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ABSTRACT

Mutual information (MI) plays an important role in representation learning. How-
ever, MI is unfortunately intractable in continuous and high-dimensional settings.
Recent advances establish tractable and scalable MI estimators to discover useful
representation. However, most of existing methods are not capable of providing
accurate estimation of MI with low-variance when the MI is large. We argue that
estimating gradients of MI is more appealing for representation learning than di-
rectly estimating MI due to the difficulty of estimating MI. Therefore, we propose
the Mutual Information Gradient Estimator (MIGE) for representation learning
based on score estimation of implicit distributions. It exhibits a tight and smooth
gradient estimation of MI in the high-dimensional and large-MI setting. We ex-
pand the applications of MIGE in both unsupervised learning of deep represen-
tations based on InfoMax and the Information Bottleneck method. Experimental
results have indicated the remarkable performance improvement in learning useful
representation.

1 INTRODUCTION

Mutual information (MI) is an appealing metric widely used in information theory and machine
learning to quantify the amount of shared information between a pair of random variables. Specifi-
cally, given a pair of random variables x,y, the mutual information, denoted by I(x;y), is defined
as

I(x;y) = Ep(x,y)
[
log

p(x,y)

p(x)p(y)

]
, (1)

where E is the expectation over the given distribution. Since MI is invariant to invertible and smooth
transformations, it can capture non-linear statistical dependencies between variables (Kinney & At-
wal, 2014). These appealing properties make it act as a fundamental measure of true dependence.
Therefore, MI has found applications in a wide range of machine learning tasks, including feature
selection (Kwak & Choi, 2002; Fleuret, 2004; Peng et al., 2005), clustering (Müller et al., 2012;
Ver Steeg & Galstyan, 2015), and causality (Butte & Kohane, 1999). It has also been pervasively
used in science, such as biomedical sciences (Maes et al., 1997), computational biology (Krish-
naswamy et al., 2014), and computational neuroscience (Palmer et al., 2015).

Recently, there has been a revival of methods in unsupervised representation learning based on
mutual information. A seminal work is the InfoMax principle (Linsker, 1988), where given an input
instance x, the goal of the InfoMax principle is to learn a representation Eψ(x) by maximizing
the mutual information between the input and its representation. A growing set of recent works
have demonstrated promising empirical performance in unsupervised representation learning via
MI maximization (Krause et al., 2010; Hu et al., 2017; Alemi et al., 2018b; Oord et al., 2018; Hjelm
et al., 2019). Another closely related work is the the Information Bottleneck method (Tishby et al.,
2000; Alemi et al., 2017), where mutual information is used to limit the contents of representations.
Specifically, the representations are learned by extracting task-related information from the original
data while being constrained to discard parts of the data that are irrelevant to the task. Several
recent works have also suggested that by controlling the amount of information between learned
representations and the original data, one can tune desired characteristics of trained models such as
generalization error (Tishby & Zaslavsky, 2015; Vera et al., 2018), robustness (Alemi et al., 2017),
and detection of out-of-distribution data (Alemi et al., 2018a).
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Despite playing a pivotal role across a variety of domains, mutual information is notoriously in-
tractable. Exact computation is only tractable for discrete variables, or for a limited family of prob-
lems where the probability distributions are known. For more general problems, mutual information
is challenging to analytically compute or to estimate from samples. A variety of mutual information
estimators have been developed over the years, including likelihood-ratio estimators (Suzuki et al.,
2008), binning (Fraser & Swinney, 1986; Darbellay & Vajda, 1999; Shwartz-Ziv & Tishby, 2017),
k-nearest neighbors (Kozachenko & Leonenko, 1987; Kraskov et al., 2004; Pérez-Cruz, 2008; Singh
& Póczos, 2016), and kernel density estimators (Moon et al., 1995; Kwak & Choi, 2002; Kandasamy
et al., 2015). However, few of these mutual information estimators scale well with dimension and
sample size in machine learning problems (Gao et al., 2015).

