
Under review as a conference paper at ICLR 2020

FEW-SHOT LEARNING ON GRAPHS VIA SUPER-
CLASSES BASED ON GRAPH SPECTRAL MEASURES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose to study the problem of few-shot graph classification in graph neu-
ral networks (GNNs) to recognize unseen classes, given limited labeled graph
examples. Despite several interesting GNN variants being proposed recently for
node and graph classification tasks, when faced with scarce labeled examples in
the few-shot setting, these GNNs exhibit significant loss in classification perfor-
mance. Here, we present an approach where a probability measure is assigned
to each graph based on the spectrum of the graph’s normalized Laplacian. This
enables us to accordingly cluster the graph base-labels associated with each graph
into super-classes, where theLp Wasserstein distance serves as our underlying dis-
tance metric. Subsequently, a super-graph constructed based on the super-classes
is then fed to our proposed GNN framework which exploits the latent inter-class
relationships made explicit by the super-graph to achieve better class label sep-
aration among the graphs. We conduct exhaustive empirical evaluations of our
proposed method and show that it outperforms both the adaptation of state-of-
the-art graph classification methods to few-shot scenario and our naive baseline
GNNs. Additionally, we also extend and study the behavior of our method to
semi-supervised and active learning scenarios.

1 INTRODUCTION

The need to analyze graph structured data coupled with the ubiquitous nature of graphs (Borgwardt
et al., 2005; Duvenaud et al., 2015; Backstrom & Leskovec, 2010; Chau et al., 2011), has given
greater impetus to research interest in developing graph neural networks (GNNs) (Defferrard et al.,
2016; Kipf & Welling, 2016; Hamilton et al., 2017; Velikovi et al., 2018) for learning tasks on such
graphs. The overarching theme in GNNs is for each node’s feature vector to be generated by passing,
transforming, and recursively aggregating feature information from a given k-hop neighborhood
surrounding the node. However, GNNs still fall short in the ”few-shot” learning setting, where the
classifier must generalize well after seeing abundant base-class samples (while training) and very
few (or even zero) samples from a novel class (while testing). Given the scarcity and difficulty
involved with generation of labeled graph samples, it becomes all the more important to solve the
problem of graph classification in the few-shot setting.

Limitations and challenges: Recent work by Xu et. al. (Xu et al., 2019) indicated that most
recently proposed GNNs were designed based on empirical intuition and heuristic approaches. They
studied the representational power of these GNNs and identified that most neighborhood aggregation
and graph-pooling schemes had diminished discriminative power. They rectified this problem with
the introduction of a novel injective neighborhood aggregation scheme, making it as strong as the
Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Leman, 1968).

Nevertheless, the problem posed by extremely scarce novel-class samples in the few-shot setting
remains to persist as a formidable challenge, as it requires more rounds of aggregation to affect
larger neighborhoods and hence necessitate greater depth in the GNN. However, when it comes to
GNNs, experimental studies have shown that an increase in the number of layers results in dramatic
performance drops in GNNs (Wu et al., 2019; Li et al., 2018b).

Our work: Motivated by the aforementioned observations and challenges, our method does the
following. We begin with a once-off preprocessing step. We assign a probability measure to each
graph, which we refer to as a graph spectral measure (similar to (Gu et al., 2015)), based on the

1

Under review as a conference paper at ICLR 2020

spectrum of the graph’s normalized Laplacian matrix representation. Given this metric space of
graph spectral measures and the underlying distance as the Lp Wasserstein distance, we compute
Wasserstein barycenters (Agueh & Carlier, 2011) for each set of graphs specific to a base class and
term these barycenters as prototype graphs. With this set of prototype graphs for each base class
label, we cluster the spectral measures associated with each prototype graph in Wasserstein space to
create a super-class label.

Utilizing this super-class information, we then build a graph of graphs called a super-graph.
The intuition behind this is to exploit the non-explicit and latent inter-class relationships between
graphs via their spectral measures and use a GNN on this to also introduce a relational inductive
bias (Battaglia et al., 2018), which in turn affords us an improved sample complexity and hence
better combinatorial generalization given such few samples to begin with.

Given, the super-classes and the super-graph, we train our proposed GNN model for few-shot learn-
ing on graphs. Our GNN consists of a graph isomorphism network (GIN) Xu et al. (2019) as a
feature extractor Fθ(.) to generate graph embeddings; on which subsequently acts our classifier
C(.) comprising of two components: (i) Csup: a MLP layer to learn and predict the super class as-
sociated to a graph, and (ii) CGAT : a graph attention network (GAT) to predict the actual class label
of a graph. The overall loss function is a sum of the cross-entropy losses associated with Csup and
CGAT . We follow initialization based strategy (Chen et al., 2019), with a training and fine-tuning
phase, so that in the fine-tuning phase, the pre-trained parameters associated with Fθ(.) and Csup
are frozen, and the few novel labeled graph samples are used to update the weights and attention
learned by CGAT .

Our contributions: To the best of our knowledge, we are the first to introduce few shot learning
on graphs for graph classification. Next, we propose an architecture that makes use of the graph’s
spectral measures to generate a set of super-classes and a super-graph to better model the latent
relations between classes, followed by our GNN trained using an initialization method. Finally, we
conduct extensive experiments to gain insight into our method. For example, in the 20-shot setting
on the TRIANGLES dataset, our method shows a substantial improvement of nearly 7% and 20%
over DL-based and unsupervised baselines, respectively.

