
Under review as a conference paper at ICLR 2020

IMPROVING NEURAL LANGUAGE GENERATION WITH
SPECTRUM CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent Transformer-based models such as Transformer-XL and BERT have
achieved huge success on various natural language processing tasks. However,
contextualized embeddings at the output layer of these powerful models tend to
degenerate and occupy an anisotropic cone in the vector space, which is called
the representation degeneration problem. In this paper, we propose a novel spec-
trum control approach to address this degeneration problem. The core idea of our
method is to directly guide the spectra training of the output embedding matrix
with a slow-decaying singular value prior distribution through a reparameteriza-
tion framework. We show that our proposed method encourages isotropy of the
learned word representations while maintains the modeling power of these con-
textual neural models. We further provide a theoretical analysis and insight on the
benefit of modeling singular value distribution. We demonstrate that our spectrum
control method outperforms the state-of-the-art Transformer-XL modeling for lan-
guage model, and various Transformer-based models for machine translation, on
common benchmark datasets for these tasks.

1 INTRODUCTION

Neural language generation (NLG) is an important task with many practical applications, such as
automatic speech recognition (Graves et al., 2013; Toshniwal et al., 2018), text generation (Bowman
et al., 2016; Radford et al., 2019; Keskar et al., 2019), machine translation (Bahdanau et al., 2015;
Vaswani et al., 2017) and dialog systems (Gao et al., 2019a; Tang et al., 2019). Most NLG models
utilize a complex encoding model to map a given context into a hidden state vector, and then predict
the next word distribution by multiplying the encoded vector with the output embedding layer, fol-
lowed by a softmax layer. In the past few years, it has witnessed a significant progress in NLG by
improving the encoding model, from the recurrent neural network (RNN) (Bahdanau et al., 2015;
Jozefowicz et al., 2016; Merity et al., 2018a) based models to the current Transformer-based models
(Vaswani et al., 2017; Devlin et al., 2019; Dai et al., 2019; Radford et al., 2019). However, em-
beddings in the softmax output layer have been shown not capable enough to model the conditional
probability (Yang et al., 2018).
Recently, Gao et al. (2019b) pointed out another limitation of the output embeddings: the repre-
sentation degeneration problem. They showed that the singular value distribution of the output
embedding matrix tends to decay very fast, and the embedding space is squeezed into a narrow
cone (as shown in Figure 1(a) and 1(c) in 2-D plots). Such anisotropic shape (Ethayarajh, 2019) is
very different from what one would expect from an expressive word embedding space (Arora et al.,
2016a; Mu & Viswanath, 2018). Therefore, several efforts (Gao et al., 2019b; Wang et al., 2019a)
have been made to address the degeneration problem.
Unlike previous approaches that applied implicit regularization to singular values of the output em-
bedding matrix, we propose a novel spectrum control (SC) approach to explicitly control the singular
value distribution: we first reparameterize the output embedding matrix W by its singular value de-
composition (SVD): W = UΣV>, where U,V are column orthonormal matrices, and Σ is a
diagonal matrix of singular values. Then we guide the training of Σ by a predefined slow-decaying
prior distribution, such as a polynomial decay distribution, or an exponential decay distribution. At
the end of training, the distribution of singular values of the embedding matrix gets close to the
prior distribution. Our spectrum control approach alleviates the representation degeneration prob-
lem by encouraging the diversity of word representations and improving isotropic property of these
representations (see Figure 2), even on top of the powerful Transformer-based models.

1

Under review as a conference paper at ICLR 2020

(a) Transformer-XL
0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0 Transformer-XL

(b) Singular Values
0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3

(c) Transformer
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0 NMT

(d) Singular Values

Figure 1: Projected word embeddings1and singular value distributions. (a) and (c): 2-D visualiza-
tion of word embedding matrices of Transformer-XL for language modeling and Transformer for
machine translation; (b) and (d): Normalized singular value distributions of embedding matrices.

(a) Transformer-XL+SC
0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0 Transformer-XL+SC

(b) Singular Values
0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(c) Transformer+SC
0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0 NMT+SC

(d) Singular Values

Figure 2: Projected word embeddings and singular value distributions using our spectrum control
method. (a) and (c): 2-D visualization of word embedding matrices of Transformer-XL for lan-
guage modeling and Transformer for machine translation; (b) and (d): Normalized singular value
distributions of embedding matrices.

We further present a theoretical analysis to justify our method. The results suggest that it is benefi-
cial to directly guide the singular value distribution of the embedding matrix throughout the training
process and control the decay rate of these singular values. We demonstrate the effectiveness of our
training framework with extensive experimental results on two tasks: language modeling and ma-
chine translation. Our spectrum control method outperforms the latest state-of-the-art Transformer-
XL model on WikiText-103 dataset for language modeling; and obtains close to 1.5 BLEU improve-
ment on IWSLT 2014 German-English translation task compared to the Transformer baseline model.

