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ABSTRACT

Knowledge graph embedding (KGE) models learn algebraic representations of the
entities and relations in a knowledge graph. A vast number of KGE techniques for
multi-relational link prediction has been proposed in the recent literature, often
with state-of-the-art performance. These approaches differ along a number of
dimensions, including different model architectures, different training strategies,
and different approaches to hyperparameter optimization. In this paper, we take
a step back and aim to summarize and quantify empirically the impact of each of
these dimensions on model performance. We report on the results of an extensive
experimental study with popular model architectures and training strategies across
a wide range of hyperparameter settings. We found that when trained appropri-
ately, the relative performance differences between various model architectures
often shrinks and sometimes even reverses when compared to prior results. For
example, RESCAL (Nickel et al., 2011), one of the first KGE models, showed
strong performance when trained with state-of-the-art techniques; it was compet-
itive to or outperformed more recent architectures. We also found that good (and
often superior to prior studies) model configurations can be found by exploring
relatively few random samples from a large hyperparameter space. Our results
suggest that many of the more advanced architectures and techniques proposed in
the literature should be revisited to reassess their individual benefits.

1 INTRODUCTION

Knowledge graph embedding (KGE) models learn algebraic representations, termed embeddings, of
the entities and relations in a knowledge graph. They have been successfully applied to knowledge
graph completion (Nickel et al., 2015) as well as in downstream tasks and applications such as
recommender systems (Wang et al., 2017) or visual relationship detection (Baier et al., 2017).

A vast number of different KGE models for multi-relational link prediction has been proposed in
the recent literature; e.g., RESCAL (Nickel et al., 2011), TransE (Bordes et al., 2013), DistMult,
ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), TuckER (Balazevic et al., 2019),
RotatE (Sun et al., 2019), KBGAT (Nathani et al., 2019), and many more. Model architectures
generally differ in the way the entity and relation embeddings are combined to model the presence or
absence of an edge (more precisely, a subject-predicate-object triple) in the knowledge graph; they
include factorization models (e.g., RESCAL, DistMult, ComplEx, TuckER), translational models
(TransE, RotatE), and more advanced models such as convolutional models (ConvE). In many cases,
the introduction of new models went along with the new approaches for training these models—
e.g., new training types (such as negative sampling or 1vsAll scoring), new loss functions (such as
pairwise margin ranking or binary cross entropy), new forms of regularization (such as unweighted
and weighted L2), or the use of reciprocal relations (Dettmers et al., 2018)—and ablation studies
were not always performed. Table 1 shows an overview of selected models and training techniques
along with the publications that introduced them.

The diversity in model training makes it difficult to compare performance results for various model
architectures, especially when results are reproduced from prior studies that used a different ex-
perimental setup. Model hyperparameters are commonly tuned using grid search on a small grid
involving hand-crafted parameter ranges or settings known to “work well” from prior studies. A
grid suitable for one model may be suboptimal for another, however. Indeed, it has been observed
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Publication Model Loss Training Regularizer Optimizer Reciprocal

Nickel et al. (2011) RESCAL MSE Full L2 ALS No
Bordes et al. (2013) TransE MR NegSamp Normalization SGD No
Yang et al. (2015) DistMult MR NegSamp Weighted L2 Adagrad No
Trouillon et al. (2016) ComplEx BCE NegSamp Weighted L2 Adagrad No
Kadlec et al. (2017) DistMult CE NegSamp Weighted L2 Adam No
Dettmers et al. (2018) ConvE BCE KvsAll Dropout Adam Yes
Lacroix et al. (2018) ComplEx CE 1vsAll Weighted L3 Adagrad Yes
MSE = mean squared error, MR = margin ranking, BCE = binary cross entropy, CE = cross entropy

Table 1: Selected KGE models and training strategies from the literature. Entries marked in bold
were introduced (or first used) in the context of KGE in the corresponding publication.

that newer training strategies can considerably improve model performance (Kadlec et al., 2017;
Lacroix et al., 2018; Salehi et al., 2018).

