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ABSTRACT

Machine learning has shown growing success in recent years. However, current
machine learning systems are highly specialized, trained for particular problems or
domains, and typically on a single narrow dataset. Human learning, on the other
hand, is highly general and adaptable. Never-ending learning is a machine learning
paradigm that aims to bridge this gap, with the goal of encouraging researchers
to design machine learning systems that can learn to perform a wider variety of
inter-related tasks in more complex environments. To date, there is no environment
or testbed to facilitate the development and evaluation of never-ending learning
systems. To this end, we propose the Jelly Bean World testbed. The Jelly Bean
World allows experimentation over two-dimensional grid worlds which are filled
with items and in which agents can navigate. This testbed provides environments
that are sufficiently complex and where more generally intelligent algorithms ought
to perform better than current state-of-the-art reinforcement learning approaches. It
does so by producing non-stationary environments and facilitating experimentation
with multi-task, multi-agent, multi-modal, and curriculum learning settings. We
hope that this new freely-available software will prompt new research and interest
in the development and evaluation of never-ending learning systems and more
broadly, general intelligence systems.

1 INTRODUCTION

Machine learning has witnessed growing success across a multitude of applications over the past
years. However, despite these successes, current machine learning systems are each highly specialized
to solve one or a small handful of problems. They have much narrower learning capabilities as
compared to humans, often learning just a single function or model based on statistical analysis of
a single dataset. One reason for this is that current machine learning paradigms are restricted and
specialized to a particular problem and/or dataset. An alternative learning paradigm that more closely
resembles the generality, diversity, competence, and cumulative nature of human learning is never-
ending learning (Mitchell et al.l 2018). The thesis of never-ending learning is that we will never truly
understand machine learning until we can build computer programs that, like people: (i) learn many
different types of knowledge or functions, (ii) from years of diverse, mostly self-supervised experience,
(iii) in a staged curricular fashion, where previously learned knowledge enables learning further
types of knowledge, and (iv) where self-reflection and the ability to formulate new representations
and new learning tasks enable the learner to avoid stagnation and performance plateaus. Building
computer programs with these properties necessitates well-defined and robust ways to evaluate
whether a system is indeed capable of never-ending learning. However, there are currently no
ways to achieve that. There only exists one large-scale case study on never-ending learning with
the Never-Ending Language Learning (NELL) system by Mitchell et al.| (2018)), which uses the
internet as the environment with which the system interacts. While the internet does have significant
complexity, it is unwieldy to use as a testbed. It is very difficult to focus on a particular aspect of the
system or the environment, or to tweak the algorithm and restart experiments to observe the effects
of changes. Furthermore, oftentimes tasks require manual annotation which can be very expensive.
Thus, a good testbed for never-ending learning (and machine learning more generally) needs to
provide the experimenter with a high degree of control. To this end, we propose a novel evaluation
framework—the Jelly Bean World (JBW)—that can enable and facilitate research towards the goal
never-ending learning. We have designed the JBW to be highly versatile, enabling evaluation of
systems that have any number of the aforementioned abilities (e.g., multi-modal learning, multi-task
learning, and curriculum learning).
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We consider never-ending learning in the context of reinforcement learning. Let s; € S denote the
state of the environment at time ¢, a; € A denote the action performed by the learning agent at
time ¢, w; € () denote the observation of the world that the learning agent receives at time ¢, and
r+ € R denote the reward provided to the learning agent at time ¢. The distribution of the next state
of the world s; ~ T'(s;_1, a;—1) has the Markov property (i.e., it depends only on the previous state
and action) and the initial state of the world is given by a distribution sy ~ W. The observation
wy ~ O(s¢) depends only on the current state of the world (perhaps deterministically). The reward
r4 is given by a function R(s;—1,a:—1, s¢) of the current state, the previous state, and the previous
action taken. The environment is a tuple containing all these elements £ 2 (W, T, O, R). Then, the
goal of reinforcement learning is to find a learning algorithm 7 that, given the history of previous
observations, actions, and rewards, outputs the next action so that the obtained reward is maximized.
We deliberately blur the distinction between the policy and the algorithm that learns the policy, which
is why we call 7 a “learning algorithm.”

This formalism does not distinguish between learning algorithms that are highly specialized to a
single task and learning algorithms that are capable of learning a wide variety of tasks and adapting
to richer and more complex environments, which are hallmarks of general intelligence. In order
to more formally describe general intelligence, we posit that there is an underlying measure of
complexity of the environment £ such that: (i) highly specialized and non-general learning algorithms
can perform well in environments with low complexity, but (ii) environments with high complexity
require successful learning agents to possess more general learning capabilities. It is in these more
complex environments where we can characterize never-ending learning. We can formalize this
notion of complexity by letting 7* be the (computable) learning algorithm that maximizes expected
reward in an environment £. Then we define the complexity of £ to be the length of the shortest
program (Turing machine) that implements 7*:

complexity(€) = min{|7T| : T is a Turing machine that implements 7*
p y g p

complexity (&)

|
[
0
" exhibits specialized intelligence 7" exhibits more general intelligence

We can equivalently define complexity(€) = K (n*), where K () is the Kolmogorov complexity
and is related to the minimum description length and minimum message length (Nannen, 2010;
Kolmogorov, [1963). The Kolmogorov complexity of the environment K (&) is bounded below by
K (7*) minus a constant. This bound is shown in Sectionof the appendix.

