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ABSTRACT

Learning high-level representations for graphs is of great importance for graph
analysis tasks. In addition to graph convolution, graph pooling is an important
but less explored research area. In particular, most of existing graph pooling tech-
niques do not consider the graph structural information explicitly. We argue that
such information is important and develop a novel graph pooling technique, know
as the STRUCTPOOL, in this work. We consider the graph pooling as a node clus-
tering problem, which requires the learning of a cluster assignment matrix. We
propose to formulate it as a structured prediction problem and employ conditional
random fields to capture the relationships among assignments of different nodes.
We also generalize our method to incorporate graph topological information in
designing the Gibbs energy function. Experimental results on multiple datasets
demonstrate the effectiveness of our proposed STRUCTPOOL.

1 INTRODUCTION

Graph neural networks have achieved the state-of-the-art results for multiple graph tasks, such as
node classification (Gao & Ji, 2019; Veličković et al., 2017) and link prediction (Zhang & Chen,
2018; Kipf & Welling, 2016b). These results demonstrate the effectiveness of graph neural net-
works to learn node representations. However, graph classification tasks also require learning good
graph-level representations. Since pooling operations are shown to be effective in many image and
NLP tasks, it is natural to investigate pooling techniques for graph data (Yu & Koltun, 2016; Sprin-
genberg et al., 2014). Recent work extends the global sum/average pooling operations to graph
models by simply summing or averaging all node features (Atwood & Towsley, 2016; Simonovsky
& Komodakis, 2017). However, such pooling operations are not hierarchical and may lose important
features. Several advanced graph pooling methods, such as SORTPOOL (Zhang et al., 2018), TOP-
KPOOL (Gao & Ji, 2019), and DIFFPOOL (Ying et al., 2018), are recently proposed and achieve
promising performance on graph classification tasks. However, none of them explicitly models the
relationships among different nodes and thus may ignore important structural information. We argue
that such information is important and should be explicitly captured in graph pooling.

In this work, we propose a novel graph pooling technique, known as the STRUCTPOOL, that formu-
lates graph pooling as a structured prediction problem. Following DIFFPOOL (Ying et al., 2018),
we consider graph pooling as a node clustering problem, and each cluster corresponds to a node
in the new graph after pooling. Intuitively, two nodes with similar features should have a higher
probability of being assigned to the same cluster. Hence, the assignment of a given node should
depend on both the input node features and the assignments of other nodes. We formulate this as a
structured prediction problem and employ conditional random fields (CRFs) Lafferty et al. (2001) to
capture such high-order structural relationships among assignments of different nodes. In addition,
we generalize our method by incorporating the graph topological information so that our method
can control the clique set in our CRFs. We employ the mean field approximation to compute the
assignments and describe how to incorporate it in graph networks. Then the networks can be trained
in an end-to-end fashion. Experiments show that our proposed STRUCTPOOL outperforms existing
methods significantly and consistently. We also show that STRUCTPOOL incurs acceptable compu-
tational cost given its superior performance.

1



Under review as a conference paper at ICLR 2020

2 BACKGROUND AND RELATED WORK

2.1 GRAPH CONVOLUTIONAL NETWORKS

A graph can be represented by its adjacency matrix and node features. Formally, for a graph
G consisting of n nodes, its topology information can be represented by an adjacency matrix
A ∈ {0, 1}n×n, and the node features can be represented as X ∈ Rn×c assuming each node
has a c-dimensional feature vector. Deep graph neural networks (GNNs) learn feature representa-
tions for different nodes using these matrices (Gilmer et al., 2017). Several approaches are pro-
posed to investigate deep GNNs, and they generally follow a neighborhood information aggrega-
tion scheme (Gilmer et al., 2017; Xu et al., 2018; Hamilton et al., 2017; Kipf & Welling, 2016a;
Veličković et al., 2017). In each step, the representation of a node is updated by aggregating the
representations of its neighbors. Graph Convolutional Networks (GCNs) are popular variants of
GNNs and inspired by the first order graph Laplacian methods (Kipf & Welling, 2016a). The graph
convolution operation is formally defined as:

Xi+1 = f(D−
1
2 ÂD−

1
2XiPi), (1)

where Â = A + I is used to add self-loops to the adjacency matrix, D denotes the diagonal node
degree matrix to normalize Â, Xi ∈ Rn×ci are the node features after ith graph convolution layer,
Pi ∈ Rci×ci+1 is a trainable matrix to perform feature transformation, and f(·) denotes a non-linear
activation function. Then Xi ∈ Rn×ci is transformed to Xi+1 ∈ Rn×ci+1 where the number of
nodes remains the same. A similar form of GCNs proposed in (Zhang et al., 2018) can be expressed
as:

Xi+1 = f(D−1ÂXiPi). (2)

It differs from the GCNs in Equation (1) by performing different normalization and is a theoretically
closer approximation to the Weisfeiler-Lehman algorithm (Weisfeiler & Lehman, 1968). Hence, in
our models, we use the latter version of GCNs in Equation (2).

2.2 GRAPH POOLING

The great success of GCNs has shown their ability to learn good representations for nodes. However,
graph classification tasks also require to learn graph-level representations, which is still challenging.
Similar to computer vision and natural language processing tasks, pooling operations are effective
to gather local features and produce high-level features. Most existing work simply takes the sum or
average of node representations as graph-level representations and perform classification (Atwood
& Towsley, 2016; Simonovsky & Komodakis, 2017; Hamilton et al., 2017). Such operations can
be understood as the global sum pooling and global average pooling. However, these trivial global
pooling operations may lose important features and ignore structural information. Furthermore,
global pooling are not hierarchical so that we cannot apply them where multiple pooling operations
are required, such as Graph U-Net (Gao & Ji, 2019).

Recently, several advanced pooling techniques are proposed for graph models, such as SORTPOOL,
TOPKPOOL, and DIFFPOOL, and achieve great performance on multiple benchmark datasets.
Both SORTPOOL (Zhang et al., 2018) and TOPKPOOL (Gao & Ji, 2019) learn to select impor-
tant nodes from the original graph and use these nodes to build a new graph. They share the similar
idea to learn a sorting vector based on node representations using GCNs, which indicates the im-
portance of different nodes. Then only the top k important nodes are selected to form a new graph
while the other nodes are ignored. However, the ignored nodes may contain important features and
this information is lost during pooling. DIFFPOOL (Ying et al., 2018) treats the graph pooling as
a node clustering problem. A cluster of nodes from the original graph are merged to form a new
node in the new graph. DIFFPOOL proposes to perform GCNs on node features to obtain node
clustering assignment matrix. Intuitively, nodes with similar features should have higher chance of
being clustered to the same cluster. That is, the cluster assignment of a given node should depend
on both node features and cluster assignments of other nodes. However, DIFFPOOL does not ex-
plicitly consider such high-order structural relationships, which we believe are important for graph
pooling. In addition, none of these pooling techniques explicitly considers the topology information
A to perform pooling, which may also contains important information. In this work, we propose
a novel structured graph pooling technique, known as the STRUCTPOOL, for effectively learning
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high-level graph representations. Different from existing methods, our method explicitly captures
high-order structural relationships between different nodes via conditional random fields. In addi-
tion, our method is generalized by incorporating graph topological information A to control which
node pairs are included in our CRFs.

3 STRUCTURED GRAPH POOLING

3.1 GRAPH POOLING VIA NODE CLUSTERING

Even though pooling techniques are shown to facilitate the training of deep models and improve
their performance significantly in many image and NLP tasks (Yu & Koltun, 2016; Springenberg
et al., 2014), local pooling operations cannot be directly applied to graph tasks. The reason is there
is no spatial locality information among graph nodes. Global max/average pooling operations can be
employed for graph tasks but they may lead to information loss, due to largely reducing the size of
representations trivially. A graph G with n nodes can be represented by a feature matrix X ∈ Rn×c