In this paper, we take a step back and aim to summarize and quantify empirically the impact of
different model architectures and different training strategies on model performance. We performed
an extensive set of experiments using popular model architectures and training strategies in a com-
mon experimental setup. In contrast to most prior work, we considered many training strategies as
well as a large hyperparameter space, and we performed model selection using quasi-random search
(instead of grid search) followed by Bayesian optimization. We found that this approach was able
to find good (and often superior to prior studies) model configurations with relatively low effort.
Our study complements and expands on the results of Kotnis & Nastase (2018) (focus on negative
sampling) and Mohamed et al. (2019) (focus on loss functions) as well as similar studies in other ar-
eas, including language modeling (Melis et al., 2017), generative adversarial networks (Lucic et al.,
2018), or sequence tagging (Reimers & Gurevych, 2017).

We found that when trained appropriately, the performance of a particular model architecture can by
far exceed the performance observed in older studies. For example, RESCAL (Nickel et al., 2011),
which constitutes one of the first KGE models but is rarely considered in newer work, showed very
strong performance in our study: it was competitive to or outperformed more recent architectures
such as ConvE (Dettmers et al., 2018) and TuckER (Balazevic et al., 2019). More generally, we
found that the relative performance differences between various model architectures often shrunk
and sometimes even reversed when compared to prior results. This suggests that (at least currently)
training strategies have a significant impact on model performance and may account for a substantial
fraction of the progress made in recent years. We also found that suitable training strategies and
hyperparameter settings vary significantly across models and datasets, indicating that a small search
grid may bias results on model performance. Fortunately, as indicated above, large hyperparameter
spaces can be (and should be) used with little additional training effort.

Our study focuses solely on pure KGE models, which do not exploit auxiliary information such as
textual data or logical rules (Wang et al., 2017). Since many of the studies on these non-pure models
did not (and, to be fair, could not) use current training strategies and consequently underestimated
the performance of pure KGE models, their results and conclusions need to be revisited.

2 KNOWLEDGE GRAPH EMBEDDINGS: MODELS, TRAINING, EVALUATION

The literature on KGE models is expanding rapidly. We review selected architectures, training
methods, and evaluation protocols; see Table 1. The table examplarily indicates that new model ar-
chitectures are sometimes introduced along with new training strategies (marked bold). Reasonably
recent survey articles about KGE models include Nickel et al. (2015) and Wang et al. (2017).

Multi-relational link prediction. KGE models are typically trained and evaluated in the context
of multi-relational link prediction for knowledge graphs (KG). Generally, given a set E of entities
and a set R of relations, a knowledge graph K ⊆ E × R × E is a set of subject-predicate-object
(spo) triples. The goal of multi-relational link prediction is to “complete the KG”, i.e., to predict
true but unobserved triples based on the information in K. Common approaches include rule-based
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methods (Galarraga et al., 2013; Meilicke et al., 2019), KGE methods (Nickel et al., 2011; Bordes
et al., 2013; Trouillon et al., 2016; Dettmers et al., 2018), and hybrid methods (Guo et al., 2018).

Knowledge graph embeddings (KGE). A KGE model associates with each entity i ∈ E and re-
lation k ∈ R an embedding ei ∈ Rde and rk ∈ Rdr in a low-dimensional vector space, respec-
tively; here de, dr ∈ N+ are hyperparameters for the embedding size. Each particular model uses
a scoring function s : E × R × E → R to associate a score s(i, k, j) with each potential triple
(i, k, j) ∈ E × R × E . The higher the score of a triple, the more likely it is considered to be true
by the model. The scoring function takes form s(i, k, j) = f(ei, rk, ej), i.e., depends on i, k, and j
only through their respective embeddings. Here f , which represents the model architecture, may be
either a fixed function or learned (e.g., f may be a parameterized function).

Evaluation. The most common evaluation task for KGE methods is entity ranking, which is a form
of question answering. The available data is partitioned into a set of training, validation, and test
triples. Given a test triple (i, k, j) (unseen during training), the entity ranking task is to determine
the correct answer—i.e., the missing entity j and i, resp.—to questions (i, k, ?) and (?, k, j). To do
so, potential answer triples are first ranked by their score in descending order. All triples but (i, k, j)
that occur in the training, validation, or test data are subsequently filtered out (so that other triples
known to be true do not affect the ranking). Finally, metrics such as the mean reciprocal rank (MRR)
of the true answer or HITS@k are computed.