2 RELATED WORK

In this paper, we mainly focus on the output embedding matrix that is used in the softmax output
layer for language generation tasks. This embedding matrix is also used as input word embeddings,
which is known as weight tying trick. The weight tying not only reduces the number of parameters
but also enjoys theoretical benefits (Inan et al., 2017). Thus the weight tying has been successfully
applied to many state-of-the-art models for language modeling and machine translation (Merity
et al., 2018a; Vaswani et al., 2017; Yang et al., 2018).
However, there are certain issues with the softmax output layer. Yang et al. (2018) first identified a
problem called “softmax bottleneck” that the softmax output layer does not have enough capacity
to model natural language due to its connection with the rank bottleneck in matrix factorization.
A simple and effective method called Mixture of Softmaxes (MoS) was proposed to deal with this
issue. Follow-up work in Kanai et al. (2018); Ganea et al. (2019) tried to replace softmax with al-
ternative activation functions. Kanai et al. (2018) proposed to use sigsoftmax, which is composed
of a multiplication of an exponential function and sigmoid function. Ganea et al. (2019) proposed
a Linear-Monotonic-Softmax (LMS) model that generalized the approach in Kanai et al. (2018)
by learning parametric point-wise increasing functions to optimally distort the logits before feed-
ing them into the softmax layer. Pappas & Henderson (2019) instead resorted to a powerful deep
residual nonlinear output mapping while using a single softmax function without modifying its di-
mensionality or rank.
Another line of work focuses on increasing the expressive power of the output embedding matrix
by adding a cosine similarity regularization term (Gao et al., 2019b), or adversarial noise (Wang
et al., 2019a). Gao et al. (2019b) analyzed the representation degeneration problem that the out-

1Note that we project the original word embeddings to a 2 dimensional vector space using principal com-
ponent analysis (PCA) for the purpose of visualization.

2

Under review as a conference paper at ICLR 2020

put embeddings tend to degenerate and be distributed into a narrow cone. A regularization term
based on the summation of pairwise cosine similarity among all words was proposed to increase
the representation power of word embeddings. Wang et al. (2019a) pointed out the computation of
regularization term in (Gao et al., 2019b) depends on the size of the vocabulary and hence is costly.
Instead, they proposed a simple yet highly effective adversarial training method that adds adver-
sarial noises to the output embedding layer when training the models. They proved in theory that
this adversarial training increases the distances between two different words, and thus encourages
the diversity of the embedding vectors. Our work follows this line of thought, but takes a different
approach: inspired by the spectrum control that encourages slow singular value decay in Generative
Adversarial Network (GAN) training (Jiang et al., 2019), we propose a novel method that directly
guides the singular values by a slow-decaying prior distribution during the model training process.
We show that the anisotropic behavior of the contextualized word representations from powerful
Transformer-based models (Ethayarajh, 2019) are alleviated by our spectrum control approach.

3 PROBLEM SETUP

In this section, we briefly introduce the neural models for language generation, and illustrate the sin-
gular value decay phenomena of existing neural language models. We first introduce some notations
used in the rest of the paper.
Notation: For a d-dimensional vector x ∈ Rd, we use ‖x‖q = (

∑d
i=1 |xi|q)1/q , where 0 < q <∞

to denote its `q-norm, and ‖x‖∞ = maxi |xi| to be its infinity norm. For a matrix A ∈ Rd1×d2 , let
Ai∗ be the i-th row of A, and we use ‖A‖2, ‖A‖F , ‖A‖1 to denote its spectral norm, Frobenius
norm, and matrix 1-norm. Given two sequences {an} and {bn}, if there exists a constant 0 < C <

∞ such that an ≤ Cbn, we write an = O(bn), and we use Õ(·) to hide the logarithmic factors.

3.1 NEURAL LANGUAGE GENERATION

We first briefly review the softmax output layer typically used in neural language generation models.
We define the joint probability of a given length-n sentence of words (tokens) sn = (y1, . . . ,yn) as
the following product of conditional probabilities

P(sn) =

n∏
t=1

P(yt|ct), (3.1)

where yt ∈ V is the t-th word in sentence sn, and V represents the word vocabulary, ct = y1:t−1 =
(y1, . . . ,yt−1) is referred to as the context of word yt. In addition, the context ct is usually modeled
by a fixed size vector ht ∈ Rd, which is referred to as the hidden state, using some neural networks
such as LSTM (Hochreiter & Schmidhuber, 1997) and Transformer (Vaswani et al., 2017). Then,
the probability distribution of the output word yt given the context ct, i.e., P(yt|ct) in (3.1), is
parameterized as the following softmax function:

P(Yt = yt|ct) = P(Yt = yt|ht) =
exp(h>t WI(yt)∗)∑N
i=1 exp(h>t Wi∗)

, (3.2)

where W ∈ RN×d is the weight matrix and is usually tied with the input word embedding matrix
(Press & Wolf, 2017; Inan et al., 2017), N = |V| is the vocabulary size, d is the embedding dimen-
sion, I(yt) represents the index of word yt in vocabulary V . In the following discussion, we call
output weight matrix W as the word embedding matrix of the neural language model since it is tied
with the input word embedding matrix.
In this paper we focus on the output layer of the neural model for language generation, i.e., the
softmax layer in (3.2), as in (Yang et al., 2018; Kanai et al., 2018; Ganea et al., 2019; Gao et al.,
2019b). We will examine the singular value distribution of W and propose a different approach to
increase the expressive power of the word embedding.

