
Under review as a conference paper at ICLR 2020

ADVERSARIAL LIPSCHITZ REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative adversarial networks (GANs) are one of the most popular approaches
when it comes to training generative models, among which variants of Wasserstein
GANs are considered superior to the standard GAN formulation in terms of learn-
ing stability and sample quality. However, Wasserstein GANs require the critic to
be 1-Lipschitz, which is often enforced implicitly by penalizing the norm of its
gradient, or by globally restricting its Lipschitz constant via weight normalization
techniques. Training with a regularization term penalizing the violation of the
Lipschitz constraint explicitly, instead of through the norm of the gradient, was
found to be practically infeasible in most situations. With a novel generalization
of Virtual Adversarial Training, called Adversarial Lipschitz Regularization, we
show that using an explicit Lipschitz penalty is indeed viable and leads to competi-
tive performance when applied to Wasserstein GANs, highlighting an important
connection between Lipschitz regularization and adversarial training.

1 INTRODUCTION

In recent years, Generative adversarial networks (GANs) (Goodfellow et al., 2014) have been
becoming the state-of-the-art in several generative modeling tasks, ranging from image generation
(Karras et al., 2018) to imitation learning (Ho and Ermon, 2016). They are based on an idea of
a two-player game, in which a discriminator tries to distinguish between real and generated data
samples, while a generator tries to fool the discriminator, learning to produce realistic samples on the
long run. Wasserstein GAN (WGAN) was proposed as a solution to the issues present in the original
GAN formulation. Replacing the discriminator, WGAN trains a critic to approximate the Wasserstein
distance between the real and generated distributions. This introduced a new challenge, as WGAN
requires the function space of the critic to only consist of 1-Lipschitz functions.

To enforce the Lipschitz constraint on the WGAN critic, Arjovsky et al. (2017) originally used
weight clipping, which was soon replaced by the much more effective method of Gradient Penalty
(GP) (Gulrajani et al., 2017), which consists of penalizing the deviation of the critic’s gradient norm
from 1 at certain input points. Since then, several variants of gradient norm penalization have been
introduced (Petzka et al., 2018; Wei et al., 2018; Adler and Lunz, 2018; Zhou et al., 2019b). As
an alternative, a weight normalization technique called Spectral Normalization (SN) (Miyato et al.,
2018) is a very efficient and simple method for enforcing a Lipschitz constraint on a per-layer basis.

Virtual Adversarial Training (VAT) (Miyato et al., 2017) is a semi-supervised learning method
for regularizing neural networks. It is applied to improve the network’s robustness against local
perturbations of the input. Using an iterative method based on power iteration, it approximates the
adversarial direction corresponding to certain input points. Perturbing an input towards its adversarial
direction changes the network’s output the most.

We propose a method called Adversarial Lipschitz Regularization (ALR) that can be seen as a
generalization of VAT, that enables the training of neural networks with regularization terms penalizing
the violation of the Lipschitz constraint explicitly, instead of through the norm of the gradient. It
provides means to generate a pair for each input point, for which the Lipschitz constraint is likely to
be violated with high probability. In general, enforcing Lipschitz continuity of complex models can
be useful for a lot of applications. In this work, we focus on applying ALR to Wasserstein GANs,
as regularizing or constraining Lipschitz continuity has proven to have a high impact on training
stability and reducing mode collapse.

Our contributions are as follows:

1

Under review as a conference paper at ICLR 2020

• We show that VAT can be seen as a Lipschitz regularization method.
• We propose ALR, and apply it to penalize the violation of the Lipschitz constraint directly,

resulting in Adversarial Lipschitz Penalty (ALP).
• Applying ALP on the critic in WGAN (WGAN-ALP), we show state-of-the-art performance

in terms of Inception Score and Fréchet Inception Distance when trained on CIFAR-10.
• To demonstrate that ALP works in the high dimensional setting, we apply it on the critic in

Progressive Growing GAN and show competitive performance when trained on CelebA-HQ.

2 BACKGROUND

2.1 WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) provide generative modeling by a generator network g
that transforms samples of a low-dimensional latent space Z into samples from the data space X ,
transporting mass from a fixed noise distribution PZ to the generated distribution Pg . The generator is
trained simultaneously with another network f called the discriminator, which is trained to distinguish
between fake samples drawn from Pg and real samples drawn from the real distribution Pr, which is
often represented by a fixed dataset. This network provides the learning signal to the generator, which
is trained to generate samples that the discriminator considers real. This iterative process implements
the minimax game

min
g

max
f

Ex∼Pr log(f(x)) + Ez∼PZ log(1− f(g(z))) (1)

played by the networks f and g. This training procedure minimizes the approximate Jensen-Shannon
divergence (JSD) between Pr and Pg (Goodfellow et al., 2014). However, during training these two
distributions might differ strongly or even have non-overlapping supports, which might result in
gradients received by the generator that are unstable or zero (Arjovsky and Bottou, 2017).