and an adjacent matrix A ∈ {0, 1}n×n. Graph pooling operations aim at reducing the number of
graph nodes and learning new representations. Suppose that graph pooling generates a new graph
G̃ with k nodes. The representation matrices of G̃ are denoted as X̃ ∈ Rk×c̃ and Ã ∈ {0, 1}k×k.
The goal of graph pooling is to learn relationships between X , A and X̃ , Ã. In this work, we
consider graph pooling via node clustering. In particular, the nodes of the original graph G are
assigned to k different clusters. Then each cluster is transformed to a new node in the new graph
G̃. The clustering assignments can be represented as an assignment matrix M ∈ Rn×k. For hard
assignments, mi,j ∈ {0, 1} denotes if node i in graph G belongs to cluster j. For soft assignments,
mi,j ∈ [0, 1] denotes the probability that node i in graph G belongs to cluster j and

∑
j mi,j = 1.

Then the new graph G̃ can be computed as

X̃ = MTX, Ã = g(MTAM), (3)

where g(·) is a function that g(ãi,j) = 1 if ãi,j > 0 and g(ãi,j) = 0 otherwise.

3.2 LEARNING CLUSTERING ASSIGNMENTS VIA CONDITIONAL RANDOM FIELDS

Intuitively, node features describe the properties of different nodes. Then nodes with similar features
should have a higher chance to be assigned to the same cluster. That is, for any node in the original
graph G, its cluster assignment should not only depend on node feature matrix X but also condition
on the cluster assignments of the other nodes. We believe such high-order structural information is
useful for graph pooling and should be explicitly captured while learning clustering assignments. To
this end, we propose a novel structured graph pooling technique, known as STRUCTPOOL, which
generates the assignment matrix by considering the feature matrix X and the relationships between
the assignments of different nodes. We propose to formulate this as a conditional random field
(CRF) problem. The CRFs model a set of random variables with a Markov Random Field (MRF),
conditioned on a global observation (Lafferty et al., 2001). We formally define Y = {Y1, · · · , Yn}
as a random field where Yi ∈ {1, · · · , k} is a random variable. Each Yi indicates to which cluster
the node i is assigned. Here the feature representation X is treated as global observation. We build
a graphical model on Y , which is defined as G′. Then the pair (Y,X) can be defined as a CRF,
characterized by the Gibbs distribution as

P (Y |X) =
1

Z(X)
exp

− ∑
c∈CG′

ψc(Yc|X)

 , (4)

where c denotes a clique, CG′ is a set of cliques in G′, Z(X) is the partition function, and ψc(·) is a
potential function induced by c (Krähenbühl & Koltun, 2011; Lafferty et al., 2001). Then the Gibbs
energy function for an assignment y = {y1, · · · , yn} for all variables can be written as

E(y|X) =
∑

c∈CG′

ψc(yc|X). (5)

Finding the optimal assignment is equivalent to maximizing P (Y |X), which can also be interpreted
as minimizing the Gibbs energy.
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Figure 1: Illustrations of our proposed STRUCTPOOL. Given a graph with 6 nodes, the color of each
node represents its features. We perform graph pooling to obtain a new graph with k = 4 nodes.
The unary energy matrix can be obtained by multiple GCN layers using X and A. The pairwise
energy is measured by attention matrix using node feature X and topology information A. Then by
performing iterative updating, the mean field approximation yields the most probable assignment
matrix. Finally, we obtain the new graph with 4 nodes, represented by X̃ and Ã.