KGE models. KGE model architectures differ in their scoring function. We can roughly clas-
sify models as decomposable or monolithic: the former only allow element-wise interactions be-
tween (relation-specific) subject and object embeddings, whereas the latter allow arbitrary in-
teractions. More specifically, decomposable models use scoring functions of form s(i, k, j) =
f(
∑

z g([h1(ei, er) ◦ h2(er, ej)]z)), where ◦ is any element-wise function (e.g., multiplication),
h1 and h2 are functions that obtain relation-specific subject and object embeddings, resp., and g
and f are scalar functions (e.g., identity or sigmoid). The most popular models in this category
are perhaps RESCAL (Nickel et al., 2011), TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and ConvE (Dettmers et al., 2018). RESCAL’s scoring
function is bilinear in the entity embeddings: it uses s(i, k, j) = eTi Rkej , where Rk ∈ Rde×de is
a matrix formed from the entries of rk ∈ Rdr (where dr = d2e). DistMult and ComplEx can be
seen as constrained variants of RESCAL with smaller relation embeddings (dr = de). TransE is a
translation-based model and uses negative distance −‖ei + rk − ej‖p between ei + rk and ej as
score, commonly using the L1 norm (p = 1) or the L2 norm (p = 2). Finally, ConvE uses a 2D
convolutional layer and a large fully connected layer to obtain relation-specific entity embeddings
(i.e., in h1 above). Other recent examples for decomposable models include TuckER (Balazevic
et al., 2019), RotatE (Sun et al., 2019), and SACN (Shang et al., 2019). Decomposable models
are generally fast to use: once the relation-specific embeddings are (pre-)computed, score compu-
tations are cheap. Monolithic models—such as KBGAT (Nathani et al., 2019)—do not decompose
into relation-specific embeddings: they take form s(i, k, j) = f(ei, rk, ej). Such models are more
flexible, but also more costly to train and use.

Training type. There are three commonly used approaches to train KGE models, which dif-
fer mainly in the way negative examples are generated. First, training with negative sampling
(NegSamp) (Bordes et al., 2013) obtains for each positive triple t = (i, k, j) from the training
data a set of (pseudo-)negative triples obtained by randomly perturbing the subject, relation, or ob-
ject position in t (and optionally checking that the so-obtained triples does not exist in the KG). An
alternative approach (Lacroix et al., 2018), which we term 1vsAll, is to omit sampling and take all
triples that can be obtained by perturbing the subject and object positions as negative examples for
t (even if these tuples exist in the KG). 1vsAll is generally more expensive than NegSamp, but it
is feasible (and even surprisingly fast in practice) if the number of entities is not excessively large.
Finally, Dettmers et al. (2018) proposed a training type that we term KvsAll1: this approach (i) con-
structs batches from non-empty rows (i, k, ∗) or (∗, k, j) (instead of from individual triples), and (ii)
labels all such triples as either positive (occurs in training data) or negative (otherwise).

Loss functions. Several loss functions for training KGEs have been introduced so far. RESCAL
originally used squared error between the score of each triple and its label (positive or negative).
TransE used pairwise margin ranking with hinge loss (MR), where each pair consists of a positive

1Note that the KvsAll strategy is called 1-N scoring in Dettmers et al. (2018).
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triple and one of its negative triples (only applicable to NegSamp and 1vsAll) and the margin η is a
hyperparameter. Trouillon et al. (2016) proposed to use binary cross entropy (BCE) loss: it applies
a sigmoid to the score of each (positive or negative) triple and uses the cross entropy between the
resulting probability and that triple’s label as loss. BCE is suitable for multi-class and multi-label
classification. Finally, Kadlec et al. (2017) used cross entropy (CE) between the model distribution
(softmax distribution over scores) and the data distribution (labels of corresponding triples, normal-
ized to sum to 1). CE is more suitable for multi-class classification (as in NegSamp and 1vsAll),
but it has also been used in the multi-label setting (KvsAll). Mohamed et al. (2019) found that the
choice of loss function can have a significant impact on model performance, and that the best choice
is data and model dependent. Our experimental study provides additional evidence for this finding.