Wasserstein GAN (WGAN) (Arjovsky et al., 2017) was proposed as a solution to this instability.
Originating from Optimal Transport theory (Villani, 2008), the Wasserstein metric provides a distance
between probability distributions with much better theoretical and practical properties than the JSD.
It provides a smooth optimizable distance even if the two distributions have non-overlapping supports,
which is not the case for JSD. It raises a metric dX from the space X of the supports of the probability
distributions P1 and P2 to the space of the probability distributions itself. For these purposes, the
Wasserstein-p distance requires the probability distributions to be defined on a metric space and is
defined as

Wp(P1, P2) =

(
inf

π∈Π(P1,P2)
E(x1,x2)∼πdX(x1, x2)p

) 1
p

, (2)

where Π(P1, P2) is the set of distributions on the product space X ×X whose marginals are P1 and
P2, respectively. The optimal π achieving the infimum in (2) is called the optimal coupling of P1 and
P2, and is denoted by π∗. The case of p = 1 has an equivalent formulation

W1(P1, P2) = sup
‖f‖L≤1

Ex∼P1
f(x)− Ex∼P2

f(x), (3)

called the Kantorovich-Rubinstein formula (Villani, 2008), where f : X → R is called the potential
function, ‖f‖L ≤ 1 is the set of all functions that are 1-Lipschitz with respect to the ground metric
dX , and the Wasserstein-1 distance corresponds to the supremum over all 1-Lipschitz potential
functions. The smallest Lipschitz constant for a real-valued function f with the metric space (X, dX)
as its domain is given by

‖f‖L = sup
x,y∈X;x 6=y

|f(x)− f(y)|
dX(x, y)

. (4)

Based on (3), the critic in WGAN (Arjovsky et al., 2017) implements an approximation of the
Wasserstein-1 distance between Pg and Pr. The minimax game played by the critic f and the
generator g becomes

min
g

max
‖f‖L≤1

Ez∼PZf(g(z))− Ex∼Prf(x), (5)

a formulation that proved to be superior to the standard GAN in practice, with substantially more stable
training behaviour and improved sample quality. The challenge became effectively restricting the

2

Under review as a conference paper at ICLR 2020

smallest Lipschitz constant of the critic f , sparking the birth of a plethora of Lipschitz regularization
techniques for neural networks.

2.2 LIPSCHITZ FUNCTION APPROXIMATION

A general definition of the smallest Lipschitz constant of a function f : X → Y is

‖f‖L = sup
x,y∈X;x 6=y

dY (f(x), f(y))

dX(x, y)
, (6)

where the metric spaces (X, dX) and (Y, dY) are the domain and codomain of the function f ,
respectively. The function f is called Lipschitz continuous if there exists a real constant K ≥ 0
for which dY (f(x), f(y)) ≤ K · dX(x, y) for any x, y ∈ X . Then, the function f is also called K-
Lipschitz. Theoretical properties of K-Lipschitz neural networks with low values of K were explored
in Oberman and Calder (2018), showing that training neural networks with Lipschitz constraints is
good for generalization and convergence.

Learning mappings with Lipschitz constraints became prevalent in the field of deep learning with the
introduction of WGAN (Arjovsky et al., 2017). Enforcing the Lipschitz property on the critic was
first done by clipping the weights of the network. This approach achieved superior results compared
to the standard GAN formulation, but still sometimes yielded poor quality samples or even failed
to converge. While clipping the weights enforces a global Lipschitz constant, it also reduces the
function space, which might not include the optimal critic any more.

Soon this method has been replaced by a softened one called Gradient Penalty (GP) (Gulrajani et al.,
2017). Motivated by the fact that the optimal critic should have unit gradient norm on lines connecting
the coupled points (x1, x2) ∼ π∗ according to (2), they proposed a regularizer that enforces unit
gradient norm along these lines, which not only enforces the Lipschitz constraint, but other properties
of the optimal solution as well. However, π∗ is not known in practice, which is why (Gulrajani et al.,
2017) proposed to apply GP on samples of the induced distribution Pi, by interpolating samples from
the marginals P1 and P2. The critic in the WGAN-GP formulation is regularized with the loss

λEx∼Pi(‖∇xf(x)‖2 − 1)2 (7)

where Pi denotes the distribution of samples obtained by interpolating pairs of samples drawn from
Pr and Pg , and λ is a hyperparameter acting as a Lagrange multiplier.