In contrast to most popular reinforcement learning settings, never-ending learning focuses on envi-
ronments with high complexity. In never-ending learning, we explicitly disallow the learning agent
« from learning across multiple episodes or in multiple environments, which is closer to human
learning. We require 7 to only have access to information from a single episode. During its lifetime,
7 can only use the information provided by its past observations {w; } and actions {a;} in a single
world to learn. Thus, never-ending learning explicitly removes the distinction between training and
testing, a distinction that is common to many other classical machine learning paradigms. Addition-
ally, note that in the general reinforcement learning formalism, s; can contain information about ¢,
and the reward function R can be time-varying, thus rendering the environment non-stationary. In
never-ending learning, we are interested in the full generality of non-stationary environments. The
assumption of stationarity is not realistic in even simple adversarial and multi-agent settings. We
therefore argue that an ideal testbed for never-ending learning needs to have the following properties:

1. Non-Episodic: It should disallow agents from resetting the environment and “retrying”. The
testbed should also force them to only learn within a single environment (i.e., not transfer
information across environments). This is in contrast with most popular reinforcement learning
environments and, as we show in Section ] poses significant challenges to existing algorithms.

2. Non-Stationary: The testbed should allow for easy experimentation with non-stationary envi-
ronments, where the reward R can depend on time. Such reward functions are an easy way to
increase the complexity of the world.

3. Multi-Task: It should support settings in which reward is maximized not by learning how to
perform a single task repetitively, but by learning how to perform a general variety of tasks,
and learning how to switch between them and/or combine them to better perform other tasks
(e.g., by composing them). We posit that, at a sufficiently high level of task complexity, optimal
learning agents will be required—either explicitly or implicitly—to perform abstract reasoning
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Table 1: Existing reinforcement learning environments positioned based on our desired properties.

‘ Environment L Non-Episodic lNon-Stationaryl Multi-Task l Multi-Modal l Controllable l Efficient
X X X X X ~
Atari and Retro Games Games end The game Each game has | Agents only Modifying the Can run on
(Bellemare et al.,[2013), when the mechanics are | a single fixed observe the task complex- | small machines
{Pfau et al.|2018) player wins or stationary reward game video ity/richness is | but models are
loses function frames not possible slow to train
v X v X X ~
Continuous Control Some ta§ks are Stationary Some of the Agents only The.tasks and Efﬁcier}cy
{Duan et al.12016), non—ep]sodlc revyards and Fasks ha]ve ob;grve environments | varies widely
(Todorov et al 2012 (e.g., swimmer) | environments interesting positional are non- across tasks
2 (i.e., physics) hierarchical information configurable
structures and joint angles
X X X v v v
Evolutionary Robotics Episodic in a Stationary | Only navigation Multiple Configurable Fast 2D
{Mouret & Doncieux,[2012) finite world environments goals are different kinds using XML simulation
(i.e., physics) supported of sensors written in C++
X v X v ~ X
Adversarial Games like Games end | Non-stationary | Each game has | Agents observe | There is limited | Experiments
Go (Silver et al.}2017), when the (without asingle fixed |the game video | control over are typically
StarCraft (Vinyals et al.|2019), | player wins or | assumptions reward frames and the | things like the | extremely com-
and Dota (OpenAl,2019) loses about the function game state adversary’s putationally
adversaries) competence expensive
X ~ ~ X X ~
Levels have a Levels have Levels have Agents only | The complexity Requires
DeepMind Lab time limit different predefined observe the | of each level is | rendering of a
(Beattie et al./2016) rewards but rewards game video fixed 3D world
same physics frames
~ X 4 v X X
Malmé and MineRL Tasks have a Stationary Supports 6 | Agents observe | Modifying the Requires
{Johnson et alJ2016), pre—spe(}lﬁed rewards an_d complex tasks | the game video .task_comple)f— rendering of a
(Guss ot al J2019) tlmg I|m|t.but map generation | but also allows | frames and the |ty/r|chness is | 3D wor'Ic! and
that is typically is based on for new ones game state difficult and | slow training of
very long Perlin noise expensive large models
v v v v v v
Agents live The rewards Composable Vision and Modifying the | Experiments
Jelly Bean World “forever” in an | and the world | and dynamic scent are task complex- can run
(Proposed Environment) infinite open can both be tasks are designed to be | ity/richnessis | efficiently on
world non-stationary supported complementary very easy small machines

over concepts and make informed decisions about actions in the environment. A testbed that
supports multi-task settings provides another way to increase the complexity of the world.

4. Multi-Modal: It should support multiple data modalities that agents receive as input. These
modalities should not contain the same information, but rather be complementary to each other
so that the agents are forced to learn from diverse types of experiences. Multi-modality provides
yet another way to increase the complexity of the world.

5. Controllable: It should be easy for experimenters to modify the complexity and richness of the
learning problems in the testbed, make changes to it, and restart it (e.g., as opposed to NELL).

6. Efficient: It should run on readily available hardware and allow for quick experimentation.
Ideally, we should not have to wait for days, weeks, or months (e.g., NELL) to obtain results.

7. Reproducible: It should make it easy to reproduce results and experiments, which would
facilitate scientific research. This also requires that it allows for seamlessly saving and loading
state and for reproducing results outside the environment in which they were first obtained. The
testbed should also not require access to specialized hardware, which can be expensive.

These properties are in fact very closely related to the characteristics of “AGI Environments, Tasks,
and Agents” outlined by |Laird & Wray III| (2010) and later refined by |Adams et al.| (2012). The
proposed JBW has all of these properties. It aims to provide an easy way to create sufficiently complex
environments allowing researchers to experiment with never-ending learning, while remaining simple
enough to control the problem and enable rapid prototyping. The JBW is a two-dimensional grid
world with simple physics, but is extensible enough to admit a wide variety of complex and inter-
related tasks. We present a comparison with existing related work in Table [I] and show how the
JBW is a novel and highly versatile evaluation framework. The core of the JBW is written in C++
and we provide APIs for C, Python, and Swift. The code and all experiments are freely available
at http://anonymous.conl It is also worth noting that the JBW has already been used as
the primary testbed for the instruction of the “Deep Reinforcement Learning” and “Never-Ending
Learning” graduate courses at [anonymized].
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Advances time after all managed agents have acted, invoking modules as needed. Interface for reinforcement learning.