3.2 FAST SINGULAR VALUE DECAY

As we mentioned before, the singular values of W tend to drop very fast and it may interact with
the cone-shaped embedding space. More specifically, Figure 1(b) and 1(d) illustrate the distributions
of the normalized singular values of the Transformer-XL based language model2 (Dai et al., 2019)

2The plots are based on the small Transformer-XL model and Transformer-Base model, the detailed model
configuration can be found in experimental setups.

3

Under review as a conference paper at ICLR 2020

and the Transformer-based machine translation model (Vaswani et al., 2017) trained on WikiText-
103 (Merity et al., 2018a) and IWSLT 2014 De-En (Cettolo et al., 2014) datasets, respectively. The
plots show a fast singular value decay phenomenon, i.e., there is a huge drop between the first and
remaining singular values. Such a phenomenon has also been observed in some previous work (Gao
et al., 2019b; Wang et al., 2019a).
Figure 1(a) and 1(c) present the distributions of the projected word embeddings of the aforemen-
tioned two models. We can see from the plots that the projected word embeddings are distributed
into some narrow cone shapes, which implies an anisotropic property of the learned word represen-
tations, i.e., the embedding vectors are not uniformly distributed in the space. The detailed analysis
in Ethayarajh (2019) also confirms that contextualized word embeddings learnt from ELMo (Peters
et al., 2018) (LSTM-based model), BERT and GPT-2 (Devlin et al., 2019; Radford et al., 2019)
(Transformer-based models) indeed tend to be anisotropic.
These contextualized word embeddings have shown great success on many NLP tasks. However,
static word embeddings, such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) have been shown (Arora et al., 2016b; Mu & Viswanath, 2018) to be isotropic with great
expressive power. Hence it may be also beneficial to increase the expressive power of the contex-
tualized word embedding by increasing its isotropy. This motivates us to alleviate the fast singular
value decay phenomenon to increase the isotropy of the learned word representations.

4 PROPOSED METHOD

To alleviate the fast singular value decay phenomenon, we propose to guide the singular value
distribution of the contextualized word embedding throughout the training. As a result, we can
achieve a trade-off between modeling contextual information, that tends to make word representa-
tions anisotropic, and the expressive power of word representations, that tends to be isotropic.

4.1 SVD REPARAMETERIZATION

We propose to apply singular value decomposition (SVD) based reparameterization to the embed-
ding matrix W, i.e., W = UΣV>, where U ∈ RN×d,V ∈ Rd×d are column orthonormal
matrices, and Σ ∈ Rd×d is a diagonal matrix with Σkk = σk being the k-th largest singular value of
W. The motivation behind this reparameterization is to control the singular values of the embedding
matrix W by explicitly constraining the matrix Σ. Therefore, the conditional distribution in (3.2)
can be rewritten as follows:

P(Yt = yt|y<t) =
exp

(
h>t (UΣV>)I(yt)∗

)∑N
i=1 exp

(
h>t (UΣV>)i∗

) subject to U>U = I,V>V = I,Σ ∈ P, (4.1)

where P is a feasible set to represent the singular value distribution of the embedding matrix W.
To ensure the orthogonal constraints in (4.1), we propose to use the orthogonal regularization for
U,V during the training process. In particular, we use the following regularization, which is a
linear combination of Frobenius norm and spectral norm errors: λ1‖U>U − I‖2F + λ2‖V>V −
I‖2F + λ3‖U>U− I‖22 + λ4‖V>V − I‖22, where {λi}4i=1 are positive regularization parameters.

4.2 SPECTRUM CONTROL

Recall the SVD of W = UΣV>, and we consider the following two types of the singular value
distribution for Σ, which is inspired by the eigenvalue distribution of kernel methods (Wei et al.,
2017; Pacchiano et al., 2019):

• Exponential decay: we say the singular values {σk}dk=1 of W satisfy the exponential de-
cay if W ∈ Pe(γ) = {W ∈ RN×d | σk ≤ c1 exp(−c2kγ), k = 1, . . . , d, γ > 0, c1, c2 >
0 are universal constants}.