Theoretical arguments against GP were pointed out by Petzka et al. (2018), arguing that unit gradient
norm on samples of the distribution Pi is not valid, as the pairs of samples being interpolated are
generally not from the optimal coupling π∗, and thus do not necessarily need to match gradient norm
1. Furthermore, they point out that differentiability assumptions of the optimal critic are not met.
Therefore, the regularizing effect of GP might be too strong. As a solution, they suggested using a
loss penalizing the violation of the Lipschitz constraint either explicitly with

λEx,y∼Pτ
(
|f(x)− f(y)|
‖x− y‖2

− 1

)2

+

(8)

or implicitly with
λEx∼Pτ (‖∇xf(x)‖2 − 1)

2
+ (9)

where in both cases (a)+ denotes max(0, a). The first method has only proved viable when used on
toy datasets, and led to considerably worse results on relatively more complex datasets like CIFAR-10,
which is why Petzka et al. (2018) used the second one, which they termed Lipschitz Penalty (LP).
Compared to GP, this term only penalizes the gradient norm when it exceeds 1. As Pτ they evaluated
the interpolation method described above, and also sampling random local perturbations of real and
generated samples, but found no significant improvement compared to Pi. Wei et al. (2018) proposed
dropout in the critic as a way for creating perturbed input pairs to evaluate the explicit Lipschitz
penalty (8), which led to improvements, but still relied on using GP simultaneously.

One of the strengths of the Wasserstein distance is that it can be defined with any metric dX , a fact that
Adler and Lunz (2018) built on by proposing Banach WGAN (BWGAN), which generalizes WGAN
to separable Banach spaces. They resort to these spaces because in order to use GP, they need a
tractable dual metric on the topological dual ofX . This approach brought considerable improvements,

3

Under review as a conference paper at ICLR 2020

and Adler and Lunz (2018) emphasized the fact that through explicit Lipschitz penalties one could
extend WGANs to general metric spaces as well.

A second family of Lipschitz regularization methods is based on weight normalization, restricting
the Lipschitz constant of a network globally instead of only at points of the input space. One such
technique is called spectral normalization (SN) proposed in Miyato et al. (2018), which is a very
efficient and simple method for enforcing a Lipschitz constraint with respect to the 2-norm on a
per-layer basis, applicable to neural networks consisting of affine layers and K-Lipschitz activation
functions. Gouk et al. (2018) proposed a similar approach, which can be used to enforce a Lipschitz
constraint with respect to the 1-norm and ∞-norm in addition to the 2-norm, while also being
compatible with batch normalization and dropout. Anil et al. (2018) argued that any Lipschitz-
constrained neural network must preserve the norm of the gradient during backpropagation, and to
this end proposed another weight normalization technique, showing that it compares favorably to SN,
and an activation function based on sorting.

2.3 VIRTUAL ADVERSARIAL TRAINING

VAT (Miyato et al., 2017) is a semi-supervised learning method that is able to regularize networks to
be robust to local adversarial perturbation. Virtual adversarial perturbation means perturbing input
sample points in such a way that the change in the output of the network induced by the perturbation
is maximal in terms of a distance between distributions. This defines a direction for each sample
point called the virtual adversarial direction, in which the perturbation is performed. It is called
virtual to make the distinction with the adversarial direction introduced in Goodfellow et al. (2015)
clear, as VAT uses unlabeled data with virtual labels, assigned to the sample points by the network
being trained. The regularization term of VAT is called Local Distributional Smoothness (LDS). It is
defined as

LLDS = D (p(y|x), p(y|x+ rvadv)) , (10)

where p is a conditional distribution implemented by a neural network, D(p, p′) is a divergence
between two distributions p and p′, for which Miyato et al. (2017) chose the Kullback-Leibler
divergence (KLD), and

rvadv = arg max
‖r‖2≤ε

D (p(y|x), p(y|x+ r)) (11)

is the virtual adversarial perturbation, where ε is a hyperparameter. VAT is defined as a training
method with the regularizer (10) applied to labeled and unlabeled examples. An important detail is
that (10) is minimized by keeping p(y|x) fixed and optimizing p(y|x+ rvadv) to be close to it.

The adversarial perturbation is approximated by the power iteration

rvadv ≈ ε
rk
‖rk‖2

, (12)

where

ri+1 ≈
∇rD (p(y|x), p(y|x+ r))

∣∣∣
r=ξri∥∥∥∥∇rD (p(y|x), p(y|x+ r))
∣∣∣
r=ξri

∥∥∥∥
2

, (13)

r0 is a randomly sampled unit vector and ξ is another hyperparameter. This iterative scheme is an
approximation of the direction at x that induces the greatest change in the output of p in terms of the
divergence D. Miyato et al. (2017) found that k = 1 iteration is enough in practical situations.