MAP VISION REWARD

Manages the infinite world map. Simulates the visual field of all Specifies the reward given to the agent
managed agents. for each possible state transition.

Collect[JellyBean] A Avoid[Onion]

Occlusion
E:=| - Represented REWARD SCHEDULE

as a 3D tensor. ) ’
| Specifies the reward for each time step.

Fixed / Periodic / Random

Field of View
AGENTS SCENT
Manages agents and handles their Simulates the diffusion of scent Asynchronous
interaction with the simulator. in the world. simulation
- visualizer.
2 11

Represented as a vector.

Distributed simulations are also supported using MPI.
Figure 1: Overview of the modules comprising the Jelly Bean World.

2 DESIGN

The Jelly Bean World (JBW) consists of the following main modules (illustrated in Figure m): 1)
the simulator, which comprises the central component (the other modules only interact with the
simulator), (ii) the environment, which provides a simple interface for performing reinforcement
learning experiments in the never-ending learning setting as well as utilities for evaluating never-
ending learning systems, and (iii) the visualizer, which provides the ability to visualize and debug the
behavior of learning agents. Note that the visualizer is completely asynchronous and can be attached,
reattached, and detached to and from existing simulator instances, without affecting the simulations.

2.1 SIMULATOR

The simulator manages a map and a set of agents. At a high-level, the map is an infinite two-
dimensional grid where each grid cell can contain items (e.g., jelly beans and onions) and/or agents.
Each item has a color and a scent that agents can perceive. Each agent has a direction and a position,
and can navigate the world map and collect or drop items. The action space of each agent is: to
turn, move, collect items, drop items, or do nothing. The action space is configurable and can be
constrained by the user. These constraints are described later in this section. Time in the simulator is
discrete, and all agent-map interactions are turn-based, meaning that the simulator will first wait for
all managed agents to request an action and will then simultaneously execute all actions and advance
the current time. Thus, the simulator also controls the passage of time.

Map. In order to truly support never-ending learning, we have designed the JBW map to be infinite,
meaning that it has no boundaries and agents can keep exploring it forever. To achieve this, the map
is a procedurally-generated two-dimensional grid. We simulate it by dividing it into a collection
of disjoint (P x P)-sized patches and only generating patches when an agent moves sufficiently
close to them. The map also contains items of various types which are distributed according to a
pairwise-interaction point process over the two-dimensional grid (Baddeley & Turner, 2000). More
specifically, for a collection of items I = {[, ..., I,,}, where I; = (2;,t;), x; € Z? is the position
of the it" item, t; € T is its type, and 7 is the set of all item types:

o0 xexp{ Y- 1)+ Y gl D)}, 1)
i=0 §=0

where f(I;) is the intensity of item I; and g(I;, I;) is the interaction between I; and I;, which are
provided as part of the item’s type. Since the world is subdivided into (P x P)-sized patches, the
maximum distance of interaction between items is P.

Item Types. Each item type ¢ € T defines the following configurable properties:
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— Color: Fixed-size real-valued vector specifying the item color.

Scent: Fixed-size real-valued vector specifying the item scent.
Occlusion: Occlusion of an item (relevant to the vision modality, described later in this section).
Intensity Function: Function that maps from item locations to real values.

— Interaction Functions: Collection of functions that map from pairs of item locations to real values.

The collection contains one function for each item type.

The number of item types and the properties of each is configurable by the user. The specific
parametric forms for the intensity and interaction functions that are currently supported are described
in Section[A.2]of our appendix. Note that each item type also specifies some additional properties

that are described later in this section.

Procedural Generation. When the simulator is instanti-
ated the map is empty (i.e., no patches have been gener-
ated). Whenever a new agent is added to the simulator,
a patch centered at its location is generated. In addition,
whenever an existing agent moves sufficiently close to a re-
gion where no patch exists, a new patch is generated. The
patch generation process consists of two main steps: (i)
add a new empty (P x P)-sized patch to the collection of
map patches (note that the new patch will be neighboring
at least one existing patch and that all patches are disjoint),
and (ii) fill the new patch with items. The second step is
performed by using Metropolis-Hastings (MH) (Robert
& Casellal [2010) to sample the items that the new patch
contains, from the distribution defined in Equation E} The
proposal density we use is defined as follows:

1. Addanew item I,, 11 = (1, Lm+1) With probabil-
ity 1/(2P?% - |T|) (i.e., uniform in position and type),

2. Remove an existing item I; with probability 1/2m
where m is the current number of items in the patch.

Before sampling, the patch is initialized by first randomly
selecting an existing patch and copying its items into the
new patch. This is intended to facilitate rapid mixing of
the Markov chain, and reduce the number of MH iterations.

Figure 2: Illustration of the procedural gen-
eration algorithm for the infinite world map.
The 32 x 32 patches shown in white have
already been sampled and those in gray have
been previously sampled but not fixed in or-
der to avoid boundary effects. The red line
corresponds to an example path followed by
an agent. Once the agent enters a patch that
is not fixed, then that patch is sampled, along
with its non-fixed neighboring patches in or-

Note that if we use small patches and only sample new
patches as the agents visit them, boundary effects may be

der to avoid boundary effects.

observed due to the missing neighboring patches further away from the agent. For this reason, we
actually also sample all missing neighboring patches while sampling each new patch, but we do
not finalize them (meaning that they are still considered missing and may be resampled later on, as
needed). This helps us avoid the aforementioned boundary effects during the procedural generation

process. This algorithm is illustrated in Figure 2]

Each item has a color and a scent that is specified by its type
and can be perceived by agents. The JBW thus supports two
perception modalities, vision and scent. These modalities are
complementary and agents can benefit by learning to combine
them, as we explain at the end of this section.