In order to overcome the intractability of mutual information in the continuous and high dimensional
settings, Alemi et al. (2017) combines variational bounds of Barber & Agakov (2003) with neural
networks for the estimation. However, the tractable density for the approximate distribution is re-
quired due to variational approximation. This limits its application to general-purpose estimation,
since the underlying distributions are often unknown. Alternatively, the Mutual Information Neural
Estimation (MINE, Belghazi et al. (2018)) and the Jensen-Shannon MI estimator (JSD, Hjelm et al.
(2019)) enable differentiable and tractable estimation of MI by training a discriminator to distinguish
samples coming from the joint distribution or from the product of the marginals. In detail, MINE
employs a lower-bound to the mutual information based on the Donsker-Varadhan representation of
the KL-divergence, while JSD follows the formulation of f-GAN KL-divergence. In general these
estimates are often noisy and can lead to unstable training due to their dependence on the discrim-
inator used to estimate the bounds of mutual information. As pointed out by Poole et al. (2019),
these unnormalized critic estimates of MI exhibit high variance, and are challenging to tune for es-
timation. An alternative low-variance choice of MI estimator is Information Noise-Contrastive Esti-
mation (InfoNCE, Oord et al. (2018)). It introduces the Noise-Contrastive Estimation with flexible
critics parameterized by neural networks as a bound to approximate MI. Nonetheless, its estimation
saturates at log of the batch size and suffers from high bias. Despite their modeling power, however,
none of the estimators are capable of providing accurate estimation of MI with low variance when
the MI is large and the batch size is small (Poole et al., 2019). As supported by the theoretical find-
ings in McAllester & Statos (2018), any distribution-free high-confidence lower bound on entropy
requires a sample size exponential in the size of the bound. More discussion about the bounds of MI
and their relationship refers to Poole et al. (2019).

As discussed in the last paragraph, existing estimators first approximate MI and then use those ap-
proximations to optimize the associated parameters. In practice, we do not care about MI estimation
and only care about computing gradients of MI during optimization. For estimating MI based on
any finite number of samples, there exists an infinite number of functions, with arbitrarily diverse
gradients, that can perfectly approximate the true MI at these samples. However, these approxi-
mate functions can lead to unstable training and poor performance in optimization due to gradients
discrepancy between approximate estimation and the true MI. Estimating gradients of MI than esti-
mating MI may be better approaches for MI optimization. To this end, to the best of our knowledge,
we firstly propose the gradient estimator of MI in representation learning. In detail, we estimate
the score function of an implicit distribution, ∇x log q(x), to achieve a general-purpose gradient
estimation of MI for representation learning. In particular, to deal with high dimensional inputs,
such as text, images and videos, score function estimation via Spectral Stein Gradient Estimator
(SSGE) (Shi et al., 2018) is expensive and complex computation. We thus propose an efficient
high-dimensional score function estimator to make SSGE scalable. To this end, we derive a new
reparameterization trick for the representation distribution based on the lower-variance reparameter-
ization trick proposed by Roeder et al. (2017).

In summary, the contributions of this paper are follows:

• We propose the Mutual Information Gradient Estimator (MIGE) for representation learning
based on the score function estimation of implicit distributions. Compared with MINE
and MINE-f , MIGE provides a tighter and smoother gradient estimation of MI in a high-
dimensional and large-MI setting, as shown in Figure 1 of Section 4.

• We present a gradient estimation solution to the unsupervised representation learning based
on InfoMax. It remarkably improves the performance of deep information models.
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Figure 1: Estimation performance of MINE, MINE-f and MIGE. Top: True MI and corresponding
estimation of MINE and MINE-f . Bottom: True gradient and corresponding estimation of MINE,
MINE-f and MIGE. Our approach MIGE only appears in bottom figures since it gives gradient
estimation directly. As we observed, MIGE gives more stable, smooth and accurate results.

• We present a gradient estimator of the Information Bottleneck method with MIGE in a
continuous setting. Experimental results have indicated that our method outperforms vari-
ational bottleneck methods and MINE information bottleneck methods.

2 BACKGROUND

In this section we briefly introduce score estimation and information bottleneck.

2.1 SCORE ESTIMATION

Score estimation of implicit distributions has been widely explored in the past few years. Methods
for score estimation of implicit distributions usually follow two lines. The first line of work is to
directly estimate the score of implicit distributions, such as the sliced score matching (Song et al.,
2019). The second line of work tries to estimate the score of the logarithmic density of implicit
distributions, such as the Stein gradient estimator (Li & Turner, 2017; Shi et al., 2018).