3 VIRTUAL ADVERSARIAL TRAINING AS LIPSCHITZ REGULARIZATION

VAT was defined by considering neural networks implementing conditional distributions p(y|x),
where the distribution over discrete labels y was conditioned on the input image x Miyato et al.
(2017). To see why LDS (10), the regularization term of VAT, can be seen as special kind of Lipschitz
continuity, we will use a different perspective. Consider a mapping f : X → Y with domain X and
codomain Y , where X is the space of images and Y is the space of distributions on the space of
labels. Since a divergence (KLD in particular) is a premetric (prametric, quasi-distance) on the space
of probability measures (Deza and Deza, 2009), Y can be considered a premetric space (Y, dY),

4

Under review as a conference paper at ICLR 2020

where dY is the divergence D from the VAT formulation. Let us metrize the space of images X with
the trivial metric

dX(x, y) =

{
0 if x = y,

1 otherwise.
(14)

From this perspective, the network f is a mapping from the metric space (X, dX) to the premetric
space (Y, dY). Although Lipschitz continuity is usually defined for mappings between metric spaces,
nothing stops us from defining the Lipschitz constant (6) with (Y, dY) being a premetric space. In
fact, the only restriction is the possible division by zero if dX(x, y) = 0 for some x 6= y, so we could
consider premetrics for dX as well. Let us rewrite (6) with y = x+ r to get

‖f‖L = sup
x,x+r∈X;0<dX(x,x+r)

dY (f(x), f(x+ r))

dX(x, x+ r)
. (15)

A given mapping f is K-Lipschitz if and only if for any given x ∈ X , taking the supremum over r in
(15) results in a value K or smaller. Assuming that this supremum is always achieved for some r, we
can define a notion of adversarial perturbation with respect to the Lipschitz continuity as

radv = arg max
x+r∈X;0<dX(x,x+r)

dY (f(x), f(x+ r))

dX(x, x+ r)
, (16)

and the corresponding maximal violation of the K-Lipschitz constraint at x as

LALP =

(
dY (f(x), f(x+ radv))

dX(x, x+ radv)
−K

)
+

. (17)

In the setting currently being considered, dY is D from VAT and dX is the trivial metric. Let us
also assume that we aim at learning a mapping f with the smallest possible ‖f‖L by setting K to 0,
making (16) and (17) reduce to

radv = arg max
x+r∈X;r 6=0

D(f(x), f(x+ r)) (18)

and
LALP = D(f(x), f(x+ radv)), (19)

respectively.

One can immediately see that (19) is exactly LDS (10), and (18) is quite similar to (11) as well. The
difference is the constraint ‖r‖2 ≤ ε in (11), but let us consider that as an implementation detail, as
well as the question of keeping f(x) fixed when minimizing (19). With these discrepancies aside, we
have recovered VAT as a special case of Lipschitz regularization.

4 ADVERSARIAL LIPSCHITZ REGULARIZATION

We define Adversarial Lipschitz Regularization (ALR) as the method of adding a regularization term
to the training objective that penalizes the violation of the Lipschitz constraint evaluated at sample
pairs obtained by adversarial perturbation. We call this term Adversarial Lipschitz Penalty (ALP) and
define it as

LALP :=

(
dY (f(x), f(x+ radv))

dX(x, x+ radv)
−K

)
+

(20)

where

radv = arg max
x+r∈X;0<dX(x,x+r)

dY (f(x), f(x+ r))

dX(x, x+ r)
(21)

is the adversarial perturbation with respect to the Lipschitz constraint, f : X → Y is a neural network
and K is the Lipschitz constant that we’d like to enforce. dX and dY are premetrics on the domain
X and codomain Y of f , respectively.

To put it in words, ALP measures the deviation of f from being K-Lipschitz evaluated at pairs of
sample points where one is the adversarial perturbation of the other. If added to the training objective,
it makes the learned mapping approximately K-Lipschitz around the sample points it is applied at.
We found that it is best to minimize (20) without keeping f(x) fixed. See Appendix A.3 for the
semi-supervised case.

5

Under review as a conference paper at ICLR 2020

4.1 APPROXIMATION OF radv

Similarly to VAT, the adversarial perturbation (21) is approximated using the power iteration by

rvadv ≈ ε
rk
‖rk‖2

, (22)

where

ri+1 ≈
∇rdY (f(x), f(x+ r))

∣∣∣
r=ξri∥∥∥∥∇rdY (f(x), f(x+ r))
∣∣∣
r=ξri

∥∥∥∥
2

, (23)

is the approximated adversarial direction with r0 being a randomly sampled unit vector. Unlike in
VAT, we do not fix ε, but draw it randomly from a predefined distribution Pε over R+ to apply the
penalty at different scales. The hyperparameters of the approximation scheme are therefore k, ξ and
those of Pε. The derivation of this formula is essentially the same as the one described in Miyato
et al. (2017), but is included in Appendix A.1 for completeness.

4.2 COMPARISON WITH OTHER LIPSCHITZ REGULARIZATION TECHNIQUES

Theoretically, ALR can be used with all kinds of premetrics dX and dY , and any kind of model
f , but the approximation of radv described above imposes a practical restriction. It approximates
the adversarial perturbation of x as a translation with length ε with respect to the 2-norm in the
adversarial direction, which is only a perfect approximation if the ratio in (20) is constant for any
ε > 0. This idealized setting is hardly ever the case, which is why we see the search for other
approximation schemes as an important future direction. There is a large number of methods for
generating adversarial examples besides the one proposed in VAT, which could possibly be combined
with ALR either to improve the approximation or to make it possible with new kinds of metrics.

