and xq ∈ {−2k−1α, . . . , 0, α, . . . , (2k−1 − 1)α}. Note that
for activations, which are non-negative values if the ActFun is ReLU, we clamp them to [0, 2k − 1],
resulting in q ∈ {0, 1, . . . , 2k − 1} and xq ∈ {0, α, . . . , (2k−1 − 1)α}, respectively.

As defined above, we use α as our quantization parameter. And we optimize it with:

α∗ = argmin
α

∫
p(xr)|xq − xr|l (2)

where xr,xq are the same factors defined in Equation 1, p(xr) is the probability density function of
xr, and l ∈ {1, 2} is an optional constraint (We use 2 in our experiments). In Figure 2, we present the
relationship between quantization error and α. When fixing weights xr, we can find the optimal α∗

by using the brute-force search approach, which induces high computation cost. Besides, the weights
are updated during the training phase and the optimal value α∗ changes accordingly. In other words,
the optimal value for the factors is not fixed and it takes considerable computational overhead to find
the dynamic optimal value. Inspired by Zhang et al. (2018a), we find through experiments that there
is no need to find the optimal value α∗, and it works well enough to find a near-optimal value α̃∗.

5

Under review as a conference paper at ICLR 2020

Table 2: Comparison of SG and EMA.

Method VGGSmallw4a4 VGGSmallw2a2 ResNet18w4a4 ResNet18w3a3
EMA 93.95 92.78 69.48 66.80
SG 94.34 93.31 69.84 68.08
VGGSmall is trained on Cifar10 and ResNet18 is on ImageNet.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03
0 200 400 600 800 1000 1200

epoch	0 epoch	60

Q
ua

nt
iza

tio
n

Er
ro

r

1/↵
<latexit sha1_base64="V+z9uWTqM4Yp/msQicQU0l6TeXg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69hBZBEGpSD3osevFYwX5AE8pku22XbjZxdyOE0D8hggdFvPp3vPXfuP04aOuDgcd7M8zMC2LOlHaciZVbW9/Y3MpvF3Z29/YPiodHTRUlktAGiXgk2wEqypmgDc00p+1YUgwDTlvB6Hbqt56oVCwSDzqNqR/iQLA+I6iN1HYvPOTxELvFslNxZrBXibsg5VrJO3+Z1NJ6t/jt9SKShFRowlGpjuvE2s9QakY4HRe8RNEYyQgHtGOowJAqP5vdO7ZPjdKz+5E0JbQ9U39PZBgqlYaB6QxRD9WyNxX/8zqJ7l/7GRNxoqkg80X9hNs6sqfP2z0mKdE8NQSJZOZWmwxRItEmooIJwV1+eZU0qxX3slK9N2ncwBx5OIESnIELV1CDO6hDAwhweIY3eLcerVfrw/qct+asxcwx/IH19QOFVpKb</latexit>

�
1

↵⇤
<latexit sha1_base64="//DoCojG0Ru9MRXMPcMnJet6zVI=">AAACAXicbVC7SgNBFJ31GeNr1ULFZjAIYhF2Y2HKoBaWEcwDsjHcncwmQ2YfzMwKYVkbf8XGQhFbf0LstLH1M5w8Ck08cOFwzr3ce48bcSaVZX0YM7Nz8wuLmaXs8srq2rq5sVmVYSwIrZCQh6LugqScBbSimOK0HgkKvstpze2dDfzaDRWShcGV6ke06UMnYB4joLTUMnecc8oVOJ4Akthp4gCPunB9lLbMnJW3hsDTxB6TXKn49bb9+b1bbpnvTjsksU8DRThI2bCtSDUTEIoRTtOsE0saAelBhzY0DcCnspkMP0jxgVba2AuFrkDhofp7IgFfyr7v6k4fVFdOegPxP68RK6/YTFgQxYoGZLTIizlWIR7EgdtMUKJ4XxMggulbMemCDkPp0LI6BHvy5WlSLeTt43zhUqdxikbIoD20jw6RjU5QCV2gMqoggm7RPXpET8ad8WA8Gy+j1hljPLOF/sB4/QH9PZr9</latexit>

Figure 2: L2 distance of quantization. The
data is from weights of the first FC layer in
AlexNet. As shown in the figure, the optimal
α∗ changes with the updating of weights.