Score matching (Hyvärinen, 2005) is a widely used method for estimating unnormalized statistical
models, which minimizes the Fisher divergence between the estimated parameterized distribution
and the implicit data distribution. However, score matching requires computing the diagonal ele-
ments of the Hessian of the logarithmic density function. It is known that the computation of the
Hessian trace is expensive (Martens et al., 2012), since it requires multiple forward and backward
propagation, proportional to the data dimension. In order to overcome this disadvantages, Song et al.
(2019) proposes the sliced score matching method for estimating scores for implicit distributions.
Compared with the original score matching and its variants, this estimator can be applied to deep
models of high-dimensional data, while remaining easy to implement in modern automatic differen-
tiation frameworks. However, in order to maximize MI between a pair of random variables, sliced
score matching requires internal loop optimization to minimize Fisher divergence.
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Stein gradient estimator (Li & Turner, 2017; Shi et al., 2018) is an alternative method of score
estimation for the logarithmic density of an implicit distribution, whose core idea is inspired by
generalized Steins identity (Gorham & Mackey, 2015; Liu & Wang, 2016) as follows:

Steins identity Let q(x) be a continuously differentiable (also called smooth) density supported
on X ⊆ Rd, and h(x) = [h1(x), h2(x), . . . , hd′(x)]

T is a smooth vector function. Further, the
boundary conditions on h is

q(x)h(x) = 0,∀x ∈ ∂X if X is compact, or lim
x→∞

q(x)h(x) = 0 if X = Rd. (2)

Under this condition, the following identity can be easily checked using integration by parts, assum-
ing mild zero boundary conditions on h,

Eq
[
h(x)∇x log q(x)T +∇xh(x)

]
= 0. (3)

Here h is called as the Stein class of q(x) if Steins identity (3) holds. Monte Carlo estimates of
expectation in Equation (3) builds the connection between ∇x log q(x) and the samples from q(x)
in Steins identity. Motivated by Steins identity, Shi et al. (2018) proposed Spectral Stein Gradient
Estimator(SSGE) for implicit distributions based on Stein’s identity and a spectral decomposition of
kernel operators where the eigenfunctions being approximated by the Nyström method. Specifically,
we denote the target gradient function to estimate by g : X → Rd : g(x) = ∇x log q(x). The ith
component of the gradient is gi(x) = ∇xi log q(x). We assume g1, . . . , gd ∈ L2(X , q). And
{ψj}j≥1 denotes an orthonormal basis of L2(X , q). So we can expand gi(x) into the following
spectral series: gi(x) =

∑∞
j=1 βijψj(x).

We can estimate the coefficients βij by Steins identity. And truncating the expansion to the first J
terms and plugging in the Nyström approximations of {ψj}j≥1, we can get the score estimator:

ĝi(x) =

J∑
j=1

β̂ijψ̂j(x), β̂ij = −
1

M

M∑
m=1

∇xi ψ̂j (xm) , (4)

where ψ̂j(x) is the Nyström approximation of ψj(x).

2.2 INFORMATION BOTTLENECK

Information Bottleneck (IB) has been widely applied to a variety of application domains, such as
classification (Tishby & Zaslavsky, 2015; Alemi et al., 2017; Chalk et al., 2016; Kolchinsky et al.,
2017), clustering (Slonim & Tishby, 2000), and coding theory and quantization (Zeitler et al., 2008;
Courtade & Wesel, 2011). IB is first introduced by Tishby et al. (1999) as a method of seeking a
representation that weighed the sufficiency for the target and the complexity of the representation.
In particular, given the input variable x and the target variable y, the goal of the IB is to learn a
representation of x (denoted by the variable z) that satisfies the following characteristics:

1) z is sufficient for the target y, that is, all information about target y contained in x should
also be contained in z. In optimization, it should be achieved by maximizing the informa-
tion between z and z.

2) z is minimal. It can be known that there are many representations satisfying the point
1). Therefore for streamlining, z is required to contain the smallest information among all
sufficient representations.

Since mutual information quantifies the dependence between two random variables, IB introduces
it to characterize the above two characteristics. The first characteristic above can be represented by
I(z;y) = I(z;x). In detail, we implement this by maximizing the I(z;y). And the second char-
acteristic above indicates that I(z;x) should be smallest among all possible representations. More
specifically, the IB applies a natural constraint to implement the second point, namely I(z,x) ≤ C
(Witsenhausen & Wyner (1975)), where c is the information constraint.