• Polynomial decay: we say the singular values {σk}dk=1 of W satisfy the polynomial decay if
W ∈ Pp(γ) = {W ∈ RN×d | σk ≤ c1k−γ , k = 1, . . . , d, γ > 0, c1 > 0 is a universal constant}.

For Pe(γ) and Pp(γ), the parameter γ controls the rate of singular value decay: the larger γ
is, the faster singular value decay will be. To ensure the learned word embedding matrix W
have the desired singular value distributions, we propose to add the following regularizations to
our training objective: Re(Σ) = λe

∑d
k=1

(
σk − c1 exp(−c2kγ)

)2
for exponential decay and

4

Under review as a conference paper at ICLR 2020

Rp(Σ) = λp
∑d
k=1

(
σk − c1k

−γ)2 for polynomial decay, where λe, λp are positive regulariza-
tion parameters.

4.3 THEORETICAL ANALYSIS

In this subsection, we show some theoretical insights on why our proposed method can improve the
performance of the NLG model. In particular, we follow the similar setup as considered in (Gao
et al., 2019b), i.e., focusing on the optimization of the embedding matrix W ∈ RN×d and assume
all the other parameters are fixed and well-optimized. Therefore, according to the output layer
in (3.2), we consider the following empirical risk minimization problem: given a training dataset
S = {(hi, yi)}ni=1 with each example drawn i.i.d. from some unknown but fixed distribution D,
and hi ∈ Rd as a hidden state, yi ∈ {1, . . . , N} as its associated label, our goal is to minimize the
training loss as follows:

min
W∈RN×d

LS(W) =
1

n

n∑
i=1

`
(
h>i W, yi

)
, (4.2)

where `
(
h>i W, yi

)
is the cross-entropy loss with respect to h>i W and yi. The cross-entropy loss

defined above is widely used to train NLG models, and is also used to compute the perplexity of the
trained model, which is the benchmark criterion to evaluate the performance of language models.
In addition, we define the expected loss as followsLD(W) = E[`

(
h>W, y

)
], where the expectation

is taken over the distribution D of the training data.

Let Ŵ = arg minW∈P(γ) LS(W), where P(γ) = Pe(γ) for exponential decay and P(γ) = Pp(γ)

for polynomial decay. We assume the right singular vector matrix satisfies ‖V‖1 ≤ V for all
W ∈ P(γ) . Now, we are ready to provide the main theory of our method (The proof can be found
in Appendix A).
Theorem 4.1. Under previously stated conditions, suppose that |`(·)| ≤ B, ` is G-Lipschitz con-
tinuous, and ‖hi‖∞ ≤ H for all i = 1, . . . , n. If we choose γ > 1/2, then with probability at least
1− δ, we have

LD(Ŵ) ≤ min
W∈P(γ)

LS(W) +
C1AN

(√∑m−1
j=1 σ2

j +
√
m1−2γ/(2γ − 1)

)
+ C2B

√
log(1/δ)

√
n

,

(4.3)
where C1, C2 are absolute constants, m ∈ [2, d], A = GVH

√
log d.

Remark 4.2. According to Theorem 4.1, the expected loss of the learned embedding matrix Ŵ
consists of two terms. The first term represents the training loss, the second term is the generalization
error gap. Specifically, the smaller the γ, the larger the feasible setP(γ), thus the smaller the training
loss minW∈P(γ) LS(W). On the other hand, the larger the γ, the faster the singular value decays,
and the smaller the generalization error gap. Therefore, our generalization error bound demonstrates
an appealing property of our proposed method: by directly controlling the singular value distribution
of the learned word embedding, we are able to achieve a trade-off between the training loss and
generalization error.
Remark 4.3. For the generalization error bound in (4.3), penalizing the largest singular value could
reduce this upper bound. It validates the method proposed in Gao et al. (2019b), which implicitly
penalizes the largest singular value (c.f. Section 5 in Gao et al. (2019b)). Compared with their
method, the error term Õ

(
N
√
m1−2γ/(2γ − 1)/

√
n
)

suggests that by explicitly manipulating the
singular value distribution, our method has a better control of the tail sum of the singular values.

5 EXPERIMENTS

We demonstrate the effectiveness of our proposed spectrum control algorithm on two tasks: language
modeling and machine translation. We compare our results with the state-of-the-art models. In our
experiments, we try both exponential and polynomial singular value decays, and present the one
with the better result.

5.1 LANGUAGE MODELING

Datasets We consider two benchmark datasets for language modeling: WikiText-2 and WikiText-
103, which consist of pre-processed Wikipedia articles and were introduced by Merity et al. (2018a).

5

Under review as a conference paper at ICLR 2020

WikiText-2 is a small dataset with around 2 million words and 30K vocabulary size, while WikiText-
103 is a significantly large dataset with around 103 million words and 260K vocabulary size.