Generally, quantization can be considered as a regular-
ization of the networks, and the quantization parameter
α needs only to be adjusted to a near-optimal value to
preserve the network capacity.

Then the problem becomes how to find a α̃∗ in the for-
ward pass of the network training phase. At the begin-
ning of training, we assign α an initial value. Then in
every training iteration, we explore between 2α and α

2 to
find a better search direction dbetter ∈ {−1, 0, 1}, and
use α2dbetter as the simulated gradient (SG) of α. The
gradients of other parameters are still obtained by back-
propagation algorithm. After that, we update all param-
eters with the gradients or simulated gradients. Another
method is updating α by the exponential moving average
(EMA) method. We experiment both of the methods, and
the results show that SG is generally better than EMA on
various networks (See Table 2). If not specifically stated, we use the SG method in experiments.

3.4 BN LAYER FUSION OF QUANTIZED NETWORKS

As described in Section 1, merging the BN layers into convolutional layers can reduce the latency of
network inference by removing additional computation overhead. The operator of quantized Conv1

and FC layers can be expressed as
o = αaqa × αwqw + b (3)

where α, q are the same as Equation 1, αaqa, αwqw donate the quantized activations and weights,
while b is the bias and o is the output feature vector. Note that αa, αw and b are full precision values.
And the BN layer can be formulated as follows:

y =
x− µ√
σ2 + ε

γ + β (4)

where µ and σ2 are EMA statistics, γ and β are learned parameters.

Obviously, we can merge BN layers and figure out the corrected parameters.

α̂w = ζαw; b̂ = (b− µ)ζ + β; ζ =
γ√
σ2 + ε

(5)

3.5 BIAS AND SCALING FACTOR QUANTIZATION FOR LOW-BIT INTEGER ONLY
ARITHMETIC

Further, the outputs of layers are quantized according to Equation 1. For integer-only-arithmetic,
the bias use αaαw as its scaling factor. And for the multiplier αaαw

αo
, we use bit-shift quantization

so that no multiplication but bit-shift operation is needed in hardware.

αoqo = αaqaα̂wqw + b̂

qo =
αaα̂w
αo

(qaqw + qb)

where qb = clamp(b b̂

αaα̂w
e,−2kb−1, 2kb−1 − 1)

(6)

1For brevity, we only consider the operation of one channel.

6

Under review as a conference paper at ICLR 2020

Note that αaαw is a very small number, resulting in large quantization noise when adopting the
clamp operation. Parameter fine-turning provided in Section 4.2 is required.

In addition, we adopt STE (Bengio et al., 2013) to realize the non-differentiable quantization func-
tion. For weights and bias, we have

∂y

∂wq
' ∂y

∂wr
(7)

For activations, we have
∂y

∂aq
'
{ ∂y
∂ar if 0 ≤ ar ≤ (2k − 1)α

0 otherwise
(8)

4 EXPERIMENTAL RESULTS

In this section, three sets of experiments on Cifar10, ImageNet and Pascal VOC datasets are pre-
sented. First, we conduct our proposed learned linear symmetric quantization (LLSQ) on weights
and activations, leaving the first and last layers in full precision. Second, we quantize the whole
networks including the first and last layers, which is referred as LLSQF (LLSQ for Full network).
Finally, we quantize the remaining bias and scaling factors. LLSQ is implemented in PyTorch
(Paszke et al., 2017), and most of the baselines it uses in evaluation are from PyTorch Model Zoo2.