2 RELATED WORK

Few-shot learning in the computer vision community was first introduced by (Fei-Fei et al., 2006)
with the intuition that learning the underlying properties of the base classes given abundant samples
can help generalize better to unseen classes with few-labeled samples available. Various learning
algorithms have been proposed in the image domain, among which a broad category of initializa-
tion based methods aim to learn transferable knowledge from training classes, so that the model
can be adapted to unseen classes with limited labeled examples (Finn et al., 2017); (Rusu et al.,
2018); (Nichol et al., 2018). Recently proposed and widely accepted Initialization based methods
can broadly be classified into: (i) methods that learn good model parameters with limited labeled
examples and a small number of gradient update steps (Finn et al., 2017) and (ii) methods that learn
an optimizer (Ravi & Larochelle, 2017). We refer the interested reader to Chen et. al. (Chen et al.,
2019) for more examples of few-shot learning methods in vision.

Graph neural networks (GNNs) were first introduced in (Gori et al., 2005); (Scarselli et al., 2009)
as recurrent message passing algorithms. Subsequent work (Bruna et al., 2014); (Henaff et al.,
2015) proposed to learn smooth spectral multipliers of the graph Laplacian, but incurred higher
computational cost. This computational bottleneck was later resolved (Defferrard et al., 2016); (Kipf
& Welling, 2016) by learning polynomials of the graph Laplacian. GNNs are a natural extension to
Convolutional neural networks (CNNs) on non-Euclidean data. Recent work (Velikovi et al., 2018)
introduced the concept of self-attention in GNNs, which allows each node to provide attention to
the enclosing neighborhood resulting in improved learning. We refer the reader to (Bronstein et al.,
2016) for detailed information on GNNs.

Despite all the success of GNNs, few-shot classification remains an under-addressed problem. Some
recent attempts have focused on solving the few-shot learning on graph data where GNNs are either
trained via co-training and self-training (Li et al., 2018a), or extended by stacking transposed graph

2

Under review as a conference paper at ICLR 2020

convolutional layers imputing a structural regularizer (Zhang et al., 2019) - however, both these
works focus only on the node classification task.

To the best of our knowledge, there does not exist any work pertaining few-shot learning on graphs
focusing on the graph classification task, thus providing the motivation for this work.

3 PRELIMINARIES

In this section, we introduce our notation and provide the necessary background for our few-shot
learning setup on graphs. We begin by describing the various data sample types, followed by our
learning procedure, in order to formally define few-shot learning on graphs. Finally, we define the
graph spectral distance between a pair of graphs.

Data sample sets: Let G denote a set of undirected unweighted graphs and Y be the set of associated
class labels. We consider two disjoint populations of labeled graphs consisting of i.i.d. graph sam-
ples, the set of base class labeled graphs GB = {(g(B)

i , y
(B)
i)}ni=1 and the set of novel class labeled

graphs GN = {(g(N)
i , y

(N)
i)}mi=1, where g(B)

i , g
(N)
i ∈ G, y(B)

i ∈ Y(B), and y(N)
i ∈ Y(N). Here, the

set of base and novel class labels are denoted by Y(B) = {1, . . . ,K} and Y(N) = {K+1, . . . ,K ′},
respectively, where K ′ > K. Both Y(B) and Y(N) are disjoint subsets of Y , so, Y(B) ∩ Y(N) = ∅.
Note that m � n, i.e., there are far fewer novel class labeled graphs compared to the base class
labeled ones. Besides GB and GN , we consider a set of t unlabeled unseen graphs GU :=

{g(U)
1 , . . . , g

(U)
t | g(U)

i ∈ π1(GN), i = 1 . . . t}, for testing1.

Learning procedure: Inspired by the initialization based methods, we similarly follow a two-stage
approach of training followed by fine-tuning.

During training, we train a graph feature extractor Fθ(GB) with network parameters θ followed by
a classifier C(GB) on graphs from GB , where the loss function is the standard cross-entropy loss
Lc. In order to better recognize and generalize well on samples from novel classes, in the fine-
tuning phase, the pre-trained feature extractor Fθ(.) along with its trained parameters is fixed and
the classifier C(GN) is trained on the novel class labeled graph samples from GN , with the same
loss Lc.
Now, given the classification of data samples and the two-stage learning method, our problem of
few-shot classification on graphs can be defined as follows.

Problem definition: Given n base-class labeled graphs from GB during the training phase and m
novel-class labeled graphs from GN during the fine-tuning phase, where m � n, the objective
of few-shot graph classification is to classify t unseen test graph samples from GU . Moreover, if
m = qT , where T = K ′ −K, i.e., each novel class label appears exactly q times in GN , then this
setting is referred to as the q-shot, T -way learning.

Graph spectral distance: Let us consider the graphs in G. The normalized Laplacian of a graph
g ∈ G is defined as ∆g = I − D−1/2AD1/2, where A and D are the adjacency and the degree
matrices of graph g, respectively. The set of eigenvalues of ∆g given by {λi}|V |i=1 is called the
spectrum of ∆g and is denoted by σ(g). It is well known that the spectrum σ(g) of a normalized
Laplacian matrix is contained in interval [0, 2]. We assign a Dirac mass δλi concentrated on each
λi ∈ σ(g), thus associating a probability measure to σ(g) supported on [0, 2], called the graph
spectral measure µσ(g). Furthermore, let P ([0, 2]) be the set of probability measures on interval
[0, 2].

We now define the p-th Wasserstein distance between probability measures, which we later use to
define the spectral distance between a pair of graphs.