Based on the goal of IB, the objective function is written as follows:

max I(z;y), s.t. I(z;x) ≤ c. (5)
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Equivalently, by introducing a Lagrangian multiplier β, the IB method can maximize the following
objective function:

GIB = I(z;y)− βI(z;x). (6)

Further, it is generally acknowledged that I(z;y) = H(y)−H(y|z), and H(y) is constant. Hence
we can also minimize the objective function of the following form:

LIB = H(y|z) + βI(z;x), (7)

where β ≥ 0 plays a role in trading off the sufficiency and minimality. Note that the above formulas
omit the parameters for simplicity.

3 MUTUAL INFORMATION GRADIENT ESTIMATOR

As gradient estimation is a straightforward and effective method in optimization, we propose a
gradient estimator for MI based on score estimation of implicit distributions, which is called Mutual
Information Gradient estimator (MIGE). In this section, we focus on three most general cases of MI
gradient estimation for representation learning, and derive the corresponding MI gradient estimator
for these circumstances.

We outline the general setting of training an encoder to learn a representation. Let X and Z be
the domain, and Eψ : X → Z with parameters ψ denotes a continuous and (almost everywhere)
differentiable parametric function, which is usually a neural network, namely an encoder. p(x)
denotes the empirical distribution given the input data x ∈ X . we assume obtain to a representation
z = Eψ(x), which has some desirable properties for specific tasks.

Circumstance I. Given that the encoder Eψ(.) is deterministic, our goal is to estimate the gra-
dient of MI between input x and encoder output z w.r.t. encoder parameters ψ. There is a close
relationship between mutual information and entropy, which is following:

Iψ(x; z) = H(x) +Hψ(z)−Hψ(x, z), (8)

Here H(x) is data entropy and not relevant to ψ. The optimization of Iψ(x, z) with parameters ψ
can neglect the entry H(x). And we decompose the gradient of the entropy of qψ(z) and qψ(x, z)
as (see Appendix A):

∇ψH(z) = −∇ψEqψ(z)[log q(z)], ∇ψH(x, z) = −∇ψEqψ(x,z)[log q(x, z)]. (9)

Hence, we can representation the gradient of MI between input x and encoder output z w.r.t. encoder
parameters ψ as following:

∇ψIψ(x; z) = −∇ψEqψ(z)[log q(z)] +∇ψEqψ(x,z)[log q(x, z)]. (10)

However, this equation is intractable since an expectation w.r.t qψ(z) is directly not differentiable
w.r.t ψ. Roeder et al. (2017) proposed a general variant of the standard reparameterization trick
for the variational evidence lower bound, which demonstrates lower-variance. To address above
problem, we adapt this trick for MI gradient estimator in representation learning, called data repa-
rameterization trick. Specifically, we can obtain the samples from the marginal distribution of z by
pushing samples from the data empirical distribution p(x) through Eψ(.) for representation learn-
ing. Hence we can reparameterize the representations variable z ∼ qψ(z) using a differentiable
transformation:

z = Eψ(x) with x ∼ p(x), (11)

where the data empirical distribution p(x) is independent of encoder parameters ψ. This reparame-
terization can rewrite an expectation w.r.t qψ(z) and qψ(x, z) such that the Monte Carlo estimate of
the expectation is differentiable w.r.t ψ.

Relying on data reparameterization trick, we can represent the gradient of MI w.r.t. encoder param-
eters ψ in Equation 10 as follows:

∇ψIψ(x; z) = −Eq(x)[∇z log q(Eψ(x))∇ψEψ(x)]
+ Eq(x)[∇(x,z) log q(x, Eψ(x))∇ψ(x, Eψ(x))], (12)
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where the score function ∇z log qψ(Eψ(x)) can be estimated based on i.i.d. samples from an im-
plicit density qψ(Eψ(x)) (Shi et al., 2018; Song et al., 2019). The samples form the joint dis-
tribution pψ(x, z) are produced as following: we sample observations from empirical distribution
p(x); then the corresponding samples of z is obtained through Eψ(.). Hence we can also estimate
∇(x,z) log q(x, Eψ(x)) based on i.i.d. samples from pψ(x, Eψ(x)). ∇ψEψ(x) and ∇ψ(x, Eψ(x))
is directly computed with x.