4.1 QUANTIZATION OF WEIGHTS AND ACTIVATIONS

We firstly employ the VGG-Small network on Cifar10 to verify the LLSQ method. After that, we
use AlexNet (Krizhevsky et al., 2012), ResNet18, ResNet34 (He et al., 2016), particularly the light-
weight and hard-to-compress network architecture of MobileNet (Howard et al., 2017; Sandler et al.,
2018) etc. to conduct more detailed experiments on the ImageNet dataset. Finally, we also quantize
YOLOv2 (Redmon & Farhadi, 2017) to demonstrate that LLSQ also works well for complicated
applications and especially the task adopting the activation functions like Leaky ReLU other than
ReLU used in previous work.

VGG-SMALL ON CIFAR10

The VGG-Small architecture is the same with Louizos et al. (2019); Zhang et al. (2018a), consisting
of six Conv layers, three MaxPool layers, and one FC layer. We adopt a cosine learn rate scheduler
to train the VGG-Small reference and the quantized models. Specifically, we train the reference
network for 400 epochs using an initial learning rate of 2e-2. And for the training of the quantized
network, we use a warmup learning rate scheduler in the first ten epochs with an initial learning
rate of 2e-3. In all quantization experiments, the total training epochs are 100. The VGG-Small
quantization results are provided in Table 3. With 3-bit weights and 3-bit activations, the accuracy
using our method is better than state-of-the-art method, LQ-Nets. And even when the first and last
layers are all quantized in the same way, the loss of accuracy is minimal.

IMAGENET DATASET

We then quantize AlexNet, ResNet18, ResNet34 and MobileNetv2 on ILSVRC2012 dataset with
different bitwidth configuration to demonstrate the effectiveness of the method. All of the pre-
trained float-point weights except MobileNetv23 are downloaded from the PyTorch Model Zoo, and
they are trained for 90 epochs with a step learning rate scheduler. After loading the pre-trained
weights, we employ a warmup learning scheduler in the first three epochs and the cosine scheduler
in the remained 57 epochs with an initial learning rate of 2e-2.

As shown in Figure 3a, when quantizing both weights and activations, our degradation of accuracy
is significantly smaller than LQ-Nets, PACT, and RQ. Especially, LLSQ outperforms the baselines
when quantizing weights and activations into 4-bit. And it also outperforms other non-linear quan-
tization methods with different bitwidth. Figure 3b shows that even with the first and last layers
quantized, it can still achieve near baseline performance. In overall, the accuracy drop is less than

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/tonylins/pytorch-mobilenet-v2

7

Under review as a conference paper at ICLR 2020

Table 3: Comparison with the state-of-the-art low-bit quantization methods on CIFAR-10. The
bitwidth for weights(w), activations(a), bias(b) and scaling factor(α) are given.

Method # Bits w/a/b/α Acc(%) Degradation(%)
LQ-Nets* Reference 93.8
(Zhang et al., 2018a) 3/3 93.8 0.0

2/2 93.5 0.3
RQ Reference 93.05
(Louizos et al., 2019) 8/8 93.30 -0.25

4/4 91.57 1.48
2/2 90.92 2.31

LLSQ*(ours) Reference 93.34
4/4 94.34 -1.00
3/3 94.02 -0.68
2/2 93.31 0.03

LLSQF(ours) 4/4 94.30 -0.96
3/3 94.07 -0.73
2/2 93.12 0.22

4/4/8/8 93.84 -0.50
* first and last layer in full precision

0.4% in ResNet18, ResNet34, and AlexNet when quantizing the whole network. We also quantize
MobileNetv2, a more compact network, and obtain results that are significantly better than RQ.
Please check Table 6 for detailed results.

ResNet18 ResNet34 VGG-Small

D
eg

ra
da

tio
n

(%
)

-0.5

0

0.5

1.0

1.5

-1
4/4 3/3 3/34/4 4/4 2/2

LLSQ
LLSQF

2.0

PACT
LQ-Nets

RQ ST

(a) Comparison with other state-of-art methods.
Lower is better.

ResNet18 ResNet34 AlexNet

Ac
cu

ra
cy

 (%
)

55

60

65

70

75

50
4/4 3/3 3/34/4 4/4 3/3

LLSQ
LLSQF

ba
se

lin
e

ResNet34

ResNet18

AlexNet

(b) Comparison of LLSQ and LLSQF. LLSQ outper-
forms the baseline, and LLSQF receives only minor
performance penalty after quantizing the first and the
last layers.