Definition 1 Let p ∈ [1,∞) and let c : [0, 2] × [0, 2] → [0,+∞] be the cost function between the
probability measures µ, ν ∈ P ([0, 2]). Then the p-th Wasserstein distance between measures µ and

1We use the notation π1(p) and π2(p) to denote the left and right projection of an ordered pair p, respec-
tively.

3

Under review as a conference paper at ICLR 2020

Feature
extractor

Classifier

Base class graphs

.

.

.

Training stage

Feature
extractor

Super-class
Classifier

Novel class graphs

.

.

.

Fine-tuning stage

Fixed weights

Tuned/Updated
weights in GAT

Figure 1: The training (left) and fine-tuning (right) stages of our GNN.

ν is given by

Wp(µ, ν) =

(
inf
γ

∫
[0,2]×[0,2]

c(x, y)pdγ | γ ∈ Π(µ, ν)

) 1
p

where Π(µ, ν) is the set of transport plans, i.e., the collection of all measures on [0, 2]× [0, 2] with
marginals µ and ν.

Given the general definition of the p-th Wasserstein distance between probability measures and the
graph spectral measure, we can now define the spectral distance between a pair of graphs in G.

Definition 2 Given two graphs g, g′ ∈ G, the spectral distance between them is defined as

W p(g, g′) := Wp

(
µσ(g), µσ(g′)

)
In words, W p(g, g′) is the optimal cost of moving mass from the graph spectral measure of graph
g to that of graph g′, where the cost of moving unit mass is proportional to the p-th power of the
difference of real-eigenvalues in interval [0, 2]2.

4 OUR METHOD

We present our proposed approach here. First, given abundant base-class labels, we cluster them into
super-classes by computing prototype graphs from each class, followed by clustering the prototype
graphs based on their spectral properties. This clustering of prototype graphs induces a natural
clustering on their corresponding class labels, resulting in super-classes (as outlined in Section 4.1).
These super-classes are then used in the creation of a super-graph used further down by our GNN.
Note that the creation of super-classes, followed by building a super-graph are a once-off process.
The prototype graphs as well as the super-classes for the base classes can be stored in memory for
further use.

Next, we explain our graph neural network’s architecture which comprises of a feature extractor
Fθ(.) and a classifier C(.), described in Section 4.2. The classifier C(.) is further subdivided into a
classifier Csup that predicts the superclass of a graph feature vector and a graph attention network
(GAT) CGAT to predict the graph’s class label. Figure 1 illustrates the training and fine-tuning
phases of our GNN.

4.1 COMPUTING SUPER CLASSES

In order to exploit inter-class relationships between base-class labels, we cluster them in the follow-
ing manner. First, we partition the set GB into class-specific sets G(i), for i = 1 . . .K, where G(i)

is the set of graphs with base-class label i. Thus, GB =
⊔K
i=1G

(i).

2In practice, extremely fast computation of W p(g, g′) is achieved using a regularized optimal transport
(OT) (Genevay et al., 2016), which makes use of the Sinkhorn algorithm.

4

Under review as a conference paper at ICLR 2020

Then, we compute class prototype graphs for each class-specific set. The class prototype graph for
class i represented by pi is given by

pi = argmin
gi∈π1(G(i))

1

|G(i)|

|G(i)|∑
j=1

W p(gi, gj) (1)

Essentially, the class prototype graph pi for the i-th class is the graph with the least average spectral
distance to the rest of the graphs in the same class. Given these K prototypes, we cluster them using
Llyod’s method (also known as k-means)3.

Clustering prototype graphs: Given K unlabeled prototypes p1, . . . , pK ∈ π1(GB) and their
associated spectral measures µσ(p1), . . . , µσ(pK) ∈ P ([0, 2]). We rename the spectral measures as
s1, . . . , sK to ease notation. Thus, our goal is to associate these spectral measures to at most k
clusters, where k ≥ 1 is a user defined parameter.

The k-means problem finds a k-partition C = {C1, . . . , Ck} that minimizes the following objective
that represents the overall distortion error of the clustering

argmin
C

k∑
i=1

∑
si∈Ci

Wp(si, B(Ci)) (2)

where si is a prototype graph in cluster Ci and B(Ci) is the Wasserstein barycenter of the cluster
Ci. The barycenter is computed as

B(Ci) = argmin
p∈P ([0,2])

|Ci|∑
j=1

Wp(p, s(i, j)) (3)

where s(i, j) denotes the j-th spectral measure in the i-th cluster Ci.

Llyod’s algorithm: Given an initial set of Wasserstein barycentersB(1)(C1), . . . , B(1)(Ck) of spec-
tral measures at step t = 1, one uses the standard Lloyd’s algorithm to find the solution by alternating
between the assignment (Equation 4) and update (Equation 5) steps

C
(t)
i =

{
sp : Wp(sp, B

(t)(Ci)) ≤Wp(sp, B
(t)(Cj)),∀j, 1 ≤ j ≤ k, 1 ≤ p ≤ K

}
(4)

C
(t+1)
i = B(C

(t)
i) (5)

Llyod’s algorithm is known to converge to a local minimum (except in pathological cases, where it
can oscillate between equivalent solutions). The final output is a grouping of the prototype graphs
into k groups, which also induces a grouping of the corresponding base classes. We denote these
class groups as super-classes and denote the set of super-classes as Ysup.

4.2 OUR GRAPH NEURAL NETWORK

Feature extractor: To apply standard neural network architectures for downstream tasks we must
embed the graphs in a finite dimensional vector space. We consider graph neural networks (GNNs)
that employ the following message-passing architecture

H(j) = M(A,H(j−1), θ(j))

where H(j) ∈ R|V |×d are the node embeddings (i.e., messages) computed after j steps of the GNN
and M is the message propagation function which depends on the adjacency matrix of the graph
A, the trainable parameters of the jth layer θ(j), and node embeddings H(j−1) generated from the
previous step.