Vision. Each agent has a visual range property that speci-
fies how far they can see. Vision is represented as a three-
dimensional tensor, where the first two dimensions corre-
spond to the width and the height of the agent’s visual field,
and the third dimension corresponds to the color dimension-
ality. The visual field is always centered at the agent’s current
position and the color observed at each cell within the visual
field is the sum of the color vectors of all items and agents
located at that map location. Agents also have a field of view
property that specifies their field of view in radians (i.e., ™

i Scent Diffusion

§l Field-of-View Mask

Figure 3: Rendering of an agent’s per-
spective from the JBW visualizer.

radians denotes that the agent can only see the forward-facing half of the visual field, whereas 27
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denotes that the agent can see the whole visual field). The part of the visual field that is outside an
agent’s field of view is masked out and appears black to the agent. Another important aspect of vision
is that items also have an occlusion property that is specified by their type. This is used to simulate
partial or complete visual occlusion. If an item with occlusion set to 1 is in an agent’s visual field,
then the cell colors behind that item are not visible to that agent. An example is shown in Figure 3]
See Section [A.3]for details on computing the field of view mask and occlusion.

Scent. Scent is represented as a fixed-dimensional vector, where each dimension can be used to
model orthogonal/unrelated scents. Each agent and each item has a pre-specified scent vector that
is provided as part of the world configuration (similar to their colors). At each time step, agents
can perceive the scent at their current grid position. The physics of scent are described by a simple
diffusion difference equation on the world grid. We define the scent at location (z, y) at time ¢ as:

t _ t t—1 t— 1
St = ci, + AL +a(Si, S, F S S, @
~—~—~ ——
current items/agents scent previous scent neighboring cells diffused scent

where ) is the rate of decay of the scent at each location, « is the rate of diffusion of the scent from
neighboring grid cells, and C7, Efezt scent(l) + ZAeAt scent(A), where T/,  is the set

of all items at time ¢ and locatlon (z,y), and At , 18 the set of all agents at time ¢ and locatlon (z,y).
Our simulator ensures that the scent (or lack thereof) diffuses correctly, even as items are created,
collected, dropped, and destroyed. It does so by keeping track of the creation, collection, drop, and
destruction times of each item in the world. Note also that, while simulating this diffusion, we also
take into account the non-fixed patches that have been sampled in order to avoid boundary effects.

Vision-Scent Complementarity. Vision and scent are complementary. Vision has high precision,
in the sense that the agent can see the actual color of each grid cell in its visual field and can thus
relatively accurately determine what items may exist in that cell. However, it has low recall—the
agent can only see as far as its visual range allows and it has no visual information about the rest
of the map. On the other hand, scent has low precision—the scent at the current cell is a linear
combination of the scents of all items in the world and it may be very difficult to learn to interpret and
use it effectively. However, scent has high recall—the scent at the current cell contains information
about items in a much larger range. Thus, learning to use both modalities will be beneficial to agents.
In Section[d] we also provide some experimental results supporting this argument.

Constraints. The simulator enforces multiple constraints on the actions that agents are allowed
to take. We have designed the following small set of constraints with the goal of providing a
computationally efficient way to support arbitrarily complex tasks and learning problems:

— Agent Collision: This occurs when multiple agents attempt to move to the same location at the
same time. This conflict can be resolved in one of three ways: (i) allow multiple agents to occupy
the same location, (ii) first-come-first-serve (only allow the first agent who made a move request
for that location to actually move—this is the current default), or (iii) randomly choose one of the
agents and satisfy their request (ignoring the requested action of the others).

— Item Blocking Movement: Item types may specify that they block agent movement (e.g., a Wall
item type). This means that agents are not allowed to move to locations with items of that type.

— Item Collection Requirements: Item types may specify that in order to collect items of that type,
an agent has to have first collected a specified number of other items (e.g., collecting Wood may
only be allowed if the agent has first collected an Axe).

— Item Collection Costs: Similar to the collection requirements, item types may specify that in
order to collect items of that type, an agent has to drop or destroy a specified number of other
items (e.g., collecting an Axe may require destroying a piece of Metal and a piece of Wood that
the agent has previously collected).

Interface. Users interact with the simulator by first adding an agent. Users can choose to add multiple
agents to the world, thus enabling experimentation with multi-agent settings. Multi-agent interactions
provide another controllable source of complexity in the JBW. Users can then request actions for each
agent in the simulation (i.e., turn, move, do nothing, etc.). Once all agents have requested actions, the
simulator executes these actions and advances time, appropriately updating the state of the world.

Server/Client Support. The JBW also provides a TCP server-client interface where the simulator
can be setup to run as a server. Users (i.e., clients) can then connect to the server, and interact with
the simulator by sending messages to the server. This allows use cases such as a class setting where
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students can each control an agent in a common simulated world, or perhaps a hackathon where
participants can compete in a common world. It also allows debugging and visualization tools to be
attached and detached to and from running simulator instances, without affecting the simulations. In
fact, this is how our visualizer, which is described in Section[2.3} communicates with the simulator.

Persistence. Simulations in the JBW can be saved to and loaded from files, which can then be
distributed across platforms. This facilitates reproducibility. The simulator guarantees uniform
random number generation behavior across all platforms and machines (e.g., in distributed settings).
The state of the pseudorandom number generator is also saved and loaded along with the simulation.