Figure 3: Quantization results on different networks.

OBJECT DETECTION ON PASCAL VOC

We also apply the proposed LLSQ to YOLOv2. The backbone of YOLOv2 is Darknet-19, and its
activation function is Leaky ReLU, so that the activations contain negative values. For YOLOv2
on Pascal VOC, we adopt the same quantization configuration (See Section 3.3) of the weights to
the activations. Results are listed in Table 4. As shown in the table, LLSQ induces minor losses
of mAP in different bitwidth presentation. For comparison, we also quantize the activations into
signed 5-bit integers using PACT, and consequently face considerable mAP losses (54.8mAP). Please
note that we use the open-source PyTorch implementation of YOLOv2 4 as the baseline. We train
the quantized model for 170 epochs (2/3 of baseline) with an initial learning rate of 1e-4 (1/10 of
baseline).

4https://github.com/marvis/pytorch-yolo2

8

Under review as a conference paper at ICLR 2020

Table 4: LLSQ on YOLOv2 detector.

bitwidth mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
FP32 73.2 78.9 80.0 72.8 62.3 47.1 79.2 79.6 85.7 54.4 79.7 72.2 83.3 81.1 79.2 74.8 48.4 75.7 72.3 83.4 73.0
w4a5 70.3 73.9 76.1 67.8 57.3 39.9 81.2 79.1 82.6 51.8 75.7 68.3 80.3 83.9 78.7 70.6 42.6 72.2 71.6 83.5 69.5
w32a5 71.2 75.5 75.9 71.4 60.4 42.4 80.6 80.0 83.3 53.5 75.8 68.1 70.8 82.6 79.5 71.6 45.5 69.9 72.1 84.6 70.4
w4a8 73.4 74.5 79.1 75.5 60.6 43.8 80.9 80.7 85.8 56.6 80.0 70.9 83.5 84.5 81.0 74.5 47.5 74.8 75.2 84.1 73.6
w4a32 74.2 74.6 78.6 75.5 66.0 47.4 80.8 83.2 87.4 57.3 80.3 70.8 83.7 84.3 83.0 74.8 49.4 74.2 73.8 85.2 73.5

4.2 BN FUSION AND QUANTIZATION OF BIAS AND THE SCALING FACTOR

We adopt BN fusion in the PostAct (ConvÕBNÕReLU) networks according to the formula in Sec-
tion 3.4. And the scaling factor of bias is the product of the corresponding scaling factors belonging
to the activations and the weights, respectively. After that, we visualize the bias value distribution
of VGG-Small. Figure 4 shows b

αb
is distributed between a vast range (-1000, 1000), resulting in

overflows of low bitwidth accumulators. And the overflow phenomena have a significantly harmful
impact on the network performance. To deal with this issue, we quantize the bias and the scaling
factors to 8-bit words, and then fine-tune the networks to restore the original performance. Gener-
ally, we need fine-tuning for one epoch only. After the quantization of bias and scaling factor, we
have a fully quantized model and have it deployed onto our integer-only accelerator with 16 bitwidth
accumulators. Table 3 and 6 show that the accuracy loss is negligible with w4a4b8α8 quantization
on both VGG-Small and AlexNet.

b/↵b
<latexit sha1_base64="Z/vbQeDek9NeEY0C69qLuVZaCo0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69hBZBEGpSD3osevFYwX5gE8pku22XbjZhdyOE0H/RiwdFvPpvvPXfuP04aOuDgcd7M8zMC2LOlHacqZXb2Nza3snvFvb2Dw6PiscnTRUlktAGiXgk2wEqypmgDc00p+1YUgwDTlvB6H7mt16oVCwSTzqNqR/iQLA+I6iN9BxcecjjIXaDbrHsVJw57HXiLkm5VvIuJ9NaWu8Wv71eRJKQCk04KtVxnVj7GUrNCKfjgpcoGiMZ4YB2DBUYUuVn84vH9rlRenY/kqaEtufq74kMQ6XSMDCdIeqhWvVm4n9eJ9H9Wz9jIk40FWSxqJ9wW0f27H27xyQlmqeGIJHM3GqTIUok2oRUMCG4qy+vk2a14l5Xqo8mjTtYIA9nUIILcOEGavAAdWgAAQETeIN3S1mv1of1uWjNWcuZU/gD6+sHRb6ToQ==</latexit>