A recently proposed GNN called the graph isomorphism network (GIN) by Xu et al. (2019) was
shown to be stronger than several popular GNN variants like GCN Kipf & Welling (2016) and
GraphSAGE Hamilton et al. (2017). What makes GIN so powerful and sets it apart from the other
GNN variants is its injective neighborhood aggregation scheme which allows it to be as powerful as

3We used the seeding method suggested in k-means++ (Arthur & Vassilvitskii, 2007)

5

Under review as a conference paper at ICLR 2020

the Weisfeiler-Lehman (WL) graph isomorphism test. Motivated by this finding, we chose GIN as
our graph feature extractor. The message propagation scheme in GIN is given by

H(j) = MLP ((1 + ε)j)�H(j−1) +ATH(j−1)) (6)
Here, ε is a layer-wise learnable scalar parameter andMLP represents a multi-layer perceptron with
layer-wise non-linearities for more expressive representations. The full GIN model run R iterations
of Equation 6 to generate final node embeddings which we represent by H(R). As features from
earlier iterations can also be helpful in achieving higher discriminative power, embeddings H(j)

from all R iterations are concatenated as

Hg =

∥∥∥∥R
j=1

H(j) ,

Here, H(j) =
∑
v∈V H

(j)
v , where H(j)

i represents the i-th node’s embedding in the j-th iteration
and ‖ denotes a concatenation operator. Hg now contains the graph embedding of a graph g and is
passed on to the classifier.

Classifier: Here, our objective is to improve the class separation produced by the graph embeddings
of the feature extractor Fθ(.) and we do this by building a “graph of graph embeddings”, called a
super-graph gsup, where each node is a graph feature vector. We then employ our classifier C(.) on
this super-graph to achieve better separation among the graph classes in the embedding space.

During training, we first build the super-graph gsup on a batch of base-labeled graphs as a collection
of k-NN graphs, where each constituent k-NN graph is built on the graphs belonging to the same
super-class. gsup is then passed through a multi-layered graph attention network CGAT to learn the
associated class probabilities. The features extracted from Fθ(.) are passed into the MLP network
Csup to learn the associated super-class labels. Csup and CGAT combine to form our classifier
C(.). The cross-entropy losses associated with Csup and CGAT are added to give the overall loss
for C(.). The intuition behind construction of gsup to train CGAT on was to further improve the
existing cluster separation based on graph spectral measures by introducing a relational inductive
bias (Battaglia et al., 2018) that is inherent to the GNN CGAT .

Recall that we adopt an initialization method (described in 3). In our fine-tuning stage, novel class
labeled graphs from GN are input to the network. The pre-trained parameters learned by the feature
extractor Fθ(.) are fixed and Csup is used to infer the novel graph’s super-class label, followed by
creation of super-graph on the novel graph samples and finally updating the parameters in CGAT
through the loss.

5 EXPERIMENTAL RESULTS

5.1 BASELINES AND DATASETS

The standard graph classification datasets do not adequately satisfy the requirements for few-shot
learning due to the dearth of unique class labels. Hence, we pick two new classification datasets,
namely, Letter-High and TRIANGLES. The details and statistics for these datasets are given in Ap-
pendix A.1. As there do not exist any standard state-of-the-art methods for few-shot graph clas-
sification, we chose existing baselines for standard graph classification from both supervised and
unsupervised methods.

For supervised deep learning baselines, we chose - GIN (Xu et al. (2019)), CapsGNN (Xinyi & Chen
(2019)), and Diffpool (Lee et al. (2019)). We ran these methods with similar settings as ours, i.e.,
by partitioning the main model into feature extraction and classifier sub-models to compare them in
a fair and informative manner. From the unsupervised category, we consider 4 powerful SOTA
methods - AWE (Ivanov & Burnaev (2018)), Graph2Vec (Narayanan et al. (2017)), Weisfeiler-
Lehman subtree Kernel (Shervashidze et al. (2011)), and Graphlet count kernel (Shervashidze et al.
(2009)). Since we want to analyze the few-shot classification abilities of these models, we essentially
want to find out how well these algorithms can achieve class separation. We use k-NN search on the
output embeddings of these algorithms.

Further configuration and implementation details for the baselines can be found in Appendix A.2.
We also emphasize the benefit of using a GNN as a classifier by showing the adaptation of our model
to semi-supervised fine-tuning (in Appendix A.5) and active learning (in Appendix A.6) settings.

6

Under review as a conference paper at ICLR 2020

Table 1: Results for various few-shot scenarios on Letter-High and TRIANGLES datasets. The best
results are highlighted in bold while the second best results are underlined.