Reciprocal relations. ConvE introduced the technique of reciprocal relations into KGE training.
Observe that during evaluation and also most training methods discussed above, the model is solely
asked to score subjects (for questions of form (?, k, j)) or objects (for questions of form (i, k, ?)).
The idea of reciprocal relations is to use separate scoring functions ssub and sobj for each of these
tasks, resp. Both scoring functions share entity embeddings, but they do not share relation embed-
dings: each relation thus has two embeddings.2 The use of reciprocal relations may decrease the
computational cost (as in the case of ConvE), and it may also lead to better model performance
Lacroix et al. (2018) (e.g., for relations in which one direction is easier to predict). On the down-
side, the use of reciprocal relations means that a model does not provide a single triple score s(i, k, j)
anymore (generally, ssub(i, k, j) 6= sobj(i, k, j); the discrepancy has not been studied yet).

Regularization. The most popular form of regularization in the literature is L2 regularization on the
embedding vectors, either unweighted or weighted by the frequency of the corresponding entity or
relation (Yang et al., 2015). Lacroix et al. (2018) proposed to use L3 regularization. TransE normal-
ized the embeddings to unit norm after each update. ConvE used dropout (Srivastava et al., 2014)
in its hidden layers (and only in those). In our study, we additionally consider L1 regularization and
the use of dropout on the entity and/or relation embeddings.

Hyperparameters. Many more hyperparameters have been used in prior work. This includes, for
example, different methods to initialize model parameters, different optimizers, different optimizer
parameters such as the learning rate or batch size, the number of negative examples for NegSamp,
the regularization weights for entities and relations, and so on. To deal with such a large search
space, most prior studies favor grid search over a small grid where most of these hyperparameters
remain fixed. As discussed before, this approach may lead to bias in the results, however.

3 EXPERIMENTAL STUDY

In this section, we report on the design and results of our experimental study. We focus on the most
salient points here; more details can be found in the appendix.

3.1 EXPERIMENTAL SETUP

Datasets. We used the FB15K-237 (Toutanova & Chen, 2015) (extracted from Freebase) and
WNRR (Dettmers et al., 2018) (extracted from WordNet) datasets in our study. We chose these
datasets because (i) they are frequently used in prior studies, (ii) they are “hard” datasets that have
been designed specifically to evaluate multi-relational link prediction techniques, (iii) they are di-
verse in that relative model performance often differs, and (iv) they are of reasonable size for a large
study. Dataset statistics are given in Table 4 in the appendix.

Models. We selected RESCAL (Nickel et al., 2011), TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016) and ConvE (Dettmers et al., 2018) for our study.
These models are perhaps the most well-known KGE models and include both early and more recent
models. Note that we did not consider monolithic models in our study due to their excessive training
cost (for example, KBGAT trained for 14 hours using the best configuration reported by the authors).

Evaluation. Unless stated otherwise, we report filtered MRR and filtered HITS@10 on test data;
see Sec. 2 for details.

2Alternatively, we can view such an approach as only predicting objects, but doing so for both each original
relation (k) and a new reciprocal relation formed by switching subject and object (k−1).
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Hyperparameters. We used a large hyperparameter space to ensure sure that suitable hyperparam-
eters for each model are not excluded a priori. We included all major training types (NegSamp,
1vsAll, KvsAll), use of reciprocal relations, loss functions (MR, BCE, CE), regularization tech-
niques (none/L1/L2/L3, dropout), optimizers (Adam, Adagrad), and initialization methods (4 in
total) used in the KGE community as hyperparameters. We considered three embeddings sizes (128,
256, 512) and used separate weights for dropout/regularization for entity and relation embeddings.
Table 5 in the appendix provides additional details. To the best of our knowledge, no prior study
used such a large hyperparameter search space.

Training. All models were trained for a maximum of 400 epochs. We validated models using
filtered MRR (on validation data) every five epochs and performed early stopping with a patience of
50 epochs. To keep search tractable, we stopped training on models that did not reach ≥ 5% filtered
MRR after 50 epochs; in our experience, such configurations did not produce good models.

Model selection. We used the Ax framework (https://ax.dev/) to conduct quasi-random
hyperparameter search via a Sobol sequence. More specifically, for each dataset and model, we
generated 30 different configurations per valid combination of training type and loss function (2
for TransE, which only supports NegSamp+MR and NegSamp+CE; 7 for all other models). After
the quasi-random hyperparameter search, we added a short Bayesian optimization phase (20 trials,
using expected improvement; also provided by Ax) to tune the numerical hyperparameters further.