de
ns
ity

(a) bias of conv1

b/↵b
<latexit sha1_base64="Z/vbQeDek9NeEY0C69qLuVZaCo0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69hBZBEGpSD3osevFYwX5gE8pku22XbjZhdyOE0H/RiwdFvPpvvPXfuP04aOuDgcd7M8zMC2LOlHacqZXb2Nza3snvFvb2Dw6PiscnTRUlktAGiXgk2wEqypmgDc00p+1YUgwDTlvB6H7mt16oVCwSTzqNqR/iQLA+I6iN9BxcecjjIXaDbrHsVJw57HXiLkm5VvIuJ9NaWu8Wv71eRJKQCk04KtVxnVj7GUrNCKfjgpcoGiMZ4YB2DBUYUuVn84vH9rlRenY/kqaEtufq74kMQ6XSMDCdIeqhWvVm4n9eJ9H9Wz9jIk40FWSxqJ9wW0f27H27xyQlmqeGIJHM3GqTIUok2oRUMCG4qy+vk2a14l5Xqo8mjTtYIA9nUIILcOEGavAAdWgAAQETeIN3S1mv1of1uWjNWcuZU/gD6+sHRb6ToQ==</latexit>

de
ns
ity

(b) bias of conv2

Figure 4: Distribution of the bias/scaling factor. The data is from VGG-Small with w4a4 quantiza-
tion.

4.3 DEPLOYMENT ONTO REALISTIC HARDWARE

The introduced linear symmetric quantization is intended to deploy the quantized networks to spe-
cialized integer-only-arithmetic CNN accelerators or other integer-only hardware. Our accelerators
adopt the typical 2D systolic array architecture (Chen et al., 2018), but they are featured with 4-bit
or 2-bit low-precision operation. As shown in Figure 1, the 8/4/2-bit accelerator has a 32x7 array of
processing elements (PE). And the MAC unit in each PE consists of a 4-bit multiplier and a 16-bit
accumulator. For the 4-bit accelerator, we use INT4 representation for weights, UINT4 for activa-
tions, INT8 for the bias and scaling factors, respectively. For the 2-bit accelerator, we use INT2
for weights, UINT2 for activations, INT8 for the bias and scaling factors, respectively. Through
the quantization process described in the paper, we can have a fully quantized network that works
directly on the CNN accelerator. In addition, as we use linear symmetric quantization, we can use
a straight-forward way to conduct multiply-accumulate operations without introducing shifters or
lookup tables, which means the quantized models can run on state-of-the-art integer accelerators
and ensures that their output accuracy degradation is minimal as presented in the above sections. Fi-
nally, we implement the 8/4/2-bit integer neural network processors with Synopsys Design Compiler
(DC) under the 40nm technology, clocked at 800MHz. Table 5 shows that the 4/2-bit implemen-
tation achieves up to 2.56x lower silicon area and 5.56x lower power compared to that of the 8-bit
baseline.

9

Under review as a conference paper at ICLR 2020

Table 5: Comparison of our low-precision integer Neural Network Processors.

Bitwidth #MAC Unit Throughput
(GOps/sec)

Silicon Area
(mm2)

Power (mW)

8-bit 224 179.2 4.71 228
4-bit 224 179.2 2.80 93
2-bit 224 179.2 1.84 41
Implemented and synthesized with Synopsys Design Compiler (DC) under the 40nm technology.