Circumstance II. Assume that we encode the input to latent data space h = Cψ(x) that reflects
useful structure in the data. Next, we summarize this latent variable map into final representation,
Eψ(x) = fψ ◦ Cψ(x). The gradient estimator of MI between h and z is represent by the data
reparameterization trick as follows:

∇ψIψ(h; z) = ∇ψHψ(h) +∇ψHψ(z)−∇ψHψ(h, z) (13)
= −Eq(x)[∇z log q(Eψ(x))∇ψEψ(x)]− Eq(x)[∇h log q(Cψ(x))∇ψCψ(x)]
+ Eq(x)[∇(h,z) log q(Cψ(x), Eψ(x))∇ψ(Cψx, Eψ(x))]. (14)

Circumstance III. Consider stochastic encoder function Eψ(., ε) where ε is an auxiliary variable
with independent marginal p(ε). By utilizing data reparameterization trick and reparameterization
trick, we can represent the gradient of the conditional entropy Hψ(z|x) as following (see Appendix
A):

∇ψHψ(z|x) = −Ep(x)[Ep(ε)[∇(z|x) log q(Eψ(x, ε)|x)∇ψEψ(x, ε)]], (15)

where the term∇(z|x) log q(Eψ(x, ε)|x) can be easily estimated by score estimation.

Based on the condition entropy gradient estimation in Equation (15), the gradient estimator of MI
between input and encoder output can be represented as following:

∇ψIψ(x; z) = ∇ψHψ(z)−∇ψHψ(z|x) (16)
= −Ep(x)p(ε)[∇z[log p(Eψ(x, ε))]∇ψEψ(x, ε)]
+ Ep(x)[Ep(ε)[∇(z|x) log q(Eψ(x, ε)|x)∇ψEψ(x, ε)]]. (17)

In practical MI optimization, we can construct MIGE of the full dataset based on minibatche Monte
Carlo estimates. The bias of MIGE depends on score estimation of implicit distributions. We prefer
Spectral Stein Gradient Estimator (SSGE) for score estimation. And the error bound of SSGE is
proved in Shi et al. (2018).

Scalable Spectral Stein Gradient Estimator It is worth noting that the estimation of the
∇(x,z) log q(x, Eψ(x)) by SSGE has a large computational complexity in high dimensional input
spaces, such as text, images and videos. To alleviate this problem, we introduce random projec-
tion (RP) (Bingham & Mannila, 2001) to reduce the dimension of x. RP projects the original
d-dimensional data into a k-dimensional (k << d) subspace. Concretely, let matrix Xd×N denote
the original set of N d-dimensional data, the projection of the original data XRP

k×N is obtained by
introducing a random matrix Rk×d whose columns have unit length, as follows,

XRP
k×N = Rk×dXd×N . (18)

After the RP, original distances between two original data vectors can be approximated by scaled
Euclidean distance of these vectors in reduced spaces:

‖x1 − x2‖ ≈
√
d/k ‖Rx1 −Rx2‖ , (19)

where x1 and x2 denote the two data vectors in the original large dimensional space. It is obvious
that the computation of RP is simple. By replacing the input of the SSGE with a projection obtained
by random projection, we can derive a Scalable Spectral Stein Gradient Estimator, which is an
efficient high-dimensional score function estimator.

4 EXPERIMENTS

To demonstrate the performance on gradient estimation, we evaluate our method MIGE in both
a toy experiment and real-world tasks. In the toy experiment, we compare our method with two
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Table 1: InfoMax on CIFAR-10 and CIFAR-100. JSD and infoNCE refer to the variational lower
bound, and the PM refers to Prior Matching which is proposed by Hjelm et al. (2019)
. The result of DIM (JSD + PM) is cited from Hjelm et al. (2019).

Model CIFAR-10 CIFAR-100
conv fc(1024) Y(64) conv fc(1024) Y(64)

DIM (JSD) 55.81 45.73 40.67 28.41 22.16 16.50
DIM (JSD + PM) 52.2 52.84 43.17 24.40 18.22 15.22
DIM (infoNCE) 51.82 42.81 37.79 24.60 16.54 12.96

DIM (infoNCE + PM) 56.77 49.42 42.68 25.51 20.15 15.35
MIGE (ours) 57.95 57.09 53.75 29.86 27.91 25.84

baselines on analyzable problems and find that the gradient curve estimated by our method is far
superior to other methods in terms of smoothness and accuracy. Furthermore, we deploy MIGE
to the InfoMax principle and the Information Bottleneck respectively, namely replacing the original
mutual information estimation term with MIGE. We find that MIGE achieves higher and more stable
classification accuracy in CIFAR-10, CIFAR-100, and MNIST datasets, indicating that it has good
performance in downstream tasks. In our experiments, we use the Stein gradient estimator (Shi
et al., 2018) to estimate the score function term.