Model Configuration On the small WikiText-2 dataset, we implement our method based on the
state-of-the-art AWD-LSTM model (Merity et al., 2018a). It is a 3-layer LSTM model with 1150
dimensional hidden states and 400 dimensional embeddings. We also follow the same regulariza-
tion and optimization procedures introduced in (Merity et al., 2018a). The implementation of our
method is based on the open-source code3 for AWD-LSTM. On the large WikiText-103 dataset, we
implement our method based on the state-of-the-art Transformer-XL based models (Dai et al., 2019).
We follow the same settings reported in (Dai et al., 2019), and our implementation is based on the
official code4 for Transformer-XL. To evaluate the performance of our method more thoroughly,
we consider two Transformer-XL models with different number of layers. The first is the standard
Transformer-XL model with 16 layers used in (Dai et al., 2019). For the second, we consider a
smaller Transformer-XL model with just 4 layers and other configurations unchanged.

Parameters For the parameters {λi}4i=1 of the orthogonal regularizations, we tune them by grid
search over {0.01, 0.1, 1, 10}. For the parameters λe, λp of the spectrum control, we tune them over
the grid {0.1, 1, 10, 100}. We try different singular value distributions, and the best distributions for
AWD-LSTM and Transformer-XL are exponential and polynomial, respectively.

Results of the LSTM Model on WikiText-2 We first present the results of language modeling on
the small dataset WikiText-2 using LSTM models. In Table 1 we compare the validation/test perplex-
ity5 of the baseline AWD-LSTM model (Merity et al., 2018a), the cosine similarity regularization
(MLE-CosReg) model (Gao et al., 2019b), and the models trained using our method under three
different settings (Merity et al., 2018a): without finetune, with finetune and with further continu-
ous cache pointer. Compared with the baselines, our method achieves 2.3/2.9/2.3 test perplexity
reduction under all three settings; compared with the MLE-CosReg method, our method achieves
1.5/1.2/0.3 test perplexity reduction under all three settings.

Results of the Transformer-XL Model on WikiText-103 We next show the results of language
modeling on the large dataset WikiText-103 using Transformer-XL models. Table 2 compares the
validation/test perplexity of Transformer-XL based models (Dai et al., 2019) and the models trained
by our method on WikiText-103 dataset. The results demonstrate that our method consistently
improves upon the small Transformer-XL model (0.9 test perplexity reduction) and the standard
Transformer-XL model (0.8 test perplexity reduction).

Analysis We study the output embedding matrix of Transformer-XL trained on WikiText-103 using
our method. In particular, we want to evaluate the isotropy of the learned word representations. We
consider the partition function Z(a) =

∑N
i=1 exp(〈wi,a〉) introduced in (Arora et al., 2016b),

where wi is the i-th row of the embedding matrix W ∈ RN×d and a ∈ Sd−1 is a unit vector.
According to Lemma 2.1 in (Arora et al., 2016b), if the word representation vectors are isotropic,
Z(a) is close to some constant with high probability for all unit vectors. Thus to empirically measure
the isotropy of the learned word representations, we consider two criteria based on Z(a):

I1(W) =
mina∈E Z(a)

maxa∈E Z(a)
and I2(W) =

√∑
a∈E(Z(a)− Z̄(a))2

|E|Z̄(a)2
,

where E is the set of eigenvectors of W>W, as suggested by Mu & Viswanath (2018). We also
propose to check sampled standard deviation measure I2(W) (normalized by its average, i.e., Z̄(a)).
We have I1(W) ∈ [0, 1] and I2(W) ≥ 0. Larger I1(W) and smaller I2(W) indicate more isotropic
for word embeddings. We uniformly sample 40K words from the vocabulary (around 260K) of
WikiText-103 to compute these two criteria. The left half of Table 3 summarizes the values of
I1(W) and I2(W), which are averaged over 10 runs, for the baseline method and our method. We
can see from the results that our method significantly improves the isotropy of the learned word
representations in terms of both criteria.

3https://github.com/salesforce/awd-lstm-lm
4https://github.com/kimiyoung/transformer-xl
5Lower perplexity means better language models.

6

Under review as a conference paper at ICLR 2020

Table 1: Comparison of different methods in terms of perplexity on WikiText-2 dataset for the task
of language modeling.

Method Parameters Validation Test
Existing results
Variational LSTM (Inan et al., 2017) 51M 91.5 87.0
2-layer skip connection LSTM (Mandt et al., 2017) 24M 69.1 65.9
w/o finetune
AWD-LSTM (Merity et al., 2018a) 33M 69.1 66.0
MLE-CosReg (Gao et al., 2019b) 33M 68.2 65.2
Ours 33M 66.3 63.7
+ finetune
AWD-LSTM (Merity et al., 2018a) 33M 68.6 65.8
MLE-CosReg (Gao et al., 2019b) 33M 67.1 64.1
Ours 33M 65.3 62.9
+ continuous cache pointer
AWD-LSTM (Merity et al., 2018a) 33M 53.8 52.0
MLE-CosReg (Gao et al., 2019b) 33M 51.7 50.0
Ours 33M 51.1 49.7

Table 2: Comparison of different methods in terms of perplexity on WikiText-103 dataset for the task
of language modeling.