In terms of efficiency when applied to WGANs, ALR compares favorably to the implicit methods
penalizing the gradient norm, and to weight normalization techniques as well, as demonstrated in the
experiments section. Adler and Lunz (2018) argued that penalizing the norm of the gradient as in
(9) is more effective than penalizing the Lipschitz quotient directly as in (8), as the former penalizes
the slope of f in all spatial directions around x, unlike the latter, which does so only along (x− y).
We hypothesize that using the explicit Lipschitz penalty in itself is insufficient because if one takes
pairs of samples x, y randomly from Pr, Pg or Pi (or just one sample and generates a pair for it with
random perturbation), the violation of the Lipschitz penalty evaluated at these sample pairs will be
far from its maximum, hence a more sophisticated strategy for sampling pairs is required. As we will
show, a carefully chosen sampling strategy can in fact make the explicit penalty favorable over the
implicit one.

To showcase the differences between weight normalization methods, implicit penalty methods and
explicit penalty methods, represented by SN, LP and ALR, respectively, we devised the following
toy example. Suppose that we want to approximate the following real-valued mapping on the
2-dimensional interval [−4, 4]2:

f(x, y) =

{
0 if 1 ≤

√
x2 + y2 ≤ 2,

1 otherwise
(24)

for −4 ≤ x, y ≤ 4. In addition, we want the approximation to be 1-Lipschitz. It is easy to see that
the optimal approximation is

f̂opt(x, y) =


1 if

√
x2 + y2 ≤ 0.5,

1.5−
√
x2 + y2 if 0.5 <

√
x2 + y2 <= 1.5,√

x2 + y2 − 1.5 if 1.5 <
√
x2 + y2 <= 2.5,

1 otherwise.

. (25)

This example has connections to WGAN, as the optimal critic is 1-Lipschitz, and its approximation
will provide the learning signal to the generator in the form of gradients. Therefore, it is important
to closely approximate the gradient of the optimal critic, which is achieved indirectly by Lipschitz

6

Under review as a conference paper at ICLR 2020

regularization. In this example, we will see how closely the different Lipschitz regularization methods
can match the optimal approximation f̂opt and its gradient. We implemented the example in PyTorch.
For the approximation f̂ , we use an MLP with 3 hidden layers containing 20, 40 and 20 neurons,
respectively, with ReLU activations after the hidden layers, and a variant which also has batch
normalization (BN) before the activations. We trained the networks for 214 iterations, with batches
consisting of an input, a corresponding output, and an additional input for regularization. The inputs
are drawn uniformly at random from [−4, 4]2 and the output is defined by (24). The minibatch size
was 64 for input-output pairs, and 1024 for regularization inputs. We used heatmaps to visualize the
target f and the gradient norm surfaces of the optimal and learned mappings, with the color gradient
going from black at 0 to white at 1, see Figure 1. This example is not intended to rank the competing
Lipschitz regularization methods, as it always depends on the particular application which one is the
best suited, but to show that they are fundamentally different and competent in their own way.

(a) f (b) ‖∇xf̂opt‖2 (c) ‖∇xf̂‖2 (no regularization) (d) ‖∇xf̂SN‖2

(e) ‖∇xf̂LP,λ=0.1‖2 (f) ‖∇xf̂LP,λ=1‖2 (g) ‖∇xf̂LP,λ=10‖2

(h) ‖∇xf̂ALP,λ=0.1,k=0‖2 (i) ‖∇xf̂ALP,λ=1,k=0‖2 (j) ‖∇xf̂ALP,λ=10,k=0‖2

(k) ‖∇xf̂ALP,λ=0.1,k=1‖2 (l) ‖∇xf̂ALP,λ=1,k=1‖2 (m) ‖∇xf̂ALP,λ=10,k=1‖2

(n) ‖∇xf̂ALP,λ=0.1,k=5‖2 (o) ‖∇xf̂ALP,λ=1,k=5‖2 (p) ‖∇xf̂ALP,λ=10,k=5‖2

Figure 1: Target f , and gradient norm surfaces of optimal and learned approximations of f

Without any kind of regularization, the network learned to approximate the target function very well,
but its gradients look nothing like that of f̂opt, although it is a better match with BN.

When we apply SN to the MLP layers, the result without BN will be a very smooth mapping with
maximum gradient norm ≈ 0.59. SN does not work very well with BN, the result being only slightly

7

Under review as a conference paper at ICLR 2020

better than the unregularized case. It can be seen that SN has a very strong regularization effect,
which is because SN works by approximating the spectral norm of each layer and then normalizing
the layers by dividing their weight matrices by the corresponding spectral norms, thereby resulting
in overregularization if the approximation is greater than the actual spectral norm. A detail not
visible here is that because SN is not a sample-based penalty, but is based on layer-wise weight
normalization, it regularizes globally instead of around actual data samples. In this case, on the whole
of R2 instead of just [−4, 4]2. If the input space consists of 32 ∗ 32 RGB images with pixel values
in [−1, 1] (which is the case for WGANs trained on CIFAR-10), it means the trained mapping is
regularized on R32∗32∗3 instead of just [−1, 1]32∗32∗3, which can be unintended.