2.2 ENVIRONMENT

Environments manage simulator instances and provide an interface for performing reinforcement
learning experiments using the JBW. We provide implementations of the JBW environments for
OpenAl Gym (Brockman et al.,|2016) in Python and for Swift RL (Platanios, [2019) in Swift. JBW
environments support batching by design, with support for parallel execution of the multiple simulator
instances being managed (i.e., one simulator for each batch entry). Perhaps the most important aspect
of JBW environments is that they require the user to specify a reward schedule to use for each
experiment. This schedule effectively defines the tasks that the agents are learning to perform. A
reward schedule provides a function that, given a simulation time, returns a reward function to use at
that time. A reward function returns a scalar reward value, given the current and previous states of
the agent and the world (e.g., the world mapﬂ We provide a simple domain-specific language (DSL)
for composing and combining multiple reward functions in arbitrary ways, to allow for the design of
composable learning tasks. This enables endless possibilities in the realms of multi-task learning,
curriculum learning, and more generally never-ending learning. Currently environments are limited
to single agent reinforcement learning settings, but we plan to support multi-agent settings in the
future (this is easy because the JBW simulator already supports multiple agents for each simulation).

2.3  VISUALIZER

systems. To this end, we have implemented a real-time visualizer using Vulkan-|in which the user can
see any part of the simulated JBW, at any scale and frame rate. The visualizer utilizes the simulator
server-client interface to visualize simulations running in different processes or on remote servers, in
a fully asynchronous manner. Rendering is multithreaded to provide a smooth and responsive user
interface. Finally, the visualizer can be attached, detached, and re-attached to existing simulation
server instances, without affecting the running simulations.

Visualization can be instrumental when developing, debugging, and evaluatinnever-ending learning

3 LEARNING TASKS

Learning tasks can be defined in terms of reward functions and reward schedules, which were
defined in Section The JBW allows researchers to easily define their own reward func-
tions and schedules, but it also provides a few primitives and ways to compose them in or-
der to effortlessly allow for quick experimentation and prototyping. In fact, all learning tasks
used in Section | were defined using these primitives. The currently supported primitives are:

[ Reward Functions ] L Reward Schedules

|

Give v to agents when they take
an action (i.e., not a no-op).

The reward function is always fixed to r, and is

Action(w] thus stationary.

Fixed[r]

Use reward function r; for the first ¢; steps,
Curriculum[{r;, ti}il ] | then r2 for t4 steps, ..., and keep using rp
after the list of reward functions is exhausted.

Give v to agents for each item of

Collect[s, v] type i that they collect.

Give v to agents each time they Use reward function r; for the first ¢; steps,
Explore([v] move further away from their Cyclical [{r;, tt,;}iR:1 ] then 75 for t5 steps, ..., and then repeat
starting position in the world map. after the list of reward functions is exhausted.
For conciseness, we omit the v argument in reward | Reward Function Compositions
functions when it is set to 1 and we also define Combined(r1,72] | Applies both 1 and 73 and
Avoid[i,v]=Collect [i, —v]. 1 AT returns the sum of their rewards.

' A simple reward function could be one that gives the agent 1 reward point for each Je11yBean it collects.
YInformation on Vulkan can be found at https: //www.khronos.org/vulkan/|
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4 EXPERIMENTS Table 2: Simulator configuration.
The goal of this section is to show how the non-episodic, icent D.'mens.'onal.'ty 3

. . . olor Dimensionality |3
non-stationary, multi-modal, and multi-task aspects of the o | patch Size S
JBW make it a challenging environment for existing ma- | | MH Sampling Iterations | 10, 000
chine learning algorithms, through a few example case Scent Decay (\) 0.4
studies. For all experiments we use the simulator con- Scent Diffusion () 0.14
figuration and item types shown in Tables 2] and [3] The Color I [0.00, 0.00, 0.00]
agent models that we use depend on which modalities are Scent M [0.00, 0.00, 0.00]
used in each specific experiment. If vision is used, then | | action Space Dﬁi:iiggard
the visual field is passed through a convolution layer with |< and TurnRight
stride 2, 3 x 3 filters, and 16 channels, and another one Visual Range 8 .
with stride 1, 2 x 2 filters, and 16 channels. The resulting Field-of View experiment-specific

tensor is ﬂatte?ned' and passed thrqugh 4 Table 3: Item types. See Section[A.2]for details on the func-
dense layer with size 51_2~ If scentis used, tional forms of the intensity and interaction functions.
then the scent vector is passed through JellyBean: Jelly beans appear close to bananas.

two dense layers: one with size 32, and  [geent B [L.64, 0.54, 0.40]
one with size 512. If both modalities are | Color W [0.82, 0.27, 0.20]
being used, the two hidden representa- |Occlusion  |0.0

tions are concatenated. Finally, the re- |Blocks Agents|False

sult is processed by a Long Short-Term | 'ntensity Songizame [1.5]
: JellyBean: Pi i seBox[10,100,0,-6
Memory (LSTM) network (Hochreiter ) ellyBean: PiccewiseBox [ !
& Schmidhub 1997 hich Interactions |Banana :PiecewiseBox[10,100,2,-100]
chmdhuber ) whic Outputs a Wall :PiecewiseBox[50,100,-100,-100]

value for the agent’s current state, along : -
. .. N . . Banana: Bananas appear close to jelly beans and away from walls.
with a distribution over actions. Learning g+ B [1.92, 1,76, 0.40]

is performed using the Proximal Policy |cojor W [0.96, 0.88, 0.20]
Optimization (PPO) algorithm; a popu- |oOcclusion 0.0
lar on-policy reinforcement learning algo- |Blocks Agents|False

rithm proposed by Schulman et al.|(2017)). |Intensity Constant [1.5]
The experiments are implemented using ) JellyBean:PiecewiseBox[10,100,2,-100]
Swift for TGHSOIFIOWE], Interactions Banana :PiecewiseBox[10,100,0,-6]
Wall :PiecewiseBox[50,100,-100,-100]
4.1 CASE STUDIES Onion: Onions appear scattered all over the world.
Scent [0.68,0.01, 0.99]
Color Il [0.68,0.01, 0.99]