3.3 GIBBS ENERGY WITH TOPOLOGY INFORMATION

Now we define the clique set CG′ in G′. Similar to the existing CRF model (Krähenbühl & Koltun,
2011), we include all unary cliques in CG′ since we need to measure the energy for assigning
each node. For pairwise cliques, we generalize our method to control the pairwise clique set by
incorporating the graph topological information A. We consider `-hop connectivity based on A
to define the pairwise cliques, which builds pairwise relationships between different nodes. Let
A` ∈ {0, 1}n×n represent the `-hop connectivity of graph G where a`i,j = 1 indicates node i and
node j are reachable in G within ` hops. Then we include all pairwise cliques (i, j) in CG′ if
a`i,j = 1. Altogether, the Gibbs energy for a cluster assignment y can be written as

E(y) =
∑
i

ψu(yi) +
∑
i 6=j

ψp(yi, yj)a
`
i,j , (6)

where ψu(yi) represents the unary energy for node i to be assigned to cluster yi. In addition,
ψp(yi, yj) is the pairwise energy, which indicates the energy of assigning node i, j to cluster yi, yj
respectively. Note that we drop the condition information in Equation (6) for simplicity. If ` is
large enough, our CRF is equivalent to the dense CRFs. If ` is equal to 1, we have A` = A so
that only 1-hop information in the adjacent matrix is considered. These two types of energy can be
obtained directly by neural networks (Zheng et al., 2015). Given the global observations X and the
topology information A, we employ multiple graph convolution layers to obtain the unary energy
Ψu ∈ Rn×k. Existing work on image tasks (Krähenbühl & Koltun, 2011) proposes to employ Gaus-
sian kernels to measure the pairwise energy. However, due to computational inefficiency, we cannot
directly apply it to our CRF model. The pairwise energy proposed in (Krähenbühl & Koltun, 2011)
can be written as

ψp(yi, yj) = µ(yi, yj)

K∑
m=1

w(m)k(m)(xi, xj), (7)

where k(m)(·, ·) represents the mth Gaussian kernel, xi is the feature vector for node i in X , w(m)

denotes learnable weights, and µ(yi, yj) is a compatibility function that models the compatibility
between different assignment pairs. However, it is computationally inefficient to accurately com-
pute the outputs of Gaussian kernels, especially for graph data when the feature vectors are high-
dimensional. Hence, in this work, we propose to employ the attention matrix as the measurement
of pairwise energy. Intuitively, Gaussian kernels indicate how strongly different feature vectors are
connected with each other. Similarly, the attention matrix reflects similarities between different fea-
ture vectors but with a significantly less computational cost. Specifically, each feature vector xi is
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Algorithm 1 STRUCTPOOL

1: Given a graph G with n nodes represented by X ∈ Rn×c and A ∈ {0, 1}n×n, the goal is to
obtain G̃ with k nodes that X̃ ∈ Rk×c̃ and Ã ∈ {0, 1}k×k. The `-hop connectivity matrix A`

can be easily obtained from A.
2: Perform GCNs to obtain unary energy matrix Ψu ∈ Rn×k.
3: Initialize that Q(i, j) = 1

Zi
exp (Ψu(i, j)) for all 0 ≤ i ≤ n and 0 ≤ j ≤ k.

4: while not converged do
5: Calculate attention map W that wi,j =

xT
i xj∑

m6=i x
T
i xm

a`i,j for all i 6= j and 0 ≤ i, j ≤ k.

6: Message passing that Q̃(i, j) =
∑

m6=i wi,mQ(m, j).
7: Compatibility transform that Q̂(i, j) =

∑
m µ(m, j)Q̃(i,m).

8: Local update that Q̄(i, j) = Ψu(i, j)− Q̂(i, j).
9: Perform normalization that Q(i, j) = 1

Zi
exp

(
Q̄(i, j)

)
for all i and j.

10: end while
11: For soft assignments, the assignment matrix is M = softmax(Q).
12: For hard assignments, the assignment matrix is M = argmax(Q) for each row.
13: Obtain new graph Q̃ that X̃ = MTX, Ã = g(MTAM).

attended to any other feature vector xj if the pair (i, j) is existing in clique set CG′ . Hence, the
pairwise energy can be obtained by

ψp(yi, yj) = µ(yi, yj)
xTi xj∑
k 6=i x

T
i xk

, (8)