Method Parameters Validation Test
Existing results
4 layer QRNN (Merity et al., 2018b) 151M 32.0 33.0
Hebbian + Cache (Rae et al., 2018) − 29.7 29.9
Small Transformer-XL (Dai et al., 2019) 120M 29.6 30.4
Ours 120M 29.0 29.5
Standard Transformer-XL (Dai et al., 2019) 151M 23.1 24.0
Ours 151M 22.9 23.2

5.2 MACHINE TRANSLATION

We also apply our spectrum control method to machine translation tasks. Given a source sentence
s, the decoder of an neural machine translation (NMT) model is to predict the next word in the
target sentence t and the previous decoded words in t. In the following we use the state-of-the-art
Transformer-based NMT model as our baseline.

Datasets We compare various NMT models on the IWSLT 2014 German→English (De-En)
dataset (Cettolo et al., 2014). We follow the same setup as in (Gehring et al., 2017). More specifi-
cally, we have 160K sentence pairs as the training data, 7K sentence pairs as the validation data, and
we combine tst2010, tst2011, tst2012, dev2010 and dev2012 datasets to form our test data.

Model Configuration We implement our method on top of Transformer model (Vaswani et al.,
2017). In particular, we consider the Transformer-Base architecture (Vaswani et al., 2017), which
has a 6-layer encoder and 6-layer decoder with 512 dimensional hidden states and embeddings,
except that we choose the dimension of the inner feed-forward layer as 1024 instead of 2048 and
the number of attention heads is set to be 4 rather than 8. Our implementation is based on the open-
sourced code6 provided by Ott et al. (2018). We follow the same procedures as in the language
modeling task to choose the regularization parameters. In addition, the best results for this task are
from the models where the singular values are controlled by exponential distribution.

Results Comparisons of different methods in terms of BLEU scores are summarized in Table 4.
Compared with the baseline models, our method improves the BLEU score7 from 34.01 to 35.50 on

6https://github.com/pytorch/fairseq
7Higher BLEU score represents higher quality of the machine translation.

7

Under review as a conference paper at ICLR 2020

Table 3: Comparison of different methods in terms of isotropy for the tasks of language modeling
and machine translation. (For perfect isotropy, I1(W) = 1, I2(W) = 0.)

Language Modeling Machine Translation

Method I1(W) I2(W) Method I1(W) I2(W)

Standard Transformer-XL 0.24 0.037 Transformer-Base 0.31 0.031
Ours 0.63 0.022 Ours 0.88 0.005

Table 4: Comparison of different methods in terms of BLEU scores on the task of De→En machine
translation, trained on IWSLT 2014 dataset.

IWSLT 2014 De→En
Method

Adversarial
(Wang et al., 2019a)

Dual-learning
(Wang et al., 2019b)

Transformer-Base
(Wang et al., 2019b) Ours

BLEU 35.18 35.44 34.01 35.50

the German→English task, close to 1.5 gain on BLEU score; our method is also better than 35.18
reported in (Wang et al., 2019a), and 35.44 reported in (Wang et al., 2019b).

Analysis We also study the learned word embedding matrix of the Transformer trained on IWSLT
2014 De-En using our method in terms of isotropy. The values of I1(W) and I2(W) are reported
in the right half of Table 3, we compute these two values based on all the tokens. It shows that
the isotropy of the learned word representations using our method increases significantly in terms
of these criteria, from very anisotropic to nearly isotropic. We also demonstrate the projected word
embedding matrices and the singular value distributions of different methods in Figure 3. The plots
show that the learned word representations from our method are distributed isotropically in the
space, which is in contrast to the narrow cone distribution from the baseline method.

0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3

(a) Transformer for NMT
0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(b) Transformer for NMT+SC
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0 Transformer-NMT
Transformer-NMT+SC

(c) Singular Value Decay

Figure 3: (a) Word embedding for the vanilla Transformer, which has a narrow cone distribution;
(b) Word embedding for Transformer using spectrum control, which has a uniform distribution; (c)
Normalized singular value for different methods, which shows a slow decay of our method.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we tackle the degeneration problem that occurs at the output embeddings in the soft-
max layer used in neural language generation models. We develop a novel spectrum control method
to explicitly guide the spectra training of the output embedding matrix with some slow-decaying
singular value prior distributions. Our proposed method is shown to alleviate the degeneration
problem and improve isotropy of the learned contextualized word representations. Thorough ex-
perimental results demonstrate the advantage of our method over the state-of-the-art neural models
for language model and machine translation. Since our work is orthogonal to Wang et al. (2019a), it
would be interesting to combine the adversarial softmax training with our spectrum control method,
and investigate its performance. For the future work, we would also like to investigate how the
frequency-agnostic word representations in (Gong et al., 2018) relate to the single value distribution
of the output embedding matrix.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. NeurIPS, 2019.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. TACL, 4:385–399, 2016a.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. TACL, 4:385–399, 2016b.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICML, 2015.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. JMLR, 2002.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating sentences from a continuous space. In Proceedings of the Twentieth Conference
on Computational Natural Language Learning, 2016.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In SLT, 2014.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. ACL,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geom-
etry of bert, elmo, and gpt-2 embeddings. EMNLP, 2019.