Method Letter-High TRIANGLES
5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

WL 65.27± 7.67 68.39± 4.69 72.69± 3.02 51.25± 4.02 53.26± 2.95 57.74± 2.88
Graphlet 33.76± 6.94 37.59± 4.60 41.11± 3.71 40.17± 3.18 43.76± 3.09 45.90± 2.65
AWE 40.60± 3.91 42.20± 2.87 43.12± 1.00 39.36± 3.85 42.58± 3.11 44.98± 1.54
Graph2Vec 66.12± 5.21 68.17± 4.26 70.28± 2.81 48.38± 3.85 50.16± 4.15 54.90± 3.01
Diffpool 58.69± 6.39 61.59± 5.21 64.67± 3.21 64.17± 5.87 67.12± 4.29 73.27± 3.29
CapsGNN 56.60± 7.86 60.67± 5.24 63.97± 3.69 65.40± 6.13 68.37± 3.67 73.06± 3.64
GIN 65.83± 7.17 69.16± 5.14 73.28± 2.17 63.80± 5.61 67.30± 4.35 72.55± 1.97
GIN-k-NN 63.52± 7.27 65.66± 8.69 67.45± 8.76 58.34± 3.91 61.55± 3.19 63.45± 2.76
OurMethod-GCN 68.69± 6.50 72.80± 4.12 75.17± 3.11 69.37± 4.92 73.11± 3.94 77.86± 2.84
OurMethod-GAT 69.91± 5.90 73.28± 3.46 77.38± 1.58 71.40± 4.34 75.60± 3.67 80.04± 2.20

(a) Our Method-GAT (b) GIN (c) WL Kernel

Figure 2: Visualization: t-SNE plots of the computed embeddings of test graphs on 20-shot scenario
from OurMethod-GAT (left), GIN (middle) and WL Kernel (right) on TRIANGLES dataset. The
embeddings for both our model and GIN are taken from the final layers of the respective models.

5.2 FEW-SHOT RESULTS

We consider two variants of our model as naive baselines. In the first variant, we replace our GAT
classifier with GCN Kipf & Welling (2016). We call this model OurMethod-GCN. This variant is
used to justify the choice of GAT over GCN.

In the second variant, we replace the entire classifier with the k-NN algorithm over the features
extracted from various layers of the feature extractor. We call this variant GIN-k-NN and this is
introduced to emphasize the significance of building a super-graph and using a GAT on it as a
classifier to exploit the relational inductive bias.

The results for all the datasets in various q-shot scenarios, where q ∈ {5, 10, 20} are given in Table 1.
We run each model 50 times and report averaged results. In every run, we select a different novel
labeled subsetGN for fine-tuning the classifiers of the models. The evaluation for all models is done
by randomly selecting a subset of 400 samples from the testing set GU and averaging over 10 such
random selections. The results clearly show that our proposed method and its GCN variant (i.e.,
OurMethod-GCN) outperform the baselines. GIN-k-NN shows significant degradation in results,
thus strongly indicating that the improvements of our method can primarily be attributed to our GNN
classifier. The improvements in results are higher on the TRIANGLES dataset in contrast to Letter-
High, which can be attributed to the smaller size of the graphs in Letter-High making it difficult to
distinguish based on graph spectra alone. GIN, WL, and Graph2Vec show much better results as
compared to other baselines for all the q-shot scenarios, whereas AWE and Graphlet Kernel show
significantly low results, unable to capture the properties of the graphs well. The DL baselines on
the other hand show improvements on the TRIANGLES dataset, where the unsupervised methods
fails to capture the local node properties. For the 20-shot scenario on TRIANGLES, our GAT variant
shows an improvement of around 7% over DL baselines and more than 20% when compared to
unsupervised methods. Furthermore, the t-SNE plots in Figure 3 show a substantial and interesting
separation of class labels which strongly indicate that a good feature extractor in conjunction with a
GNN perform well as a combination.

7

Under review as a conference paper at ICLR 2020

Table 2: Ablation Study: “No-SC” represents our classifier C(.) without Csup and “With-SC”
represents C(.) with both Csup and CGAT present.

Dataset 10-shot 20-shot
No-SC With-SC No-SC With-SC

Letter-High 71.13 ± 3.64 73.61 ± 3.19 75.23 ± 2.48 77.42 ± 1.47
TRIANGLES 74.03 ± 3.89 76.49 ± 3.26 76.89 ± 2.63 80.14 ± 1.88

Table 3: Model analysis over number of super-classes in 20-shot scenario. Default value of param-
eter k is fixed at 2.

Dataset 20-shot
1 2 3 4 5

Letter-High 74.43 ± 2.61 76.61 ± 1.67 77.51 ± 1.49 76.31 ± 1.98 75.05 ± 2.29
TRIANGLES 76.43 ± 2.87 79.55 ± 1.91 80.51 ± 1.72 78.91 ± 2.09 78.25 ± 2.40

5.3 ABLATION STUDY ON NUMBER OF SUPER-CLASSES

Here, we study the behavior of our proposed network model without the super-class classifier Csup.
In Table 2 (10 and 20-shot setting), we observe a marked increase with the addition of our classifier
which uses the super-class information and the super-graph based on spectral measures to guide
CGAT towards improving the class separation of the graphs during both the training and fine-tuning
stages.

5.4 SENSITIVITY ANALYSIS OF VARIOUS ATTRIBUTES

Our proposed method contains two crucial attributes. We analyze our model by varying: (i) the
number of super-classes and (ii) the k-value in super-graph construction. The effect of varying
these attributes on model accuracy are shown in Tables 3 and 4, respectively. As we increase the
number of super-classes, we observe the accuracy improving steadily up to 3 super-classes and
then dropping from there onwards. For super-classes less than 3, we observe that the k-NN graph
does not respect the class boundaries that are already imposed by the graph spectral measures, thus
connecting more arbitrary classes. On the other hand, increasing the number of super-classes past
3, makes each super-class cluster very sparse with few graph classes within, leading to an underflow
of information between the graph classes.