5 RELATED WORK

Prior works propose effective quantization methods to reduce the computation intensity and the
model size. Guo et al. (2018) uses 8-bit fixed-point format to represent weights and activations.
They adopt a greedy strategy to optimize the radix position layer by layer and achieve negligible
accuracy loss. Krishnamoorthi (2018) also quantizes the weights and activations to 8-bit, but relies
on the introduction of new parameters such as scaling factors and zero-points to have a more flexible
representation. Experiments in Zhu et al. (2017) show that the flexible representation is necessary
for maintaining accuracy for arbitrary bit precision. XNOR (Rastegari et al., 2016), BNN (Hubara
et al., 2016), and TTQ (Zhu et al., 2017) either binarize or ternarize the weights and activations,
allowing bit-wise operators on hardware. However, binary or ternary usually leads to significant ac-
curacy degradation. For more conservative quantization, DoReFa (Zhou et al., 2016), PACT (Choi,
2018), FQN (Li et al., 2019), WRPN (Mishra et al., 2018), LQ-Nets (Zhang et al., 2018a), and RQ
(Louizos et al., 2019) use quantization-aware training method to keep down the accuracy degradation
especially for 4-bit quantization. PACT, DoReFa, FQN, WRPN, and RQ all use linear quantization
methods while LQ-Nets use a non-linear quantization approach. Introducing new parameters into
the representation or resorting to more complicated representations other than integer or fixed-point
data can generally maintain network capabilities, but often increase the computational burden or
involves modification to the current hardware.

From the training perspective, DoReFa and WRPN use fixed quantizers. FQN updates the quantizer
based on the observable statistics (e.g., min/max) of the weights and activations. PACT and RQ op-
timize the quantizer by using gradient descent while LQ-Nets optimize the quantizer by minimizing
L2 distance. Our LLSQ use simulated gradients to update the parameter of the quantizer, which
achieves better performance than the EMA method. The ultimate goal for LLSQ is to seek an effi-
cient quantization process and good performance on realistic integer hardware. In contrast to prior
work on network quantization, this work is oriented towards the popular integer neural network ac-
celerators and fully aware of the underlying architectural and hardware details in order to minimize
the computational overhead and accuracy penalty when deploying neural network models onto such
hardware.

6 CONCLUSIONS

In this paper, we introduced a learned linear symmetric quantization (LLSQ) to quantize the whole
network including the bias and scaling factors. We also use BN fusion and low bitwidth accumulators
to reduce the network inference overhead and the hardware resources in integer neural accelerators.
We show that our proposed method performs well for various networks on Cifar10, ImageNet, and
Pascal VOC datasets. We also show that even the linear symmetric quantizer can obtain better
results than asymmetric or non-linear quantization in the case of 4-bit networks. Finally, we deploy
the quantized network onto our specialized integer-only neural network accelerator. Currently, the
bitwidth of every layer in a network is all the same. Prior researches empirically find that different
layers have different sensitivity to bitwidth of quantization. Hence in the future, we will explore a
framework to support more flexible bitwidth for different layers or finer-grained quantization.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Jorge Albericio, Alberto Delmas, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and
Andreas Moshovos. Bit-pragmatic deep neural network computing. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2017, Cambridge,
MA, USA, October 14-18, 2017, pp. 382–394, 2017. doi: 10.1145/3123939.3123982. URL
https://doi.org/10.1145/3123939.3123982.

Yoshua Bengio, Nicholas Leonard, and Aaron C Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv: Learning, 2013.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In CVPR, 2017.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam.
Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. archi-
tectural support for programming languages and operating systems, 49(4):269–284, 2014.

Y. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. IEEE Micro, pp. 1–1, 2018. ISSN 0272-1732. doi: 10.1109/MM.
2017.265085944.

Jungwook Choi. Pact: Parameterized clipping activation for quantized neural networks. arXiv:
Computer Vision and Pattern Recognition, 2018.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Fei Li, Tao Luo, Xiaobing Feng,
Yunji Chen, and Olivier Temam. Shidiannao: shifting vision processing closer to the sensor.
international symposium on computer architecture, 43(3):92–104, 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2018.