4.1 TOY EXPERIMENT

We evaluate our method MIGE in the toy experiment for the MI gradient estimation task, comparing
to two high performing baselines, including MINE (Belghazi et al., 2018) and MINE-f (Nowozin
et al., 2016; Belghazi et al., 2018). In the toy experiment, we consider two random variables x and y
(x,y ∈ Rd), coming from a 2d-dimension multivariate Gaussian distribution. The component-wise
correlation of x and y is defined as follows:

corr(xi,yi) = δijρ, ρ ∈ (−1, 1), (20)

where δij is Kronecker’s delta and ρ is correlation coefficient. Since MI is invariant to smooth
transformations of random variables x,y, we only consider standardized Gaussian for marginal
distribution p(x) and p(y). MI between random variables x,y is only relative to the correlation
coefficient ρ. The gradient of MI w.r.t ρ has the analytic solution: ∇ρI(x;y) = ρd

1−ρ2 . We apply
MINE and MINE-f to estimate MI of x,y by sampling from the correlated Gaussian distribution
and its marginal distributions, and the corresponding gradient of MI w.r.t ρ can be computed by
backpropagation implemented in frameworks PyTorch.

Fig.1 presents our experiment results in different dimensions d = {5, 10, 20}. In the case of low-
dimensional (d = 5), all the estimators give promising estimation of MI and its gradient. However,
the MI estimation of MINE and MINE-f are unstable due to its relying on a discriminator to pro-
duce estimation of the bound on MI. Hence, as showed in Fig.1, corresponding estimation of MI
and its gradient is unsmoothed. As the dimension d and the absolute value of correlation coefficient
|ρ| increase, MINE and MINE-f are apparently hard to reach the True MI, and their gradient esti-
mation of MI is thus high biased. This phenomenon would be more significant in the case of high
dimensional or large MI. Contrastively, MIGE demonstrates remarkable improvement over MINE
and MINE-f when estimating MI gradient between twenty-dimensional random variables x,y. It
provides a tighter and smoother gradient estimate of MI in a high-dimension and large-MI setting.

4.2 DEEP INFOMAX EXPERIMENT

Discovering useful representations from unlabeled data is one core problem for deep learning. Re-
cently, a growing set of methods is explored to train deep neural network encoders by maximizing
the mutual information between its input and output. A number of methods based on tractable vari-
ational lower bounds, such as JSD and infoNCE, have been proposed to improve the estimation of
MI between high dimensional input/output pairs of deep neural networks Hjelm et al. (2019) To
compare with JSD and infoNCE, we expand the application of MIGE in unsupervised learning of
deep representations based on the InfoMax principle.
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Table 2: Permutation-invariant MNIST misclassification rate. Datas except our model are cited from
Belghazi et al. (2018)

Model Misclass rate
Baseline 1.38%
Dropout 1.34%

Confidence penalty 1.36%
Label Smoothing 1.4%

DVB 1.13%
MINE-IB 1.11%

MIGE-IB (ours) 1.05%

Follow Hjelm et al. (2019), we test Deep InfoMax(DIM) on image datasets CIFAR-10 and CIFAR-
100 to evaluate our MI Gradient estimator MIGE. CIFAR-10 and CIFAR-100 each consists of
32×32 colored images, with 50,000 training images and 10,000 testing images. We adopt the same
encoder architecture used in Hjelm et al. (2019), which uses a deep convolutional GAN (DCGAN,
Radford et al. (2015)) consisting of 3 convolutional layers and 2 fully connected layer. The same em-
pirical setup is used. Follow Hjelm et al. (2019), we choose images classification as the downstream
task, then evaluate our representation in terms of the accuracy of transfer learning classification, that
is, freezing the weights of the encoder and training a small fully-connected neural network classifier
using the representation as the input.