It can be efficiently computed by matrix multiplication and normalization. Minimizing the Gibbs en-
ergy in Equation (6) results in the most probable cluster assignments for a given graph G. However,
such minimization is intractable, and hence a mean field approximation is proposed (Krähenbühl &
Koltun, 2011), which is an iterative updating algorithm. We follow the mean-field approximation
to obtain the most probable cluster assignments. Altogether, the steps of our proposed STRUCT-
POOL are shown in Algorithm 1. All operations in our proposed STRUCTPOOL can be implemented
as GNN operations, and hence the STRUCTPOOL can be employed in any deep graph model and
trained in an end-to-end fashion. The unary energy matrix can be obtained by stacking several
GCN layers, and the normalization operations (step 3&9 in Algorithm 1) are equivalent to softmax
operations. All other steps can be computed by matrix computations. It is noteworthy that the com-
patibility function µ(yi, yj) can be implemented as a trainable matrixN ∈ Rk×k, and automatically
learned during training. Hence, no prior domain knowledge is required for designing the compatibil-
ity function. We illustrate our proposed STRUCTPOOL in Figure 1 where we perform STRUCTPOOL

on a graph G with 6 nodes, and obtain a new graph G̃ with 4 nodes.

3.4 COMPUTATIONAL COMPLEXITY ANALYSIS

We theoretically analyze the computational efficiency of our proposed STRUCTPOOL. Since
computational efficiency is especially important for large-scale graph datasets, we assume that
n > k, c, c̃. The computational complexity of one GCN layer is O(n3 + n2c + ncc̃) ≈ O(n3).
Assuming we employ i layers of GCNs to obtain the unary energy, its computational cost is
O(in3). Assuming there are m iterations in our updating algorithm, the computational com-
plexity is O(m(n2c + n2k + nk2)) ≈ O(mn3). The final step for computing Ã and X̃ takes
O(nkc + n2k + nk2) ≈ O(n3) computational complexity. Altogether, the complexity STRUCT-
POOL is O((m+ i)n3), which is close to the complexity of stacking m+ i layers of GCNs.

3.5 DEEP GRAPH NETWORKS FOR GRAPH CLASSIFICATION

In this section, we investigate graph classification tasks which require both good node-level and
graph-level representations. For most state-of-the-art deep graph classification models, they share
a similar pipeline that first produces node representations using GNNs, then performs pooling op-
erations to obtain high-level representations, and finally employs fully-connected layers to perform
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Table 1: Classification results in percent for six benchmark datasets. Note that none of these deep
learning methods can outperform the traditional kernel method WL on COLLAB dataset.We believe
the reason is the graphs in COLLAB only have single-layer structures while deep models are too
complex to capture them.

Method Dataset
ENZYMES D&D COLLAB PROTEINS IMDB-B IMDB-M

GRAPHLET 41.03 74.85 64.66 72.91 - -
SHORTEST-PATH 42.32 78.86 59.10 76.43 - -
WL 53.43 78.34 78.61 74.68 - -

PATCHYSAN - 76.27 72.60 75.00 71.00 45.23
DCNN - 58.09 52.11 61.29 49.06 33.49
DGK - - 73.09 71.68 66.96 44.55
ECC 53.50 72.54 67.79 72.65 - -
GRAPHSAGE 54.25 75.42 68.25 70.48 - -
SET2SET 60.15 78.12 71.75 74.29 - -
DGCNN 57.12 79.37 73.76 75.54 70.03 47.83
DIFFPOOL 62.53 80.64 75.48 76.25 - -

STRUCTPOOL 63.83 84.19 74.22 80.36 74.70 52.47

classification. Note that the high-level representations can be either a vector or a group of k vectors.
For a set of graphs with different node numbers, with a pre-defined k, our proposed STRUCTPOOL
can produce k vectors for each graphs. Hence, our method can be easily generalized and coupled
to any deep graph classification model. Specially, our model for graph classification is developed
based on DGCNN (Zhang et al., 2018). Given any input graph, our model first employs several
layers of GCNs (Equation (2)) to aggregate features from neighbors and learn representations for
nodes. Next, we perform one STRUCTPOOL layer to obtain k vectors for each graph. Finally, 1D
convolutional layers and fully-connected layers are used to classify the graph.