The k-value or the number of neighbors of each node belonging to the same connected component
in the super-graph (i.e., belonging to the same super-class) is another salient parameter upon which
hinges the information flow (via message passing) between the graphs of the same super-class. We
analyze our model with k values in the set {2, 4, 6, 8} and a commonly used heuristic method,
whereby each graph is connected to

√
bs nearest neighboring graphs based on the Euclidean similar-

ity of their feature representations, where bs is the number of samples in the mini-batch correspond-
ing to super-classes s. We achieve best results with 2-NN graphs per super-class and increasing
k beyond it leads to denser graphs with unnecessary connections between classes belonging to the
same super-class.

Table 4: Model analysis over number of neighbors (k) in super-graph for 20-shot scenario. Default
value for the number of super-classes is fixed at 3.

Dataset 20-shot
2 4 6 8 Heuristic

Letter-High 77.33 ± 1.71 76.61 ± 1.67 75.63 ± 2.49 74.66 ± 2.61 74.35 ± 2.48
TRIANGLES 80.77 ± 1.57 79.85 ± 1.59 79.45 ± 1.97 78.93 ± 2.04 79.42 ± 3.16

8

Under review as a conference paper at ICLR 2020

6 CONCLUSION

In this paper, we investigated the problem of few-shot learning on graphs for the graph classification
task. We explicitly created a super-graph on the base-labeled graphs and then grouped / clustered
their associated class labels into super-classes, based on the graph spectral measures attributed to
each graph and the Lp-Wasserstein distances between them. We found that training our GNN on
the super-graph along with the auxiliary super-classes resulted in a marked improvement over state-
of-the-art GNNs. A promising future work is to propose new GNN models that break away from
current neighborhood aggregation schemes to specifically overcome the obstacle posed by few-shot
learning on graphs. Our source-code and dataset splits have been made public in an attempt to attract
more attention to the context of few-shot learning on graphs.

REFERENCES

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM J. Math. Analysis,
43(2):904–924, 2011.

David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp.
1027–1035, 2007.

Lars Backstrom and Jure Leskovec. Supervised random walks: Predicting and recommending links
in social networks. CoRR, abs/1011.4071, 2010. URL http://arxiv.org/abs/1011.
4071.

Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wier-
stra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Re-
lational inductive biases, deep learning, and graph networks. arXiv, 2018. URL https:
//arxiv.org/pdf/1806.01261.pdf.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(1):
47–56, January 2005. ISSN 1367-4803. doi: 10.1093/bioinformatics/bti1007. URL http:
//dx.doi.org/10.1093/bioinformatics/bti1007.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Ge-
ometric deep learning: going beyond euclidean data. CoRR, abs/1611.08097, 2016. URL
http://arxiv.org/abs/1611.08097.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and lo-
cally connected networks on graphs. In International Conference on Learning Representations
(ICLR2014), CBLS, April 2014, 2014.

Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and Christos Faloutsos.
Polonium: Tera-scale graph mining and inference for malware detection. In SIAM INTERNA-
TIONAL CONFERENCE ON DATA MINING (SDM), pp. 131–142, 2011.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HkxLXnAcFQ.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 3844–3852.
Curran Associates, Inc., 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular

9

http://arxiv.org/abs/1011.4071
http://arxiv.org/abs/1011.4071
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/pdf/1806.01261.pdf
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://dx.doi.org/10.1093/bioinformatics/bti1007
http://arxiv.org/abs/1611.08097
https://openreview.net/forum?id=HkxLXnAcFQ

Under review as a conference paper at ICLR 2020

fingerprints. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 28, pp. 2224–2232. Curran Associates, Inc.,
2015.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE Trans.
Pattern Anal. Mach. Intell., 28(4):594–611, April 2006. ISSN 0162-8828. doi: 10.1109/TPAMI.
2006.79. URL https://doi.org/10.1109/TPAMI.2006.79.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
scale optimal transport. In Advances in Neural Information Processing Systems 29, pp. 3440–
3448. 2016.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Jiao Gu, Bobo Hua, and Shiping Liu. Spectral distances on graphs. Discrete Applied Mathematics,
190-191:56 – 74, 2015.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. CoRR, abs/1706.02216, 2017. URL http://arxiv.org/abs/1706.02216.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. CoRR, abs/1506.05163, 2015. URL http://arxiv.org/abs/1506.05163.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2186–2195, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/ivanov18a.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Kamalika Chaud-
huri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3734–3743,
Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.
press/v97/lee19c.html.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. CoRR, abs/1801.07606, 2018a. URL http://arxiv.org/abs/
1801.07606.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI, 2018b.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. CoRR,
abs/1707.05005, 2017. URL http://arxiv.org/abs/1707.05005.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2018. URL http://arxiv.org/abs/1803.02999.

10

https://doi.org/10.1109/TPAMI.2006.79
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1506.05163
http://proceedings.mlr.press/v80/ivanov18a.html
http://proceedings.mlr.press/v80/ivanov18a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://proceedings.mlr.press/v97/lee19c.html
http://proceedings.mlr.press/v97/lee19c.html
http://arxiv.org/abs/1801.07606
http://arxiv.org/abs/1801.07606
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1803.02999

Under review as a conference paper at ICLR 2020

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=rJY0-Kcll.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. CoRR, abs/1807.05960,
2018. URL http://arxiv.org/abs/1807.05960.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. Trans. Neur. Netw., 20(1):61–80, January 2009. ISSN 1045-
9227. doi: 10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/TNN.
2008.2005605.

N. Shervashidze, SVN. Vishwanathan, TH. Petri, K. Mehlhorn, and KM. Borgwardt. Efficient
graphlet kernels for large graph comparison. In JMLR Workshop and Conference Proceed-
ings Volume 5: AISTATS 2009, pp. 488–495, Cambridge, MA, USA, April 2009. Max-Planck-
Gesellschaft, MIT Press.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, Novem-
ber 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.
2078187.