Ross B Girshick. Fast r-cnn. international conference on computer vision, pp. 1440–1448, 2015.

Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han, Yu Wang,
and Huazhong Yang. Angel-eye: A complete design flow for mapping cnn onto embedded fpga.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1):35–47,
2018.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie: Efficient inference
engine on compressed deep neural network. In 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA), pp. 243–254, June 2016. doi: 10.1109/ISCA.2016.30.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. neural information processing systems, pp. 1135–1143, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. international conference on learning
representations, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. computer vision and pattern recognition, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B Girshick. Mask r-cnn. international
conference on computer vision, pp. 2980–2988, 2017.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran Elyaniv, and Yoshua Bengio. Binarized
neural networks. neural information processing systems, pp. 4107–4115, 2016.

11

https://doi.org/10.1145/3123939.3123982

Under review as a conference paper at ICLR 2020

Norman P Jouppi, C S Young, Nishant Patil, David A Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh K Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. international symposium on computer architecture, 45(2):1–12, 2017.

Patrick Judd, Jorge Albericio, Tayler H Hetherington, Tor M Aamodt, and Andreas Moshovos.
Stripes: bit-serial deep neural network computing. international symposium on microarchitecture,
pp. 1–12, 2016.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. neural information processing systems, 141(5):1097–1105, 2012.

Jinmook Lee, Changhyeon Kim, Sang Hoon Kang, Dongjoo Shin, Sangyeob Kim, and Hoijun Yoo.
Unpu: A 50.6tops/w unified deep neural network accelerator with 1b-to-16b fully-variable weight
bit-precision. pp. 218–220, 2018.

Rundong Li, Feng Liang, Hongwei Qin, Yan Wang, Rui Fan, and Junjie Yan. Fully quantized
network for object detection. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. computer vision and pattern recognition, pp. 3431–3440, 2015.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. international conference on learning repre-
sentations, 2019.

Asit K Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-precision
networks. international conference on learning representations, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. international conference on learning represen-
tations, 2017.

Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan. Speech
recognition using deep neural networks: A systematic review. IEEE Access, 7:19143–19165,
2019.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. international conference on computer vision, pp. 1520–1528, 2015.

Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-based quantization for deep
neural networks. pp. 7197–7205, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet clas-
sification using binary convolutional neural networks. european conference on computer vision,
pp. 525–542, 2016.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. pp. 6517–6525, 2017.

Joseph Redmon, Santosh Kumar Divvala, Ross B Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. computer vision and pattern recognition, pp. 779–788, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. international conference on learning representations, 2015.

12

Under review as a conference paper at ICLR 2020

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. neural information processing systems, pp. 2074–2082, 2016.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization
for highly accurate and compact deep neural networks. european conference on computer vision,
pp. 373–390, 2018a.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, and Hongji Wang. Asynchronous
bidirectional decoding for neural machine translation. national conference on artificial intelli-
gence, pp. 5698–5705, 2018b.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quanti-
zation: Towards lossless cnns with low-precision weights. CoRR, abs/1702.03044, 2017. URL
http://arxiv.org/abs/1702.03044.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv: Neural and
Evolutionary Computing, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. interna-
tional conference on learning representations, 2017.

APPENDIX

IMAGENET DETAILED

We conduct experiments on AlexNet, ResNet18, ResNer34, and MobileNetv2. For all of the ex-
periments, we adopt channel-wise quantization for Conv layers and layer-wise quantization for FC
layers as well as the activations. The AlexNet architecture is the same as the PyTorch Model Zoo,
and it consists of five Conv layers, three FC layers, three MaxPool layers, and two Dropout layers.
To prevent over-fitting, we keep the Dropout layers when quantizing AlexNet. As shown in Figure
5d, we use the same learning rate scheduler for all experiments on ImageNet. The test curves are
also shown in Figure 5. As we begin with the pre-trained full-precision weights, the test accuracy is
already acceptable after one-epoch training. The final results are listed in Table 6.