4 EXPERIMENTAL STUDIES

4.1 DATASETS AND EXPERIMENTAL SETTINGS

We evaluate our proposed STRUCTPOOL on eight benchmark datasets, including five bioinformatics
protein datasets: ENZYMES, PTC, MUTAG, PROTEINS (Borgwardt et al., 2005), D&D (Dobson
& Doig, 2003), and three social network datasets: COLLAB (Yanardag & Vishwanathan, 2015b),
IMDB-B, IMDB-M (Yanardag & Vishwanathan, 2015a). Most of them are relatively large-scale and
hence suitable for evaluating deep graph models. We report the statistics and properties of them in
Supplementary Table 6. For our proposed STRUCTPOOL, we perform 10-fold cross validations for
all datasets. Please see the Supplementary Section A for experimental settings.

We compare our method with several state-of-the-art deep GNN methods. PATCHYSAN (Niepert
et al., 2016) learns node representations and a canonical node ordering to perform classification.
DCNN (Atwood & Towsley, 2016) learns multi-scale substructure features by diffusion graph con-
volutions and performs global sum pooling. DGK (Yanardag & Vishwanathan, 2015a) models latent
representations for sub-structures in graphs, which is similar to learn word embeddings. ECC (Si-
monovsky & Komodakis, 2017) performs GCNs conditioning on both node features and edge in-
formation and uses global sum pooling before the final classifier. GRAPHSAGE (Hamilton et al.,
2017) is an inductive framework which generates node embeddings by sampling and aggregating
features from local neighbors, and it employs global mean pooling. SET2SET (Vinyals et al., 2015)
proposes an aggregation method to replace the global pooling operations in deep graph networks.
DGCNN (Zhang et al., 2018) proposes a pooling strategy named SORTPOOL which sorts all nodes
by learning and selects the first k nodes to form a new graph. DIFFPOOL (Ying et al., 2018) is
built based on GRAPHSAGE architecture but with their proposed differentiable pooling. Note that
for most of these methods, pooling operations are employed to obtain graph-level representations
before the final classifier. In addition, we compare our STRUCTPOOL with three graph kernels:
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Table 2: Comparisons between different pooling techniques under the same framework.
Method Dataset

ENZYMES D&D COLLAB PROTEINS IMDB-B IMDB-M

SUM POOL 47.33 78.72 69.45 76.26 51.69 42.76
SORTPOOL 52.83 80.60 73.92 76.83 70.00 46.26
TOPK POOL 53.67 81.71 73.34 77.47 72.80 49.00
DIFFPOOL 60.33 80.94 71.78 77.74 72.40 50.13

STRUCTPOOL 63.83 84.19 74.22 80.36 74.70 52.47

Graphlet (Shervashidze et al., 2009), Shortest-path (Borgwardt & Kriegel, 2005), and Weisfeiler-
Lehman subtree kernel (WL) (Weisfeiler & Lehman, 1968).

4.2 CLASSIFICATION RESULTS

We evaluate our proposed method on six benchmark datasets and compare with several state-of-
the-art approaches. The results are reported in Table 1 where the best results are shown in bold
and the second best results are shown with underlines. For our STRUCTPOOL, we perform 10-fold
cross validations and report the average accuracy for each dataset. The 10-fold splitting is exactly the
same as DGCNN (Zhang et al., 2018). For all comparing methods, the results are taken from existing
work (Ying et al., 2018; Zhang et al., 2018). We can observe that our STRUCTPOOL obtains the best
performance on 5 out of 6 benchmark datasets. For these 5 datasets, the classification results of our
method are significantly better than all comparing methods, including advanced models DGCNN
and DIFFPOOL. Notably, our model outperforms the second-best performance by an average of
3.58% on these 5 datasets. In addition, the graph kernel method WL obtains the best performance
on COLLAB dataset and none of these deep models can achieve similar performance. Our model
can obtain competitive performance compared with the second best model. This is because many
collaboration graphs in COLLAB only have simple structures and deep models may be too complex
to capture them.