Reproducibility. We reimplemented all models, training strategies, and hyperparameter search
in a framework based on PyTorch. The framework is easily extendable and will be released as
open source. Model selection and training is completely controlled via configuration files. All
configuration files used in our study, as well as the raw data that we obtained when running our
experiments, will also be openly released.3

3.2 COMPARISON OF MODEL PERFORMANCE

Table 2 shows the filtered MRR and filtered Hits@10 on test data of various models both from prior
studies and the best models (on validation MRR) found in our study.

First reported performance vs. our observed performance. We first compare the performance
results of models when they were first run on the FB15K-237 and the WNRR datasets (“First”
block of Table 2) and the performance we obtained in our study (“Ours” block). We found that
the performance of a single model can vary wildly across studies. For example, ComplEx was first
run on FB15k-237 by Dettmers et al. (2018), where it achieved a filtered MRR of 24.7%. This is a
relatively low number by today’s standards (Lacroix et al., 2018). In our study, ComplEx achieved
a competitive MRR of 35.1%, which is also a large improvement over the first reports. Studies that
report the lower performance number of ComplEx (i.e., 24.7%) thus do not adequately capture its
performance. Similar remarks hold for RESCAL and DistMult as well as (albeit to a smaller extent)
ConvE and TransE. To the best of our knowledge, our results for RESCAL, TransE, and ConvE
constitute the best results for these models obtained so far.

Relative model performance (our study). Next, we compared the performance across the mod-
els models used in our study (“Ours” block). We found that the relative performance differences
between various model architectures often shrunk and sometimes even reversed when compared to
prior results (“First” block). For example, ConvE showed the best overall performance in prior stud-
ies, but is consistently outperformed by RESCAL, DistMult, and ComplEx in our study. As another
example, RESCAL (Nickel et al., 2011), which constitutes one of the first KGE models but is rarely
considered in newer work, showed strong performance in our study and outperforms all alternative
models except ComplEx, which also showed strong performance. This suggests that (at least cur-
rently) training strategies have a significant impact on model performance and may account for a
large fraction of the progress made in recent years.

Relative model performance (overall). Table 2 also shows the best performance results obtained
in prior studies of selected recent models (“Recent” block) and very large models with very good
performance (“Large” block). We found that TuckER (Balazevic et al., 2019), RotatE (Sun et al.,
2019), and SACN (Shang et al., 2019) all achieve state-of-the-art performance, but the performance
difference to the best prior models (“Ours” block) in terms of MRR is small or even vanishes. Even

3Note to ICLR reviewers: We do not release this data with the submission to maintain author anonymity.
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FB15K-237 WNRR
MRR Hits@10 MRR Hits@10

Fi
rs

t

RESCAL (Wang et al., 2019) 27.0 42.7 42.0 44.7
TransE (Nguyen et al., 2018) 29.4 46.5 22.6 50.1
DistMult (Dettmers et al., 2018) 24.1 41.9 43.0 49.0
ComplEx (Dettmers et al., 2018) 24.7 42.8 44.0 51.0
ConvE (Dettmers et al., 2018) 32.5 50.1 43.0 52.0

O
ur

s

RESCAL 35.6 53.6 46.8 52.1
TransE 30.3 48.8 22.7 52.6
DistMult 34.2 52.3 45.2 53.1
ComplEx 35.1 53.7 47.7 54.3
ConvE 33.7 52.8 44.7 50.8

R
ec

en
t TuckER (Balazevic et al., 2019) 35.8 54.4 47.0 52.6

RotatE (Sun et al., 2019) 33.8 53.3 47.6 57.1
SACN (Shang et al., 2019) 35.0 54.0 47.0 54.4

La
rg

e DistMult (Salehi et al., 2018) 35.7 54.8 45.5 54.4
ComplEx-N3 (Lacroix et al., 2018) 37.0 56.0 49.0 58.0
KBGAT (Nathani et al., 2019) 51.8 62.6 44.0 58.1

Table 2: Model performance in prior studies and our study (on test data). First: first reported
performance on the respective datasets (oldest models first); Ours: performance in our study; Large:
best performance achieved in prior studies using larger, more expensive models (either significantly
larger embedding sizes or monolithic models). Bold numbers indicate best performance in group.
References indicate where the performance number was reported.

for HITS@10, which we did not consider for model selection, the advantage of more recent models
is often small, if present. The models in the last block (“Large”) show the best performance numbers
we have seen in the literature. For DistMult and ComplEx, these numbers have been obtained using
very large embedding sizes (up to 4000). KBGAT showed exceptional performance on FB15K-237,
clearly outperforming all other models. The model is monolithic, however, and has at least an order
of magnitude higher training cost.