When the network is regularized using LP (9), the regularization strength can be controlled by tuning
the value of λ. We trained with λ = 0.1, 1 and 10. Without BN, the highest of these values seems to
work the best, although the middle part has relatively high gradient norms. With BN, the resulting
mapping is visibly highly irregular.

With ALR, in addition to λ, we have additional control over the regularization by the hyperparameters
of the approximation scheme of radv. After some experimentation, we have found the best Pε for
this case was drawing a sample from a 0-centered Gaussian with standard deviation 10−6, taking
its absolute value incremented by 10−6, and then setting all values above 10−5 to 10−5, thereby
getting values from [10−6, 10−5] with the density increasing towards the lower end. We trained with
λ = 0.1, 1 and 10, and k = 0, 1 and 5 power iterations. Arguably, both with and without BN the
λ = 1 and k = 5 case seems like the best choice. Without BN, the results are quite similar to the LP
case, but when BN is introduced, the resulting mappings are smoother than the ones obtained with
LP.

The performance of ALR mostly depends on the speed of the approximation of radv. The current
method requires 1 step of backpropagation for each power iteration step, which means that running
time will be similar to that of LP and GP with k = 1. SN is much cheaper computationally than each
penalty method, although we believe ALR has the potential to become relatively cheap as well by
adopting new techniques for obtaining adversarial examples (Shafahi et al., 2019).

5 WGAN-ALP

We specialize the ALP formula (20) with f being the critic, dX(x, y) = ‖x−y‖2, dY (x, y) = |x−y|
and K = 1, and apply it to the WGAN objective to arrive at a version with the explicit penalty, which
uses adversarial perturbations as a sampling strategy. It is formulated as

Ez∼PZf(g(z))− Ex∼Prf(x) + λEx∼Pr,g
(
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)2

+

, (26)

where Pr,g is a combination of the real and generated distributions (meaning that a sample x can
come from both), λ is the Lagrange multiplier, and the adversarial perturbation is defined as

radv = arg max
r;0<‖r‖2

|f(x)− f(x+ r)|
‖r‖2

. (27)

This formulation of WGAN results in a stable explicit Lipschitz penalty, overcoming the difficulties
experienced when one tries to apply it to random sample pairs as shown in Petzka et al. (2018).

To evaluate the performance of WGAN-ALP, we trained one on CIFAR-10, consisting of 32 ∗ 32
RGB images, using the residual architecture from Gulrajani et al. (2017), implemented in TensorFlow.
Closely following Gulrajani et al. (2017), we used the Adam optimizer (Kingma and Ba, 2015) with
parameters β1 = 0, β2 = 0.9 and an initial learning rate of 2 · 10−4 decaying linearly to 0 over
100000 iterations, training the critic for 5 steps and the generator for 1 per iteration with minibatches
of size 64 (doubled for the generator). We used (26) as a loss function to optimize the critic. K = 1
was an obvious choice, and we found λ = 100 to be optimal (the training diverged for λ = 0.1, and
was stable but performed worse for λ = 10 and 1000). The hyperparameters of the approximation of
radv were set to ξ = 10, Pε being the uniform distribution over [0.1, 10], and k = 1 power iteration.
Both batches from Pr and Pg were used for regularization.

We monitored the Inception Score and FID during training using 10000 samples every 1000 iteration,
and evaluated them at the end of training using 50000 samples. To measure the performance of

8

Under review as a conference paper at ICLR 2020

WGAN-ALP, we ran the training setting described above 5 times with different random seeds, and
calculated the mean, standard deviation and maximum of the final Inception Scores and FIDs, which
we report for WGAN-ALP and other relevant GANs (Gulrajani et al., 2017; Petzka et al., 2018; Zhou
et al., 2019a; Wei et al., 2018; Miyato et al., 2018; Adler and Lunz, 2018; Karras et al., 2018) in
Table 1. Competing variants reported either or both of the average and the best Inception Scores in
the corresponding papers, which is why we chose to report both. Both the Inception Score and FID
achieved is state of the art for non-progressive growing methods. We show some generated samples
in Figure 2.

Table 1: Inception Scores and FIDs on CIFAR-10

Inception Score

Method Average Best FID

WGAN-GP 7.86± .07 18.86± .13
WGAN-LP 8.02± .07
LGAN 8.03± .03 15.64± .07
CT-GAN 8.12± .12
SN-GAN 8.22± .05 21.70± .21
BWGAN 8.31± .07 16.43
Progressive GAN 8.56± .06 8.80
WGAN-ALP (ours) 8.37± .04 8.59 13.01± .37

Figure 2: Generated CIFAR-10 samples

To show that ALR works in a high-dimensional setting as well, we trained a Progressive GAN on the
CELEBA-HQ dataset (Karras et al., 2018), consisting of 1024 ∗ 1024 RGB images. The best FID
seen during training with the original GP version was 8.69, while for the modified ALP version it was
14.65. The example shows that while ALP did not beat GP in this case (although it possibly could,
given more engineering hours), it does work in the high-dimensional setting as well. For details and
generated samples see Appendix A.2.