Petar Velikovi, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li, and Yoshua Ben-
gio. Graph attention networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ.

B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra arising
during this reduction. 1968.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. CoRR, abs/1901.00596, 2019.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=Byl8BnRcYm.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Shengzhong Zhang, Ziang Zhou, Zengfeng Huang, and Zhongyu Wei. Few-shot classification on
graphs with structural regularized GCNs, 2019. URL https://openreview.net/forum?
id=r1znKiAcY7.

11

https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
http://arxiv.org/abs/1807.05960
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dl.acm.org/citation.cfm?id=1953048.2078187
http://dl.acm.org/citation.cfm?id=1953048.2078187
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=r1znKiAcY7
https://openreview.net/forum?id=r1znKiAcY7

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 DATASET DETAILS

As there are no standard benchmarks available for few-shot graph classification, we picked 2 new
datasets Letter-High and TRIANGLES. These datasets can be downloaded here 4. The dataset statis-
tics are provided in Table 5, while the split statistics are provided in Table 6

Table 5: Dataset Statistics

Dataset Name # Classes # Graphs Avg # Nodes Avg # Edges

Letter-High 15 2250 4.67 4.50
TRIANGLES 10 45000 20.85 35.50

Table 6: Dataset Statistics

Dataset Name # Train
Classes

Test
Classes

Training
Graphs

Validation
Graphs

Test
Graphs

Letter-High 11 4 1330 320 600
TRIANGLES 7 3 1126 271 603

The validation graphs are used to assess model performance on training classes itself to check over-
fitting as well as for grid-search over hyperparameters. The actual train-testing class splits used for
this paper are provided with the code. Since the TRIANGLES dataset has a large number of sam-
ples, this makes it infeasible to run many baselines including DL and non-DL methods. Hence, we
sample 200 graphs from each class, making the total sample size 2000.

A.2 BASELINE DETAILS

This section details the implementation of the baseline methods. Since, DL-based methods - GIN,
CapsGNN and DIFFPOOL have not been previously run on these datasets, we select the crucial
hyper-parameters - such as number of layers heuristically based on the results of standard graph
classification datasets on the best performing variants of these models. For these three methods we
take the novel layers proposed in the corresponding papers as their feature extractors, while down-
stream MLP layers are chosen as the classifier. The training and evaluation strategies are similar to
our model, i.e., the models are first trained in an end-to-end fashion on the training dataset GB until
convergence with learning rate decay on loss plateau and then the classifier layers are fine-tuned
over GN , keeping the parameters of the feature extractor layers fixed.

For the unsupervised models - WL subtree kernel, Graphlet Count kernel, AWE and Graph2Vec, the
evaluation is done using k-NN search to assess the clustering quality of these models in our few-shot
scenario. We refrain from using high-level classifier models such as SVM or MLPs, since training
these classifiers on few-shot regime will not properly assess the abilities of these models to cluster
together graphs of similar class labels. We empirically found that using high level classifiers resulted
in higher deviations and lower mean accuracies. We choose the hyper-parameters for these models
using grid-search, since they are significantly faster and each one of these models have few highly
sensitive parameters which affect the model significantly. For these models, we perform a grid
search for selection of k in the k-NN algorithm from the set {1, 2, 3, 4, 5} for the 5-shot scenario,
of which k = 1 was found to perform the best. For higher shot scenario, the search was performed
over the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, where we again found k = 1 to be the best. The validation
set is used to check overfitting and hyper-parameter selection on the baseline methods.

4https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

12

Under review as a conference paper at ICLR 2020

A.3 OUR MODEL DETAILS

This section provides the implementation details of our proposed model. Since, our feature extractor
model is GIN, we maintain similar parameter settings as recommended by their paper. As mentioned
in section 4.2, using embeddings from all iterations of the message passing network helps achieve
better discriminative power and improved gradient flow, therefore we employ the same strategy in
our feature extractor. The number of super-classes are selected from the set {1, 2, 3, 4, 5} using
grid-search. The k-value for construction of super-graph was selected from the set {2, 4, 6, 8}. The
feature extractor model uses batch-normalization between subsequent message passing layers. We
use dropout of 0.5 in the Csup layers. The CGAT layers undergo normalization of inputs between
subsequent layers along with a dropout of 0.5, however, the normalization mechanism in classifier
layers is different from batch-norm. We normalize each feature embedding to have Euclidean norm
with value 1. Essentially,

xj+1
input =

xjout
||xjout||2

(7)

where xj+1
input is the input of j + 1th layer of classifier, xjout is the output of the jth layer. The inputs

of the first layer of CGAT also undergo the same transformation over the outputs of the feature
extractor model. We train our models with Adam (Kingma & Ba (2014)) with an initial learning
rate of 10−3 for 50 epochs. Each epoch has 10 iterations, where we randomly select a mini-batch
from the training data GB . The fine-tuning stage consists of 20 epochs with 10 iterations per epoch.
We use a two-layer MLP over the final attention layer of CGAT for classification. The attention
layers use multi-head attention with 2 heads and leaky ReLU slope of 0.1 . The embeddings from
both the attention heads are concatenated. For 20-shot, we set k to 2 and batch size to 128 on the
Letter-High dataset, while k is set to 2 and batch size 64 on TRIANGLES dataset. The number of
super-classes is fixed at 3 for both the datasets. We used Python Optimal Transport (POT) library 5

for implementation of the p-th Wasserstein distance.