Limitations. We note that all models used in our study are likely to yield better performance when
hyperparameter tuning is further improved. For example, we found a ComplEx configuration (of
size 100) that achieved 49.0% MRR and 56.5% Hits@10 on WNRR, and a RESCAL configuration
that achieved 36.1% MRR and 54.6% Hits@10 on FB15k-237 in preliminary experiments. Since
the focus of this study is to compare models in a common experimental setup and without manual
intervention or large amounts of hyperparameter tuning, we do not further report these results.

3.3 IMPACT OF HYPERPARAMETERS

Anatomy of search space. Figure 1 shows the distribution filtered MRR for each model and dataset
(on validation data, Sobol configurations only). Each distribution consists of roughly 200 different
quasi-random hyperparameter configurations (except TransE, for which 60 configurations have been
used). Perhaps unsurprisingly, we found that all models showed a wide dispersion on both datasets
and only very few configurations achieved state-of-the-art results. There are, however, notable dif-
ferences across datasets and models. On FB15K-237, for example, the median ConvE configuration
is best; on WNRR, DistMult and Complex have a much higher median MRR. Generally, the impact
of the hyperparameter choice is more pronounced on WNRR (higher variance) than on FB15K-237.

Best configurations (quasi-random search). The hyperparameters of the best performing models
during our quasi-random search are reported in Table 3 (selected hyperparameters) and Tables 6
and 7(in the appendix, all hyperparameters). First, we found that the optimum choice of hyperpa-
rameters is often model and dataset dependent: with the exception of the loss function (discussed
below), almost no hyperparameter setting was consistent across datasets and models. For example,
Adagrad and the 1vsN training type seem to be beneficial on FB15K-237 but not on WNRR, where

6



Under review as a conference paper at ICLR 2020

Figure 1: Distribution of filtered MRR (on validation data) over the quasi-random hyperparameter
configurations explored in our study.

RESCAL TransE DistMult ComplEx ConvE

F
B

15
K

-2
37

MRR (valid) 36.2 28.8 34.7 35.1 34.4
Embedding size 512 (-0.5) 256 (-1.1) 128 (-0.1) 512 (-0.1) 512 (-1.0)
Batch size 512 (-0.5) 1024 (-1.1) 1024 (-0.1) 512 (-0.1) 1024 (-0.5)
Training type 1vsAll (-1.1) NegSamp – 1vsAll (-0.9) 1vsAll (-1.0) 1vsAll (-1.0)
Loss CE (-1.5) CE (-1.9) CE (-1.4) CE (-2.4) CE (-1.0)
Optimizer Adag. (-0.9) Adam (-1.1) Adag. (-0.7) Adag. (-1.1) Adag. (-1.0)
Initializer Unif. (-0.9) XvUnif (-4.4) Unif. (-0.1) XvUnif (-0.1) Normal (-0.5)
Regularizer None (-0.5) L2 (-1.1) L3 (-0.5) L3 (-0.8) L3 (-0.5)
Reciprocal No (-0.5) No – Yes (-0.5) Yes (-0.8) Yes –

W
N

R
R

MRR (valid) 46.8 20.2 44.7 47.7 44.7
Embedding size 256 (-0.8) 256 (-1.8) 512 (-0.6) 512 (-1.3) 128 (-0.7)
Batch size 1024 (-0.8) 1024 (-1.8) 1024 (-0.1) 1024 (-1.2) 256 (-0.7)
Training type KvsAll (-1.6) NegSamp – KvsAll (-0.6) KvsAll (-1.5) 1vsAll (-0.7)
Loss CE (-1.0) CE (-2.0) CE (-1.8) CE (-3.3) CE (-1.5)
Optimizer Adag. (-0.8) Adam (-1.8) Adam (-0.6) Adam (-1.3) Adam (-1.3)
Initializer XvUnif (-0.8) XvUnif (-2.0) Normal (-0.6) Normal (-1.3) XvNorm (-1.3)
Regularizer None (-0.8) L2 (-1.8) None (-0.1) None (-1.2) L2 (-1.3)
Reciprocal No (-1.0) No – Yes (-0.6) Yes (-1.4) Yes –

Table 3: Hyperparameters of best performing models w.r.t. filtered MRR (on validation data) after
quasi-random hyperparameter search. For each hyperparameter, we also give the reduction in filtered
MRR for the best configuration that does not use this value of the hyperparameter (in parenthesis).