6 CONCLUSIONS

Derived as a generalization of VAT, we have shown that ALR is an efficient and powerful method for
learning Lipschitz constrained mappings implemented by neural networks. Resulting in competitive
performance when applied to the training of WGANs, ALR is a generally applicable regularization
method. It draws an important parallel between Lipschitz regularization and adversarial training,
which we believe can prove to be a fruitful line of future research.

9

Under review as a conference paper at ICLR 2020

REFERENCES

J. Adler and S. Lunz. Banach wasserstein gan. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 6754–6763. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7909-banach-wasserstein-gan.pdf.

C. Anil, J. Lucas, and R. Grosse. Sorting out lipschitz function approximation. CoRR, abs/1811.05381,
2018. URL http://arxiv.org/abs/1811.05381.

M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=Hk4_qw5xe.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In D. Precup
and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 214–223, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http://proceedings.mlr.
press/v70/arjovsky17a.html.

M. Deza and E. Deza. Encyclopedia of Distances. Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009. ISBN 9783642002342.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 2672–2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015. URL http://arxiv.org/
abs/1412.6572.

H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing
lipschitz continuity. CoRR, abs/1804.04368, 2018. URL http://arxiv.org/abs/1804.
04368.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In NIPS, pages
529–536, 2004.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of wasserstein
gans. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pages 5769–5779, USA, 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.
URL http://dl.acm.org/citation.cfm?id=3295222.3295327.

J. Ho and S. Ermon. Generative adversarial imitation learning. In NIPS, pages 4565–4573, 2016.

A. Householder. The Theory of Matrices in Numerical Analysis. A Blaisdell book in pure and applied
sciences : introduction to higher mathematics. Blaisdell Publishing Company, 1964.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL
https://openreview.net/forum?id=Hk99zCeAb.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. CoRR, abs/1704.03976, 2017. URL http:
//arxiv.org/abs/1704.03976.

10

http://papers.nips.cc/paper/7909-banach-wasserstein-gan.pdf
http://papers.nips.cc/paper/7909-banach-wasserstein-gan.pdf
http://arxiv.org/abs/1811.05381
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1804.04368
http://arxiv.org/abs/1804.04368
http://dl.acm.org/citation.cfm?id=3295222.3295327
https://openreview.net/forum?id=Hk99zCeAb
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/1704.03976

Under review as a conference paper at ICLR 2020

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL https:
//openreview.net/forum?id=B1QRgziT-.

A. M. Oberman and J. Calder. Lipschitz regularized deep neural networks converge and generalize.
CoRR, abs/1808.09540, 2018. URL http://arxiv.org/abs/1808.09540.

H. Petzka, A. Fischer, and D. Lukovnikov. On the regularization of wasserstein gans. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018. URL https://openreview.net/
forum?id=B1hYRMbCW.

A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S. Davis, G. Taylor, and
T. Goldstein. Adversarial training for free! CoRR, abs/1904.12843, 2019. URL http://arxiv.
org/abs/1904.12843.

C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008. ISBN 9783540710509.

X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang. Improving the improved training of wasserstein gans: A
consistency term and its dual effect. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
URL https://openreview.net/forum?id=SJx9GQb0-.

Z. Zhou, J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang, Y. Yu, and Z. Zhang. Lipschitz generative
adversarial nets. CoRR, abs/1902.05687, 2019a. URL http://arxiv.org/abs/1902.
05687.

Z. Zhou, J. Shen, Y. Song, W. Zhang, and Y. Yu. Towards efficient and unbiased implementation of
lipschitz continuity in gans. CoRR, abs/1904.01184, 2019b. URL http://arxiv.org/abs/
1904.01184.

A APPENDIX

A.1 DERIVATION OF THE APPROXIMATION OF radv

We assume that f and dY are both twice differentiable with respect to their arguments almost
everywhere, the latter specifically at x = y. Note that one can easily find a dY for which the last
assumption does not hold, for example the l1 distance. If dY is translation invariant, meaning that
dY (x, y) = dY (x+ u, y + u) for each u ∈ Y , then its subderivatives at x = y will be independent
of x, hence the method described below will still work. Otherwise, one can resort to using a proxy
metric in place of dY for the approximation, for example the l2 distance.