For all experiments we evaluate per- -
. X Occlusion 0.0
formance using the reward rate metric, |pjocis agents |Faise
which is defined as the amount of reward | |ntensity Constant [1.5]
obtained per step, computed over a mov- |Interactions | None
ing window. The size of that window [z 11: Walls tend to be contiguous and axis-aligned.
varies per experiment and is reported to- [Scent W [0.00, 0.00, 0.00]
gether with the results. This is an appro- |Color W [0.20,0.47, 0.67]
priate metric for this task as we want to | Occlusion 1.0 in experiments with occlusion, 0.0 otherwise
measure the improvement in the ability ~|Blocks Agents | True
. . Intensity Constant [-12]
of an agent to learn (i.e., the gradient of :
. . Interactions  [wWall :Cross[20,40,8,-1000,-1000,-1]

the reward rate), while also making sure
the agent does not get stuck (i.e., the re-

dg ¢ ‘ g Wh (Le., . |Scent [0.00, 0.47,0.06]
ward rate goes to zero). enever possi- | ¢, H [0.00, 0.47. 0.06]
ble» we also r.eport the results obtalneq by Occlusion 0.1 in experiments with occlusion, 0.0 otherwise
the greedy vision-based agent described |Blocks Agents | True

Tree: Trees cluster together in irregular shapes.

in Section [A.5] of our appendix. This |Intensity Constant [2]
is a good baseline that on what an all_ Interactions Tree :PiecewiseBox[100,500,0,-0.1]
knowing vision agent could achieve (i.e., |Truffle: Truffles appear in forests and are very rare.
an approximate upper bound on perfor- |Scent I [8.40, 4.80, 2.60]
mance). Note that a perfect upper bound CO";r _ W [0.42,0.24,0.13]
cannot be obtained as that would require | 9cclusion |00
. . .. . Blocks Agents [False
solving a discrete optimization problem -
. s . .. Intensity Constant [0]
that is NP-hard, which in this case is in- Interactions | TTUEEle  fPiecewiseBox[30,1000,-0.3,-1]
feasibly computationally expensive. Tree : PiecewiseBox[4,200,2,0]

*https://www.tensorflow.org/swift|
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Case Study #1: Non-Episodic. The goal of this Collect[JellyBean]AAvoid[Onion]
case study is to show that the JBW allows for ex- -5 go3 .
perimenting with never-ending learning agents and &
to also show how current machine learning methods = 0.02

(e.g., PPO used to train an LSTM-based agent) are 4;’ ‘

failing to effectively perform never-ending learning.

For this experiment we use the fixed reward func- £ %%

tion Collect[JellyBean]A Avoid[Onion] and 2

let agents interact with the JBW for 10 million steps. & 000

0 2M  4M 6M &M 10M
Time Step
Figure 4: Non-episodic experiment result. The

Our results are shown in Figure ] The agents seem
to be learning effectively for the first 1 million steps,
but start to upderperform later on, eventually getting reward rate is computed using a 100,000-step
_StuCk and being un.able tp collect any reward. This i, dow and the shaded bands correspond to stan-
is the case for multiple different learning agents that  gard error over 20 runs. “Greedy Visual” refers
we experimented with; both using different models (o the reward rate obtained by the greedy visual
and using different learning algorithms, such as Deep  agent baseline described in Section[A.5]
Q-Networks (DQNSs) proposed by [Mnih et al.| (2013).

After connecting the visualizer to observe what happens we see that all agents either: (i) get stuck
in an area of the map that they have already explored and exhausted of jelly beans, or (ii) get stuck
constantly rotating and not moving to new grid cells at all. This indicates that the JBW is indeed
challenging for current machine learning methods when it comes to never-ending learning. Perhaps
some sort of reward shaping or curriculum learning could help the agents. However, our goal with
this paper is not to solve these hard problems but rather point them out and show how the JBW
provides a testbed with which to tackle them.

Case Study #2: Non-Stationary. The goal of this case study is to demonstrate that the JBW allows
for experimenting with non-stationary and multi-task learning problems. To this end, we perform
two experiments: (i) one using a cyclical/periodic reward function schedule where every 100,000
steps we alternate between the Collect [JellyBean] AAvoid[Onion] and Avoid[JellyBean]

ACollect [Onion] reward functions, and (ii) one testing a couple of curriculum reward schedules for
eventually learning to Collect [JellyBean] AAvoid[Onion]. The results are shown in Figure 3]
and we observe that current standard machine learning approaches are not able to efficiently alternate
between different learning problems and are effectively learning each problem from scratch whenever
they switch, eventually ending up unable to learn either one. We also observe that agents who first
learn to collect jelly beans and then switch to the full reward function are able to learn to collect jelly
beans and avoid onions faster than agents that first learn to avoid onions or face the final learning
problem directly from the beginning. Eventually all agents perform similarly, but this showcases how
the JBW enables research in curriculum learning.