Octavian-Eugen Ganea, Sylvain Gelly, Gary Bécigneul, and Aliaksei Severyn. Breaking the softmax
bottleneck via learnable monotonic pointwise non-linearities. ICML, 2019.

Jianfeng Gao, Michel Galley, Lihong Li, et al. Neural approaches to conversational ai. Foundations
and Trends R© in Information Retrieval, 13(2-3):127–298, 2019a.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration
problem in training natural language generation models. In ICLR, 2019b.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In ICML, pp. 1243–1252, 2017.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: frequency-agnostic
word representation. In NIPS, 2018.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks.
In ICASSP, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In ICLR, 2017.

Haoming Jiang, Zhehui Chen, Minshuo Chen, Feng Liu, Dingding Wang, and Tuo Zhao. On com-
putation and generalization of generative adversarial networks under spectrum control. In ICLR,
2019.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

9

Under review as a conference paper at ICLR 2020

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and Shuichi Adachi. Sigsoftmax: Reanalysis
of the softmax bottleneck. In NIPS, 2018.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl:
A conditional transformer language model for controllable generation. arXiv:1909.05858, 2019.

Percy Liang. Cs229t/stat231: Statistical learning theory (winter 2016), 2014.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
bayesian inference. JMLR, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In ICLR, 2018a.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling
at multiple scales. arXiv preprint arXiv:1803.08240, 2018b.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Jiaqi Mu and Pramod Viswanath. All-but-the-top: Simple and effective postprocessing for word
representations. In ICLR, 2018.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
In Proceedings of the Third Conference on Machine Translation, 2018.

Aldo Pacchiano, Niladri S Chatterji, and Peter L Bartlett. Online learning with kernel losses. ICML,
2019.

Nikolaos Pappas and James Henderson. Deep residual output layers for neural language generation.
In ICML, 2019.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL, 2018.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In EACL, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Jack Rae, Chris Dyer, Peter Dayan, and Timothy Lillicrap. Fast parametric learning with activation
memorization. In ICML, 2018.

Jianheng Tang, Tiancheng Zhao, Chenyan Xiong, Xiaodan Liang, Eric P. Xing, and Zhiting Hu.
Target-guided open-domain conversation. In ACL, 2019.

Shubham Toshniwal, Anjuli Kannan, Chung-Cheng Chiu, Yonghui Wu, Tara Sainath, and Karen
Livescu. A comparison of techniques for language model integration in encoder-decoder speech
recognition. In IEEE Workshop on Spoken Language Technology, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via adversarial
training. In ICML, 2019a.

Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Multi-
agent dual learning. In ICLR, 2019b.

Yuting Wei, Fanny Yang, and Martin J Wainwright. Early stopping for kernel boosting algorithms:
A general analysis with localized complexities. In NIPS, 2017.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In ICLR, 2018.

10

Under review as a conference paper at ICLR 2020

A PROOF OF THEOREM 4.1

Preliminaries We briefly review the general statistical learning framework. More specifically, let
X and Y be the feature and label spaces, and suppose D is an unknown distribution over X × Y .
Let F ⊆ VX be the hypothesis class that we use to make prediction, and ` : V × Y → R be the
loss function. In addition, we define the function class `F = {(x, y)→ `(f(x), y) : f ∈ F} as the
composition of the functions in F and loss `. Therefore, the goal is to minimize the expected risk
LD = E(x,y)∼D`(f(x), y) with some function f ∈ F .
According to the problem setup in Section 4.3, we have n i.i.d. training examples S = {(hi, yi)}ni=1

drawn fromD, where the hidden state hi ∈ Rd is the feature vector and yi is the corresponding label.
Suppose there exist a learning algorithm that maps the training dataset S to a function f ∈ F , and
we want to measure the gap between the empirical risk LS and and the population risk LD, i.e.,
|LD − LS |, where LS =

∑n
i=1 `(f(hi), yi)/n. This gap is known as the generalization error.