(a) Our Model (b) GIN (c) WL Kernel

Figure 3: Visualization: t-SNE plots of the computed embeddings of test graphs on 20-shot scenario
from OurMethod-GAT (left), GIN (middle) and WL Kernel (right) on Letter-High dataset.

A.4 SILHOUETTE SCORES

To assess the clustering abilities of the models we analyze the silhouette scores of the test embed-
dings produced by the GAT variant of our method, GIN and WL Kernel. Silhouette coefficient
essentially measures the ratio of intra-class versus inter-class distance. The Silhouette Coefficient
is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for
each sample. The Silhouette Coefficient for a sample is given by (b−a)

max(a,b) ,where b is the distance
between a sample and the nearest cluster that the sample is not a part of. The results for mean
silhouette coefficient over the test samples averaged over multiple runs are shown in Table 7. We
normalize the embeddings before calculating the silhouette coefficient. We can clearly see that our
model creates better clusters with low intra-cluster distance as well as high inter-cluster distance.
Note that coefficient for WL remains the same for all scenarios since it computes fixed embeddings
attributed to absence of any DL component.

5https://pot.readthedocs.io/en/stable/all.html

13

Under review as a conference paper at ICLR 2020

Table 7: Silhouette coefficients of the test classes for the three dominant models - GAT variant of
Our Method, GIN and WL. The best scores are highlighted in bold.

Method Letter-High TRIANGLES
10-shot 20-shot 10-shot 20-shot

GIN 0.2157 0.2316 0.0373 0.1256
WL Kernel 0.2490 0.2490 0.0186 0.0186
OurMethod-GAT 0.3494 0.3787 0.3824 0.4508

Table 8: Semi-supervised fine-tuning results for various p values on 10-shot and 20-shot scenarios,
where “No Semi-Sup” represents the fine-tuning stage without additional labeled samples.

Dataset 10-shot 20-shot
No Semi-Sup 25 50 No Semi-Sup 25 50

Letter-High 73.21± 3.19 74.18± 2.58 74.65± 2.16 76.95± 1.79 77.79± 1.52 78.31± 1.11
TRIANGLES 75.83± 2.97 76.36± 2.59 77.8± 2.04 80.09± 1.78 81.29± 1.98 81.87± 1.45

A.5 SEMI-SUPERVISED FINE-TUNING

In many real-world learning scenarios, it is quite common to find abundant unlabelled data. Since
our model uses a GNN classifier, this makes it possible to use unlabelled data while learning through
message passing, where the fine tuning stage of our method is performed in semi-supervised settings.

Essentially, while fine tuning the model, i.e., only training the classifier CGAT on GN , we addi-
tionally use p more graphs along with GN , whose labels are unknown. The learning objective for
fine tuning stage doesn’t change since the gradients are back-propagated from the labeled samples
only. In this setting, each node in the attention classifier can aggregate information from unlabelled
samples as well, thus allowing improved learning of the graphs features in CGAT . We show the
results for p values 25 and 50. The results are shown in Table 8. We observe an increase in the
accuracy with increase in number of unlabeled samples during fine-tuning phase.

A.6 ADAPTATION TO ACTIVE-LEARING

In this section, we show the adaptation of our model to highly practical active learning scenario. In
many real world applications, we might start with few samples per classes, however as the number
of samples to classify from these classes increase over time, some of these samples can be used by
the model to adaptively learn and improve with very less human intervention, since the number of
number of samples to be queried for theirs label can always be controlled.

To perform active-learning, we first select a random subset of size 100 which we term as Grandom,
then fine tune the model on GN and further evaluate the model on Grandom. Thereafter, l relatively
important samples are chosen from Grandom and added to GN for another step of fine-tuning.
There can be multiple strategies for defining relative importance of a sample. For our purpose, we
define a sample’s relative importance via its predicted class probability distribution. We sort these
samples in increasing order of the difference between their highest and second highest predicted
class probabilities and choose the first l samples from this sorted ranking. We call this importance
relative, since each sample is evaluated with respect to the setGN and thus, there is transductive flow
of information among the samples, hence defining the relative embeddings in the space. Intuitively
speaking, we have chosen the samples lying closer to separation boundary with respect to GN . The

Table 9: Active Learning Results. The value below each shot represents the number samples l,
added to GN for second fine-tuning step, where “No AL” represents the model evaluation without
additional labeled samples.

Dataset 10-shot 20-shot
No AL 15 25 No AL 15 25

Letter-High 73.34± 3.37 75.03± 3.24 76.89± 2.16 77.06± 1.73 78.44± 1.52 79.28± 1.36
TRIANGLES 76.02± 2.54 78.44± 1.84 79.91± 1.28 80.27± 1.84 81.74± 2.03 82.58± 1.57

14

Under review as a conference paper at ICLR 2020

results for various values of l are shown in Table 9. The evaluation is done as mentioned earlier
on the unseen set GU . We observe significant improvement in the 10-shot scenario for both the
datasets. This shows our model is capable of selecting important samples with respect to the few
existing samples and learn actively.

15

	Introduction
	Related Work
	Preliminaries
	Our Method
	Computing Super classes
	Our graph neural network

	Experimental Results
	Baselines and Datasets
	Few-shot Results
	Ablation Study on Number of Super-Classes
	Sensitivity Analysis of Various Attributes

	Conclusion
	Appendix
	Dataset details
	Baseline Details
	Our Model Details
	Silhouette Scores
	Semi-Supervised Fine-tuning
	Adaptation to Active-Learing