Case Study #3: Multi-Modal. The goal of this case study is to: (i) show how computationally
efficient features, such as the field of view mask and visual occlusion, allow for increasing the
learning problem complexity in a controllable manner and, perhaps most importantly, (ii) show how
the perception modalities of the JBW are complementary. We thus perform three experiments. For
the first two we use the fixed reward function Collect [JellyBean] and for the last one we use
Collect [Onion]. We change the reward function in order to show how easy it is to experiment
with different tasks in the JBW. In the first experiment, we vary the field of view of the agents. The
results are shown in the left plot of Figure[§] We see that decreasing the field of view allows us to
make the learning task harder for agents, while maintaining the same computational cost for the
environment. Similarly, in the second experiment we measure the effect that visual occlusion has on
performance. The results are shown in the middle plot of Figure[6]and we observe that enabling visual
occlusion makes the learning task harder. Finally, with the third experiment our goal is to show that
vision and scent are complementary. The results are shown in the right plot of Figure[f] We see that
“vision” agents do better than “scent” agents, indicating that vision is perhaps an easier perception
modality to use in the context of this learning task. Surprisingly though, the “vision” agents also do
better than the “vision+scent” agents. This indicates a limitation of the model because, even though
scent contains useful information that vision does not, the agents seem to get confused by it and do
not seem able to use it properly. It also shows the need for better multi-modal algorithms and the
utility of the JBW in testing such algorithms. On the JBW website we also provide some simpler
environment configurations in which “vision+scent” agents are able to outperform all other agents.
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Cyclical Schedule Curriculum Schedule

Final Reward Function
Collect[JellyBean]
AAvoid[Onion]

Curriculum Length

0.08

:/u‘\ “» 0025
) Co'lle_ct[Onion] A —N ieul
S 004 PLICA ALY 5 0020 The reward function i
— Greedy Visual: 0.156 — alw t
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Figure 5: Non-stationary experiment results. The reward rate is computed using a 100,000-step window and the
shaded bands correspond to standard error over 20 runs. “Greedy Visual” refers to the reward rate obtained by
the greedy visual agent baseline described in Section@

Collect[JellyBean] Collect[Onion]

Field-of-View Visual Occlusion Vision/Scent Complementarity ‘

N 004 Greedy Visual: 0.156
)
2 003 0.09
5 0.03
= ..
& 002 0.02 0.06 — Vision+Scent © &
o crecdy I — 360" ] — Vision @
g 001 V’;fm‘l’ (X — 270°[4] 001 — Without Occlusion[ ] %03
& ane _ 5
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Figure 6: Multi-modal experiment results. The braces on top of the plots specify the reward function used
in each case. The reward rate is computed using a 100,000-step window and the shaded bands correspond to
standard error over 20 runs. “Greedy Visual” refers to the reward rate obtained by the greedy visual agent
baseline described in Section E](which, as explained in that section, is not able to handle visual occlusion).

In those cases, the item scents are configured to be orthogonal to each other (i.e., each item has a
different non-zero dimension), thus making scent much easier to process.

5 CONCLUSION AND FUTURE EXTENSIONS

We presented a new testbed designed to facilitate experimentation with never-ending learning agents,
where the complexity of the learning problems is higher than that of existing testbeds and evaluations.
In order to produce more complex environments, the JBW supports non-stationary environments,
with multiple distinct but inter-related tasks and complementary perception modalities. The JBW
also explicitly restricts learning to a single never-ending episode. It is highly configurable and
performant, and provides users with tools to easily save, load, distribute environments, and reproduce
and visualize results. We also showed how easily we can define learning tasks in the JBW, for which
current machine learning methods struggle.

The space of potential extensions to the JBW is large. Although the current intensity and interaction
functions are stationary with respect to space (i.e., they are independent of position x, y), it is not
difficult to define new non-stationary functions, in order to generate worlds with non-stationary item
distributions. The JBW supports multiple agents running asynchronously in the world, and so it would
also be interesting to experiment with multi-agent settings. However, agents currently don’t have an
easy way to communicate with each other, and so adding a mechanism for communication, perhaps
via new agent-item interactions (e.g., reading/writing note items), would be interesting. Another way
to add complexity is via items that can contain “strings” (e.g., notes) in an agent-specific language, or
even natural language. These notes could, for example, contain task specifications. Scent currently
does not interact with items in the world, meaning that it can pass through Wwall items without
any hinderance. Thus, another possible extension would be to support more complex item-scent
interactions. It would be interesting to explore interactions between items and the properties of agents
(e.g., a Telescope could extend the visual range of an agent while narrowing its field of view).
Finally, another interesting way to add complexity is to generate richer relationships between item
types, perhaps even an ontology. We look forward to continue improving the JBW, and hope that a
standardized testbed for never-ending learning will motivate research into more generally-intelligent
learning algorithms.
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A APPENDIX

A.1 COMPLEXITY BOUND

We show that K (£) must be at least K (7*) up to a constant. We can write an algorithm 7 that
enumerates all possible sequences of environment states, observations, actions, and rewards from time
t up to time T (s¢,wy, ag,r¢), ..., (S7,wr,ar,rr). Then 7 computes the action that maximizes
the expected reward E[R({rx}%_,)]. Since the images im(#) C A and im(7*) are discrete, and
limy o0 arg max,, E[R({rx}}_,)] = arg max,, E[R({r,}32,)], there is a sufficiently large finite
T such that the action computed by 7 is the same as that computed by 7*. Note that 7 relies on a
subroutine that simulates the environment £ in order to first enumerate the environment states, and
the subroutine to perform the optimization is independent of £, and so K (7) = K(&) + c for a
constant c. Since K (7*) < K (7), we have that K (&) > K(7*) — c.

A.2 INTENSITY AND INTERACTION FUNCTIONS

The JBW currently only supports a small number of implemented intensity and interaction functions
to control the distribution of items in the world. However, it is very straightforward to implement
new customized intensity and interaction functions. Let (z,y) € Z? be a position and ¢ € T be an
item type. Intensity functions are indexed by item type, and so each item type is assigned its own

intensity function: f((x,y),t) = fi(z,y). The JBW currently supports two intensity functions:
1. zero: fi(x,y) = 0.
2. constant [v]: fi(z,y) = v.
For interaction functions, let (1, y1) be the input position of the first item, ¢; be the type of the first

item, (2, y2) be the position of the second item, and ¢ be the type of the second item. Interaction
functions are indexed by pairs of item types, so each pair of item types can be given its own interaction

function: g(((w1,1),t1), (T2, 92),t2)) = Gty 1, ((x1,91), (T2, 92)). The IBW currently supports
three interaction functions:

1. zero: gtl,trz((xlayl)a (1'27?/2)) =0.