Adam and KvsAll were more prominent. Our findings provide further evidence that grid search
on a small search space is not suitable to compare model performance because the result may be
heavily influenced by the specific grid points being used. Moreover, the budget that we used for
quasi-random search was comparable to a grid search over a small (or at least not very large) grid:
we tested merely 30 different model configurations for every combination of training type and loss
function. It is therefore both feasible and beneficial to work with a large search space.

Best configurations (Bayesian optimization). We already obtained good configurations solely
from quasi-random search. More precisely, roughly half of our best models (as reported in Ta-
ble 2) were found during quasi-random search, the other half benefited from subsequent tuning with
Bayesian optimization. But even in the latter cases, the performance on test data almost always im-
proved only marginally. A notable exception is TransE, for which Bayesian optimization improved
every metric on both datasets by about 2 percentage points (4 points for Hits@10 on WNRR). The
best hyperparameters after the Bayesian optimization phase are reported in Table 8 in the appendix.

Impact of specific hyperparameters. It is difficult to asses the impact of each hyperparameter in-
dividually. As a proxy for the importance of each hyperparameter setting, we report in Table 3 and
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Figure 2: Distribution of filtered MRR (on validation data, quasi-random search only) for different
training type and loss functions

Tables 6 and 7 (appendix) the best performance in terms of filtered MRR on validation data for a
different choice of value for each hyperparameter (difference in parenthesis). For example, the best
configuration during quasi-random search for ComplEx on FB15K-237 used reciprocal relations.
The best configuration that does not use reciprocal relations has an MRR that is 0.8 points lower
(34.3 instead of 35.1). This does not mean that the gap is explained by the use of the reciprocal re-
lations alone, as other hyperparameters may also be different, but it does show the best performance
we obtained without relying on reciprocal relations. We can see that most hyperparameters appear
to have moderate impact on model performance: no hyperparameter setting produced a significant
performance improvement that others did not also produce. The clear exception here is the use of
the loss function, which is consistent across models and datasets (always CE), partly with large per-
formance improvements. Another notable exception is the initializer for TransE: in our experiments,
TransE performed best without embedding normalization but with uniform Xavier initialization.

Impact of loss function. In order to further explore the impact of the loss function, we show the
distribution of the filtered MRR on validation data for every (valid) combination of training type and
loss function in Figure 7. We found that the use of CE generally leads to better configurations than
using other losses. This is surprising (and somewhat unsatisfying) in that we use the CE loss, which
is a multi-class loss, for a multi-label task. Similar observations have been made for computer vision
tasks (Joulin et al., 2016; Mahajan et al., 2018) though. Note that the combination of KvsAll with
CE (on the very right in figure) has not been explored previously.

4 CONCLUSION

We reported the results of an extensive experimental study with popular KGE model architectures
and training strategies across a wide range of hyperparameter settings. We found that when trained
appropriately, the relative performance differences between various model architectures often shrunk
and sometimes even reversed when compared to prior results. This suggests that (at least currently)
training strategies have a significant impact on model performance and may account for a substantial
fraction of the progress made in recent years. To enable an insightful model comparison, we recom-
mend that new studies compare models in a common experimental setup using a sufficiently large
hyperparameter search space. Our study shows that such an approach is possible with reasonable
computational cost. Moreover, we feel that many of the more advanced architectures and techniques
proposed in the literature need to be revisited to reassess their individual benefits.
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A APPENDIX

Dataset Entities Relations Train Validation Test

FB-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 2 824 2 924

Table 4: Dataset statistics

Hyperparameter Quasi-random search Bayesian optimization

Embedding size {128, 256, 512} Value from Tab. 6
Training type {NegSamp, 1vsAll, KvsAll} Value from Tab. 6