We denote dY (f(x), f(x+ r)) by d(r, x) for simplicity. Because d(r, x) ≥ 0 and d(0, x) = 0, it is
easy to see that

∇rd(r, x)
∣∣
r=0

= 0, (28)

so that the second-order Taylor approximation of d(r, x) is d(r, x) ≈ 1
2r
TH(x)r, where H(x) =

∇∇rd(r, x)
∣∣
r=0

is the Hessian matrix. The eigenvector u of H(x) corresponding to its eigenvalue
with the greatest absolute value is the direction of greatest curvature, which is approximately the
adversarial direction that we are looking for. The power iteration (Householder, 1964) defined by

ri+1 :=
H(x)ri
‖H(x)ri‖2

, (29)

where r0 is a randomly sampled unit vector, converges to u if u and r0 are not perpendicular.
Calculating H(x) is computationally heavy, which is why H(x)ri is approximated using the finite
differences method as

H(x)ri ≈
∇rd(r, x)

∣∣
r=ξri

−∇rd(r, x)
∣∣
r=0

ξ
=
∇rd(r, x)

∣∣
r=ξri

ξ
(30)

11

https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
http://arxiv.org/abs/1808.09540
https://openreview.net/forum?id=B1hYRMbCW
https://openreview.net/forum?id=B1hYRMbCW
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1904.12843
https://openreview.net/forum?id=SJx9GQb0-
http://arxiv.org/abs/1902.05687
http://arxiv.org/abs/1902.05687
http://arxiv.org/abs/1904.01184
http://arxiv.org/abs/1904.01184

Under review as a conference paper at ICLR 2020

where the equality follows from (28). The hyperparameter ξ 6= 0 is introduced here. In summary, the
adversarial direction is approximated by the iterative scheme

ri+1 :=
∇rd(r, x)

∣∣
r=ξri∥∥∥∇rd(r, x)
∣∣
r=ξri

∥∥∥
2

, (31)

of which one iteration is found to be sufficient and necessary in practice.

A.2 PROGRESSIVE GAN

We took the official TensorFlow implementation and modified the loss function of the critic, which
originally used GP, with a version of ALP. The same setup used on CIFAR-10 was stable until the last
stage of progressive growing, but to make it work on the highest resolution, we had to replace it with

Ez∼PZf(g(z))− Ex∼Prf(x)

+ λEx∼Pr,g

((
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)2

+

+

(
|f(x)− f(x+ radv)|

‖radv‖2
− 1

)
+

)
, (32)

meaning that we used the sum of the absolute and squared values of the Lipschitz constraint violation
as the penalty. The optimal hyperparameters were λ = 0.1, Pε being the uniform distribution over
[0.1, 100], ξ = 10 and k = 1 step of power iteration. The best FID seen during training with the
original GP version was 8.69, while for the modified ALP version it was 14.65. The example shows
that while ALP did not beat GP in this case (although it possibly could given more engineering hours),
it does work in the high-dimensional setting as well. Some generated samples can be seen in Figure 3
for ALR and Figure 4 for the original GP version.

A.3 SEMI-SUPERVISED LEARNING

Since VAT is a semi-supervised learning method, it is important to see how ALR fares in that regime.
To show this, we have replicated one of the experiments from Miyato et al. (2017). We trained
the ConvLarge architecture to classify images from CIFAR-10 with the same setting as described
in Miyato et al. (2017), except that we did not decay the learning rate, but kept it fixed at 3e − 4.
We split the 50000 training examples into 4000 samples for the classification loss, 45000 samples
for regularization and 1000 for validation, with equally distributed classes. Test performance was
evaluated on the 10000 test examples. We have found that unlike in the unsupervised setting, here it
was important to assume f(x) fixed when minimizing the regularization loss, and also to complement
the smoothing effect with entropy minimization (Grandvalet and Bengio, 2004). The baseline VAT
method was ALR specialized with K = 0, dX the trivial metric (14), dY being the KL divergence,
fixed ε = 8 and λ = 1. This setting achieved maximal validation performance of 84.2% and test
performance 82.46%. After some experimentation, the best performing choice was K = 0, dX being
the l2 metric, dY the mean squared difference over the logit space (which parametrize the categorical
output distribution over which the KL divergence is computed in the case of VAT), Pε being the
uniform distribution over [1, 10] and λ = 1. This way the maximal validation performance was
85.3% and test performance 83.54%. Although this ≈ 1% is improvement is not very significant, it
shows that ALR can be a competitive choice as a semi-supervised learning method as well.

12

Under review as a conference paper at ICLR 2020

Figure 3: Images generated using Progressive GAN trained with ALR

13

Under review as a conference paper at ICLR 2020

Figure 4: Images generated using Progressive GAN trained with GP

14

	Introduction
	Background
	Wasserstein Generative Adversarial Networks
	Lipschitz Function Approximation
	Virtual Adversarial Training

	Virtual Adversarial Training as Lipschitz Regularization
	Adversarial Lipschitz Regularization
	Approximation of radv
	Comparison with other Lipschitz regularization techniques

	WGAN-ALP
	Conclusions
	Appendix
	Derivation of the approximation of radv
	Progressive GAN
	Semi-supervised learning