4.3 COMPARISONS OF DIFFERENT POOLING METHODS

To demonstrate the effectiveness of our proposed pooling technique, we compare different pool-
ing techniques under the same network framework. Specifically, we compare our STRUCTPOOL
with the global sum pool, SORTPOOL, TOPKPOOL, and DIFFPOOL. All pooling methods are
employed in the network framework introduced in Section 3.5. In addition, the same 10-fold cross
validations from DGCNN are used for all pooling methods. We report the results in Table 2 and
the best results are shown in bold. Obviously, our method achieves the best performance on all
six datasets, and significantly outperforms all comparing pooling techniques. Such observations
demonstrate the structural information in graphs is useful for graph pooling. They also indicate that
the clustering assignment of a node depends on the assignments of other nodes and such relation-
ships should be explicitly modeled. In addition, it is interesting that STRUCTPOOL and DIFFPOOL
generally outperform SORTPOOL and TOPKPOOL. It shows that selecting important nodes for
pooling may ignore important information.

4.4 STUDY OF COMPUTATIONAL COMPLEXITY

Table 3: The prediction accuracy with different iteration
number m.

Dataset m = 1 m = 3 m = 5 m = 10

ENZYMES 62.67 63.00 63.83 63.50
D&D 82.82 83.08 83.59 84.19
PROTEINS 80.09 80.00 80.18 80.18

As mentioned in Section 3.4, our pro-
posed STRUCTPOOL yields O((m +
i)n3) computational complexity. The
complexity of DIFFPOOL is O(jn3) if
we assume it employs j layers of GCNs to
obtain the assignment matrix. In our ex-
periments, i is usually set to 2 or 3 which
is much smaller than n. We conduct experiments to show how different iteration number m affects
the prediction accuracy and the results are reported in Table 3. Note that we employ the dense CRF
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form for all differentm. We can observe that the performance generally increases withm increasing,
especially for large-scale dataset D&D. We also observe m = 5 is a good trade-off between time
complexity and prediction performance. Notably, our method can even outperform other approaches
when m = 1. Furthermore, we evaluate the running time of our STRUCTPOOL and compare it with
DIFFPOOL. For 500 graphs from large-scale dataset D&D, we set i = j = 3 and show the aver-
aging time cost to perform pooling for each graph. The time cost for DIFFPOOL is 0.042 second,
while our STRUCTPOOL takes 0.049 second, 0.053 second and 0.058 second for m = 1, m = 3,
m = 5 respectively. Even though our STRUCTPOOL has a relatively higher computational cost, it is
still reasonable and acceptable given its superior performance.

4.5 EFFECTS OF TOPOLOGY INFORMATION

Table 4: The prediction accuracy using different A` in
STRUCTPOOL.

Dataset ` = 1 ` = 5 ` = 10 ` = 15 DENSE

IMDB-B 74.60 74.40 74.30 74.70 74.70
IMDB-M 51.53 51.67 52.00 51.96 52.47
PROTEINS 79.73 79.61 79.83 80.36 80.18

Next, we conduct experiments
to show how the topology in-
formation A` affects the predic-
tion performance. We evaluate
our STRUCTPOOL with different `
values and report the results in Ta-
ble 4. Note that when ` is large
enough, our STRUCTPOOL considers all pairwise relationships between all nodes, and it is equiva-
lent to the dense CRF. For the datasets IMDB-M and PROTEINS, we can observe that the prediction
accuracies are generally increasing with the increasing of `. With the increasing of `, more pairwise
relationships are considered by the model, and hence it is reasonable to obtain better performance.
In addition, for the dataset IMDB-B, the results remain similar with different `, and even ` = 1
yields competitive performance with dense CRF. It is possible that 1-hop pairwise relationships are
enough to learn good embeddings for such graph types. Overall, dense CRF consistently produces
promising results and is a proper choice in practice.