0 10 20 30 40 50 60
epoch

51

52

53

54

55

56

va
l a

cc
ur

ac
y

llsq_w4a4
llsqf_w4a4
llsq_w3a3
llsqf_w3a3

(a) AlexNet

0 10 20 30 40 50 60
epoch

63

64

65

66

67

68

69

70

va
l a

cc
ur

ac
y

llsq_w4a4
llsqf_w4a4
llsq_w3a3
llsqf_w3a3

(b) ResNet18

0 10 20 30 40 50 60
epoch

64

66

68

70

72

va
l a

cc
ur

ac
y

llsq_w4a4
llsqf_w4a4
llsq_w3a3
llsqf_w3a3

(c) ResNet34

0 100000 200000 300000 400000 500000 600000
training step

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

le
ar

ni
ng

 ra
te

AlexNet_lr
ResNet18_lr
ResNet34_lr
MobileNetv2_lr

(d) learning rate.

Figure 5: Test curves for AlexNet, ResNet18, and ResNet34 on ImageNet.

13

http://arxiv.org/abs/1702.03044

Under review as a conference paper at ICLR 2020

Table 6: Comparison with state-of-the-art quantization methods on ImageNet. Top1, Top5 accu-
racy(%) and degradation of Top1 are given.

Method Model # Bits
w/a/b/α

Top1(%) Top5(%) Degradation(%)

LQ-Nets* ResNet18 Reference 70.3 89.5
(Zhang et al., 2018a) 4/4 69.3 88.8 1.0

3/3 68.2 87.9 2.1
RQ ResNet18 Reference 69.54 89.19
(Louizos et al., 2019) 8/8 69.97 89.44 -0.43

4/4 61.52 83.99 8.02
RQ+ST 8/8 69.63 89.33 -0.09
(Louizos et al., 2019) 4/4 62.46 84.78 7.08
LLSQ(ours)* ResNet18 Reference 69.76 89.08

4/4 69.84 89.14 -0.08
3/3 68.08 88.20 1.68

LLSQF(ours) ResNet18 4/4 69.40 88.72 0.36
3/3 66.67 87.42 3.09

LQ ResNet34 Reference 73.80 91.40
(Zhang et al., 2018a) 3/3 71.9 90.2 1.9
LLSQ(ours)* ResNet34 Reference 73.30 91.42

4/4 73.60 91.28 -0.30
3/3 72.02 90.66 1.28

LLSQF(ours) ResNet34 4/4 72.94 91.20 0.36
3/3 70.97 89.95 2.33

LLSQ(ours)* AlexNet Reference 56.55 79.09
4/4 56.57 79.02 -0.02

4/4/8/8 56.45 80.15 0.10
3/3 55.36 78.20 0.19

LLSQF(ours) AlexNet 4/4 56.40 78.85 0.15
4/4/8/8 55.58 77.47 0.97

3/3 54.28 77.65 2.27
RQ Mobilenet(v1) Reference 70.61 89.47
(Louizos et al., 2019) 8/8 70.43 89.42 0.18

6/6 68.02 88.00 2.59
5/5 61.38 83.73 9.23

RQ+ST Mobilenet(v1) 8/8 70.06 89.52 0.55
(Louizos et al., 2019) 6/6 67.62 87.78 2.99

5/5 56.85 80.35 13.76
LLSQ(ours)* MobileNet(v2) Reference 71.80 90.37

6/6 71.20 89.99 0.60
5/5 70.45 89.69 1.35
4/4 67.37 87.99 4.43

* First and last layers in full precision.

14

	Introduction
	Motivation
	Networks with Learned Linear Symmetric Quantization
	Overview of LLSQ
	Making Full Use of the Pre-Trained Parameters
	Low-precision Representation and Quantization Algorithm
	BN Layer Fusion of Quantized Networks
	Bias and Scaling Factor Quantization for Low-bit Integer Only Arithmetic

	Experimental Results
	Quantization of Weights and Activations
	BN Fusion and Quantization of Bias and the Scaling Factor
	Deployment onto Realistic Hardware

	Related Work
	Conclusions