As shown in Table 1, our proposed MIGE outperforms all the competitive models. Besides the
numerical improvements, it is notable that our model have the less accuracy decrease across layers,
whereas those methods based on variational lower bounds shrink a lot. The results indicate that,
compared to variational lower bound methods, our approach MIGE gives much more favorable
gradient direction, and demonstrates more power in controlling information flows without vast loss.
Note that our proposed gradient estimator can also be extended to the multi-view setting(i.e., with
local and global features) of DIM, it is beyond the scope of this paper.

4.3 INFORMATION BOTTLENECK

To overcome the intractability of MI in the continuous setting, Alemi et al. (2017) present a vari-
ational approximation to the information bottleneck, which adopts deep neural network encoder to
produce a conditional multivariate normal distribution, called Deep Variational Bottleneck (DVB).
Rencently, DVB is exploited to restricted the capacity of discriminators in GANs (Peng et al., 2019).
However A tractable density is required for the approximate posterior in DVB due to their reliance
on a variational approximation while MIGE does not.

Here, we demonstrate an implementation of the IB objective on permutation invariant MNIST using
MIGE. We compare MIGE-IB with DVB and MINE-IB in the case of the same model structure.
And most of the empirical setup is the same as DVB Alemi et al. (2017), but a little bit different.
In our experiment, we use initial learning rate of 104 for Adam optimizer, and exponential decay,
decaying the learning rate by a factor of 0.96 every 2 epochs. And the threshold of score function’s
Stein gradient estimator is set as 0.94. Our results can be seen in Table 2 and it manifests that our
proposed MIGE-IB outperforms DVB and MINE-IB.

5 CONCLUSION

In this paper, we present a gradient estimator, called Mutual Information Gradient Estimator
(MIGE), to avoid the various problems met in direct mutual information estimation. We manifest the
effectiveness of gradient estimation of MI over direct MI estimation by applying it in unsupervised
or supervised representation learning. Experimental results have indicated the remarkable improve-
ment over MI estimation in the Deep InfoMax method and the Information Bottleneck method.
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A APPENDIX

A.1 DERIVATION OF GRADIENT ESTIMATES FOR ENTROPY

Unconditional Entropy Given that the encoder Eψ(.) is deterministic, our goal is to optimize the
entropy H(q) = −Eq log q, where q is short for the distribution qψ(z) of the representation z w.r.t.
its parameters ψ. We can decompose the gradient of the entropy of qψ(z) as:

∇ψH(z) = −∇ψEqψ(z)[log q(z)]− Eq(z)[∇ψ log qψ(z)], (21)

The second term on the right side of the equation can be calculated:

Eq(z)[∇ψ log qψ(z)] = Eq(z)[∇ψqψ(z)×
1

q(z)
] =

∫
∇ψqψ(z)dz = ∇ψ

∫
qψ(z)dz = 0. (22)

Therefore, the gradient of the entropy of qψ(z) becomes

∇ψH(z) = −∇ψEqψ(z)[log q(z)]. (23)

Conditional Entropy Consider nondeterministic encoder function Eψ(., ε) where ε is an auxil-
iary variable with independent marginal p(ε). The distribution qψ(z|x) is determined by ε and the
encoder parameters ψ. The auxiliary variable ε introduces randomness to the encoder. First, we
decompose the gradients of Conditional Entropy as following:

∇ψH (z|x) = −∇ψ
∫
pψ(z,x) log pψ(z|x)dzdx

= −Ep(x)[∇ψ
∫
pψ(z|x) log pψ(z|x)dz]

= −Ep(x)[∇ψEpψ(z|x)[log p(z|x)] +
∫
p(z|x)∇ψ log pψ(z|x)dh]

= −Ep(x)[∇ψEpψ(z|x)[log p(z|x)] +
∫
∇ψpψ(z|x)dh]

= −Ep(x)[∇ψEpψ(z|x)[log p(z|x)]−∇ψ
∫
pψ(h,x)dhdx]

= −Ep(x)[∇ψEpψ(z|x)[log p(z|x)]]. (24)

Note that z = Eψ(x, ε), such that we can apply reparameterization trick to the gradient estimator of
conditional entropy in Equation (24),

Hψ(z|x) = −Ep(x)[Ep(ε)[∇(z|x) log q(Eψ(x, ε)|x)∇ψEψ(x, ε)]]. (25)
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