4.6 GRAPH ISOMORPHISM NETWORKS WITH STRUCTPOOL

Table 5: Comparisons with Graph Isomorphism Networks.
Dataset PTC IMDB-B MUTAG COLLAB IMDB-M

GINS 64.60 75.10 89.40 80.20 52.30
OURS 73.46 78.50 93.59 84.06 54.60

Recently Graph Isomor-
phism Networks (GINs)
are proposed and shown
to be more powerful than
traditional GNNs (Xu et al.,
2018). To demonstrate the
effectiveness of our STRUCTPOOL and show its generalizability, we build models based on GINs
and evaluate their performance. Specifically, we employ GINs to learn node representations and
perform one layer of the dense form of our STRUCTPOOL, followed by 1D convolutional layers
and fully-connected layers as the classifier. The results are reported in the Table 5, where we
employ the same 10-fold splitting as GINs (Xu et al., 2018) and the GIN results are taken from
its released results. These five datasets include both bioinformatic data and social media data, and
both small-scale data and large-scale data. Obviously, incorporating our proposed STRUCTPOOL in
GINs consistently and significantly improves the prediction performance. It leads to an average of
4.52% prediction accuracy improvement, which is significant.

5 CONCLUSIONS

Graph pooling is an appealing way to learn good graph-level representations, and several advaned
pooling techiques are proposed. However, none of existing graph pooling techniques explicitly
considers the relationship between different nodes. We propose a novel graph pooling technique,
known as STRUCTPOOL, which is developed based on the conditional random fields. We consider
the graph pooling as a node clustering problem and employ the CRF to build relationships between
the assignments of different nodes. In addition, we generalize our method by incorporating the graph
topological information so that our method can control the pairwise clique set in our CRFs. Finally,
we evaluate our proposed STRUCTPOOL on several benchmark datasets and our method can achieve
new state-of-the-art results on five out of six datasets. Our STRUCTPOOL has a relatively higher
computational cost but achieves significant better performance.
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A APPENDIX

Table 6: Statistics and properties of eight benchmark datasets.
Dataset

ENZYMES D&D COLLAB PROTEINS

# of Edges (avg) 124.20 1431.3 2457.78 72.82
# of Nodes (avg) 32.63 284.32 74.49 39.06
# of Graphs 600 1178 5000 1113
# of Classes 6 2 3 2

Dataset
IMDB-B IMDB-M PTC MUTAG

# of Edges (avg) 96.53 65.94 14.69 19.79
# of Nodes (avg) 19.77 13.00 14.30 17.93
# of Graphs 1000 1500 344 188
# of Classes 2 3 2 2

We report the statistics and properties of eight benchmark datasets in Supplementary Table 6. For
our STRUCTPOOL, we implement our models using Pytorch Paszke et al. (2017) and conduct exper-
iments on one GeForce GTX 1080 Ti GPU. The model is trained using Stochastic gradient descent
(SGD) with the ADAM optimizer Kingma & Ba (2014). For the models built on DGCNN Zhang
et al. (2018) in Section 4.2, 4.3, 4.4, 4.5, we employ GCNs to obtain the node features and the unary
energy matrix. All experiments in these sections perform 10-fold cross validations and we report
the averaging results. The 10-fold splitting is exactly the same as DGCNN Zhang et al. (2018).
For the non-linear function, we employ tanh for GCNs and relu for 1D convolution layers. For the
models built on GINs in Section 4.6, we employ GINs to learn node features and unary energy. Here
the 10-fold splitting is exactly the same as GINs. We employ relu for all layers as the non-linear
function.

For all models, 1D convolutional layers and fully-connected layers are used after our STRUCTPOOL.
Hard clustering assignments are employed in all experiments. In addition, the value of k (k ≤ 1)
in STRUCTPOOL indicates an integer that 100 × k% of graphs in the dataset have nodes less than
this integer. Different k values are employed for different datasets. We experimentally observe that,
generally speaking, k = 0.6 is a good choice for bioinformatic datasets and k = 0.9 is a proper
choice for social network datasets. we will release our code after the anonymous review period and
more detailed settings can be found there.
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