To bound the generalization error, we use the Rademacher complexity (Bartlett & Mendelson, 2002).
Let F ⊆ RZ be a function class and S = {z1, . . . , zn} be a set of examples of size n, the empirical
Rademacher complexity is defined as

R̂S(F) :=
1

n
Eρ
[

sup
f∈F

n∑
i=1

ρif(xi)

]
,

where ρ1, . . . , ρn are i.i.d. Rademacher random variables with P(ρi = 1) = P(ρi = −1) = 1/2.
According to the loss function LS defined in (4.2), we are considering N function classes {Fk}Nk=1

with Fk = {f : h → 〈wk,h〉,wk = ek>W,W ∈ P(γ),h ∈ Rd}, where ek is a d-dimensional
vector with k-th element to be one and others to be zero, and the loss ` : RN → R. We have the
following Lemma to bound the generalization error based on the empirical Rademacher complexity,
which was proved in Corollary A.11 in Allen-Zhu et al. (2019).

Lemma A.1. (Allen-Zhu et al., 2019) If F1 . . . ,FN are N classes of functions Rd → R, the loss
function ` : RN → R isG-Lipschitz continuous and |`(·)| ≤ B for any z ∼ D, then with probability
at least 1− δ, we have

sup
f1∈F1,...,fn∈FN

∣∣∣∣E[`(f1(z), . . . , fN (z)
)]
− 1

n

n∑
i=1

`(f(zi))

∣∣∣∣ ≤ C1G

N∑
k=1

R̂S(Fk) + C2
B
√

log(1/δ)√
n

,

where the expectation is taken over the distribution D.

Equipped with this lemma, we now present the proof of our main result.

Proof of Theorem 4.1. According to the problem setup in Section 4, we have N classes of functions
{Fk}Nk=1 and let the singular value decomposition of W as W = UΣV> and uk is the k-th row
of U. Therefore, we have

R̂S(Fk) = Eρ
[

sup
f∈Fk

1

n

n∑
i=1

ρi〈wk,hi〉
]

= Eρ
[

sup
f∈Fk

1

n
〈VΣu>k ,hρ〉

]
(A.1)

where hρ =
∑n
i=1 ρihi and the last inequality is due to the definition of wk = VΣu>k . Therefore,

we have

R̂S(Fk) ≤ Eρ
[

sup
f∈Fk

1

n
‖VΣu>k ‖1‖hρ‖∞

]
≤ V

n
Eρ
[

sup
f∈Fk

‖Σu>k ‖1‖hρ‖∞
]

≤
V
√∑d

j=1 σ
2
j

n
Eρ
[

sup
f∈Fk

‖hρ‖∞
]
, (A.2)

where the second inequality is due to ‖V‖1 ≤ V and the last one comes from ‖Σu>k ‖1 =∑d
j=1 σj |ukj | ≤

√∑d
j=1 σ

2
j . In addition, according to Theorem 12 in Liang (2014) , we have

Eρ
[
‖hρ‖∞

]
≤ H

√
2n log d,

11

Under review as a conference paper at ICLR 2020

Therefore, we can get

R̂S(Fk) ≤ V H

√∑m
i=1 σ

2
i +

√∑
i>m σ

2
i

√
n

√
2 log d.

As a result, we can get
N∑
k=1

R̂S(Fk) ≤ NVH

√∑m
i=1 σ

2
i +

√∑
i>m σ

2
i

√
n

√
2 log d. (A.3)

Since for P(γ) = Pe(γ), we have σj ≤ c1 exp(−c2jγ) ≤ c1/(c2j
γ), and for P(γ) = Pp(γ), we

have σj ≤ c3j−γ . Thus for γ > 1/2, we have∑
j>m

σ2
j ≤

∑
j>m

c4
j2γ
≤ c4

∫ ∞
m+1

x−2γdx ≤ c4
(2γ − 1)

(m+ 1)1−2γ ,

where c4 = (c1/c2)2 if P(γ) = Pe(γ) and c4 = c23 if P(γ) = Pp(γ).
Therefore, plugging this upper bound into (A.3), we have

N∑
k=1

R̂S(Fk) ≤
NVH

√
2 log d

√∑m
j=1 σ

2
j

√
n

+ c5
NVH

√
2 log d

√
m1−2γ/(2γ − 1)√
n

.

Where c5 = c1/c5 if P(γ) = Pe(γ) and c5 = c3 if P(γ) = Pp(γ).
According to Lemma A.1, since ` is G-Lipschitz continuous and |`(·)| ≤ B, we have

sup
W∈P(γ)

∣∣LD(W)− LS(W)
∣∣ ≤ c6GNVH√log d

√∑m
j=1 σ

2
j +

√
m1−2γ

(2γ−1)
√
n

+ c7B

√
log(1/δ)

n
.

12

	Introduction
	Related Work
	Problem Setup
	Neural Language Generation
	Fast Singular Value Decay

	Proposed Method
	SVD reparameterization
	Spectrum Control
	Theoretical Analysis

	Experiments
	Language Modeling
	Machine Translation

	Conclusions and Future Work
	Proof of Theorem 4.1