2. PiecewiseBox [U,V,u,v]:

u, if d < U,
gtl,tz((xlayl)v(‘r%yZ)): v, 1fU§d<Vvv
0, otherwise,
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where d = (21 — 22)% + (y1 — y2)%
3. Cross[U,V,u,v,a, B]:

u, ifd=0,D < U,
a,itd#0,D<U,

gthtz((‘rlayl)v(l’?va)): v, 1fd:07U<D§‘/7
B,ifd+#0,U <D<V,
0, otherwise,

where d = min{ |z, — 22|, |y1 — y=2|} and D = max{|z1 — z2|, |y1 — y2|}-

Even though this is a small set of intensity and interaction functions it can allow for creating worlds
with many interesting features (e.g., we use the Cross interaction function to create contiguous wall
segments that are axis-aligned, and the PiecewiseBox interaction function to create irregularly
shaped clusters of trees forming forests). Note that the unspecified intensity and interaction functions
in Table [3]are set to Zero by default.

A.3 FIELD OF VIEW AND VISUAL OCCLUSION

To compute the color of a cell with respect to the agent’s field of view, let the cell position be (z, y)
and consider a circle of radius % centered at (z,y). Project this circle onto the circle of radius
1 centered at the agent position. Let 6 denote this projection (an arc). Let g, be the arc on the
agent’s circle centered on a point in the current agent direction. The length of 8y, is specified by the

field-of-view parameter in the configuration. The color of cell ¢, is then computed as:

. Oroy N O
Coy = Cay - 850 O 6] 7 ‘, 3)

where ¢, , is the original color of the cell. In order to compute how much a cell at position (x, y) is
occluded, we consider a circle of radius % centered at (z,y), and project this circle onto the circle of
radius 1 centered at the agent position. Let 6 denote this projection (an arc). Each item in the agent’s
visual field is similarly projected onto the agent’s circle, each producing an arc ;. The color of the
cell ¢, ,, is then computed as:

Coy :éz’y-max{l—ZOiwi;e,O}, 4)

where é, ,, is the original color of the cell, and o, is the occlusion parameter of the i item, as
specified by the item’s type. If a cell is affected by both the field of view and visual occlusion, the
above effects are composed (both multiplicative factors are applied to the original color).

A.4 PERFORMANCE

The JBW is implemented in optimized C++, with performance being highly prioritized in both its
design and its implementation. This would allow less time and hardware resources to be spent
simulating the world and more time and resources to be allocated for the machine learning algorithms.
Additionally, the JBW is perceptually quite simple, being a two-dimensional grid world with limited
vision and scent inputs. This allows the machine learning algorithm to focus less on perceptual
information processing and more on abstract information processing, which we think is a hallmark of
never-ending learning. As a rough indication of performance, on a single core of an Intel Core i7
5820K (released in 2014) at 3.5GHz, the JBW can generate 8.56 patches per second, each of size
64 x 64 (i.e., 35,062 grid cells), using the configuration described in Section 4]

A.5 GREEDY ALGORITHM

As a benchmark and for the sake of comparison, we also implemented a simple greedy agent that
searches its visual field for cells of a particular color, and then computes the shortest path to those
cells. This algorithm makes the assumption that reward is maximized simply by collecting items of a
single color, ad infinitum. It also assumes that this color is known apriori. Additionally, it assumes
the color of obstacles (items that block agent movement or that should be avoided as part of the
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Algorithm 1: Pseudocode for the greedy vision-based algorithm.

Input: Color of rewarding items ¢, and color of obstacles c,,.

Initialize best_path = null

Function GreedyVisionPolicy (visual field w;)

shortest_path = ShortestPath(wt, Cr, cw)

if best_path = null or |shortest_path| < |best_path|
L aSSign best_path = shortest_path

if best_path = null
if the cell immediately in front of the agent has color ~c,, for any v > 0
L return MoveForward

else
L return TurnLeft or TurnRight uniformly at random

else
next_action = dequeue the next action from best_path
if best_path has no further actions

L assign best_path = null

return next_action

reward function) is known apriori, and is distinct from the color of items that provide reward. The
shortest path it computes is such that it never goes through any such obstacles.

In pseudocode shown in Algorithm ] the function shortestPath is simply Dijkstra’s algorithm on
a directed graph G where each vertex corresponds to a unique agent position and direction within its
visual field w;, and each edge corresponds to a possible action that transitions between agent states
(Dijkstra, |1959). Let ¢, be the color of items that provide reward, and ¢,, be the color of items that
block agent movement. The algorithm returns a shortest path from the agent’s current position and
direction to a cell that has a color yc, for any v > 0, while avoiding cells that have color ~yc,, for any
~ > 0 (we match any color in the direction of the vectors ¢;, ¢, in order to detect partially occluded
items). If no such path exists, ShortestPath returns null. In the case where the agent’s field of
view is limited, ShortestPath only returns paths that pass through cells within the agent’s field of
view. Also, in the experiment where the agent must additionally avoid Onion items, ShortestPath
avoids them in the same way that it avoids obstacles: it avoids cells that have color ¢, for any v > 0
where ¢, is the color of the Onion item type.

However, in environments with visual occlusion, if items with high occlusion are arranged in a line
(such as a wall), and the agent is adjacent to the wall and facing it. The portions of the wall further
from the agent will be occluded by the portion of the wall closer to the agent, and since we currently
do not distinguish between empty cells and completely occluded cells, ShortestPath will return
paths that may pass through the wall. If no other paths are returned, the agent will continuously try to
move through the wall and make no progress.
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