Reciprocal {True, False} Value from Tab. 6
No. subject samples (NegSamp) [1, 1000], log scale [1, 1000], log scale
No. object samples (NegSamp) [1, 1000], log scale [1, 1000], log scale
Label smoothing (KvsAll) [0.0, 0.3] [0.0, 0.3]

Loss {BCE, MR, CE} Value from Tab. 6
Margin (MR) [0, 10] [0, 10]
Lp-norm (TransE) {1, 2} Value from Tab. 6

Optimizer {Adam, Adagrad} Value from Tab. 6
Batch size {128, 256, 512, 1024} Value from Tab. 6
Learning rate [10−4, 1], log scale [10−4, 1], log scale
LR scheduler patience [0, 10] [0, 10]

Lp regularization {L1, L2, L3, None} Value from Tab. 6
Entity emb. weight [10−20, 10−5] [10−20, 10−5]
Relation emb. weight [10−20, 10−5] [10−20, 10−5]
Frequency weighting {True, False} Value from Tab. 6

Embedding normalization (TransE)
Entity {True, False} Value from Tab. 6
Relation {True, False} Value from Tab. 6

Dropout
Entity embedding [0.0, 0.5] [0.0, 0.5]
Relation embedding [0.0, 0.5] [0.0, 0.5]
Feature map (ConvE) [0.0, 0.5] [0.0, 0.5]
Projection (ConvE) [0.0, 0.5] [0.0, 0.5]

Embedding initialization {Normal, Unif, XvNorm, XvUnif} Value from Tab. 6
Std. deviation (Normal) [10−5, 1.0] [10−5, 1.0]
Interval (Unif) [−1.0, 1.0] [−1.0, 1.0]
Gain (XvNorm) 1.0 1.0
Gain (XvUnif) 1.0 1.0

Table 5: Hyperparameter search space used in our study. Settings that apply only to certain config-
urations are indicated in parenthesis.
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RESCAL TransE DistMult ComplEx ConvE

F
B

15
K

-2
37

MRR valid. 36.5 30.7 34.7 35.1 34.7
Learning rate 0.06 0.0003 0.22 0.30 0.002
Scheduler patience 3 6 5 7 9
Entity emb. reg. weight 1.85−09 5.40−05 1.40−09 1.65−13 5.20−08

Relation emb. reg. weight 1.21−10 1.72−13 4.51−03 3.05−20 1.12−19

Entity emb. dropout 0.50 0.08 0.29 0.0 0.0
Relation emb. dropout 0.25 0.0 0.44 0.41 0.0
Projection dropout (ConvE) – – – – 0.46
Feature map dropout (ConvE) – – – – 0.32

W
N

R
R

MRR valid. 47.0 22.5 44.7 47.7 44.7
Learning rate 0.08 0.0004 0.0004 0.0004 0.001
Scheduler patience 0 3 1 1 6
Entity reg. weight 6.96−10 1.00−01 8.64−06 8.64−06 4.54−09

Relation reg. weight 7.76−10 2.93−13 1.00−13 1.00−13 4.14−18

Entity emb. dropout 0.45 0.1 0.14 0.14 0.0
Relation emb. dropout 0.0 0.0 0.48 0.48 0.0
Projection dropout (ConvE) – – – – 0.46
Feature map dropout (ConvE) – – – – 0.40

Table 8: Hyperparameters of best performing models found with Bayesian optimization. All other
hyperparameters are the same as in Tables 6 (FB15k-237) and 7 (WNRR).
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Figure 3: Distribution of filtered MRR (on validation data, quasi-random search only) for different
embedding sizes (top row: FB15k-237, bottom row: WNRR)

Figure 4: Distribution of filtered MRR (on validation data, quasi-random search only) for different
batch sizes (top row: FB15k-237, bottom row: WNRR)
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Figure 5: Distribution of filtered MRR (on validation data, quasi-random search only) for different
optimizers (top row: FB15k-237, bottom row: WNRR)

Figure 6: Distribution of filtered MRR (on validation data, quasi-random search only) for different
initializers (top row: FB15k-237, bottom row: WNRR)
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Figure 7: Distribution of filtered MRR (on validation data, quasi-random search only) with and
without reciprocal relations (top row: FB15k-237, bottom row: WNRR)
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