
Under review as a conference paper at ICLR 2020

MAXIMUM LIKELIHOOD CONSTRAINT INFERENCE
FOR INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While most approaches to the problem of Inverse Reinforcement Learning (IRL)
focus on estimating a reward function that best explains an expert agent’s policy
or demonstrated behavior on a control task, it is often the case that such behavior
is more succinctly represented by a simple reward combined with a set of hard
constraints. In this setting, the agent is attempting to maximize cumulative rewards
subject to these given constraints on their behavior. We reformulate the problem of
IRL on Markov Decision Processes (MDPs) such that, given a nominal model of
the environment and a nominal reward function, we seek to estimate state, action,
and feature constraints in the environment that motivate an agent’s behavior. Our
approach is based on the Maximum Entropy IRL framework, which allows us to
reason about the likelihood of an expert agent’s demonstrations given our knowl-
edge of an MDP. Using our method, we can infer which constraints can be added
to the MDP to most increase the likelihood of observing these demonstrations. We
present an algorithm which iteratively infers the Maximum Likelihood Constraint
to best explain observed behavior, and we evaluate its efficacy using both simulated
behavior and recorded data of humans navigating around an obstacle.

1 INTRODUCTION

Advances in mechanical design and artificial intelligence continue to expand the horizons of robotic
applications. In these new domains, it can be difficult to design a specific robot behavior by hand.
Even manually specifying a task for a reinforcement-learning-enabled agent is notoriously difficult
(Ho et al., 2015; Amodei et al., 2016). Inverse Reinforcement Learning (IRL) techniques can help
alleviate this burden by automatically identifying the objectives driving certain behavior. Since first
being introduced as Inverse Optimal Control by Kalman (1964), much of the work on IRL has focused
on learning environmental rewards to represent the task of interest (Ng et al., 2000; Abbeel & Ng,
2004; Ratliff et al., 2006; Ziebart et al., 2008). While these types of IRL algorithms have proven
useful in a variety of situations (Abbeel et al., 2007; Vasquez et al., 2014; Ziebart, 2010; Scobee et al.,
2018), their basis in assuming that reward functions fully represent task specifications makes them ill
suited to problem domains with hard constraints or non-Markovian objectives.

Recent work has attempted to address these pitfalls by using demonstrations to learn a rich class of
possible specifications that can represent a task (Vazquez-Chanlatte et al., 2018). Others have focused
specifically on learning constraints, that is, behaviors that are expressly forbidden or infeasible
(Pardowitz et al., 2005; Pérez-D’Arpino & Shah, 2017; Subramani et al., 2018; McPherson et al.,
2018; Chou et al., 2018). It is towards this problem of constraint inference that we turn our attention.
In this work, we present a novel method for inferring constraints, drawing primarily from the
Maximum Entropy approach to IRL described by Ziebart et al. (2008). We use this framework to
reason about the likelihood of observing a set of demonstrations given a nominal task description, as
well as about their likelihood if we imposed additional constraints on the task. This knowledge allows
us to select a constraint, or set of constraints, which maximizes the demonstrations’ likelihood and
best explains the differences between expected and demonstrated behavior. Our method improves on
prior work by being able to simultaneously consider constraints on states, actions and features in a
Markov Decision Process (MDP) to provide a principled ranking of all options according to their
effect on demonstration likelihood.

1

Under review as a conference paper at ICLR 2020

2 RELATED WORK

2.1 INVERSE REINFORCEMENT LEARNING

A formulation of the IRL problem was first proposed by Kalman (1964) as the Inverse problem of
Optimal Control (IOC). Given a dynamical system and a control law, the author sought to identify
which function(s) the control law was designed to optimize. This problem was brought into the
domain of MDPs and Reinforcement Learning (RL) by Ng et al. (2000), who proposed IRL as the
task of, given an MDP and a policy (or trajectories sampled according to that policy), find a reward
function with respect to which that policy is optimal.

One of the chief difficulties in the problem of IRL is the fact that a policy can be optimal with respect to
a potentially infinite set of reward functions. The most trivial example of this is the fact that all policies
are optimal with respect to a null reward function that always returns zero. Much of the subsequent
work in IRL has been devoted to developing approaches that address this ambiguity by imposing
additional structure to make the problem well-posed (Abbeel & Ng, 2004; Ratliff et al., 2006). Ziebart
et al. (2008) approach the problem by employing the principle of maximum entropy (Jaynes, 1957),
which allows the authors to develop an IRL algorithm that produces a single stochastic policy that
matches feature counts without adding any additional constraints to the produced behavior. This so
called Maximum Entropy IRL (MaxEnt) provides a framework for reasoning about demonstrations
from experts who are noisily optimal. The induced probability distribution over trajectories forms the
basis for our efforts in identifying the most likely behavior-modifying constraints.

2.2 BEYOND REWARD FUNCTIONS

While Markovian rewards do often provide a succinct and expressive way to specify the objectives of
a task, they cannot capture all possible task specifications. Vazquez-Chanlatte et al. (2018) highlight
the utility of non-Markovian Boolean specifications which can describe complex objectives (e.g. do
this before that) and compose in an intuitive way (e.g. avoid obstacles and reach the goal). The
authors of that work draw inspiration from the MaxEnt framework to develop their technique for
using demonstrations to calculate the posterior probability that an agent is attempting to satisfy a
Boolean specification.

A subset of these types of specifications that is of particular interest to us is the specification of
constraints, which are states, actions, or features of the environment that must be avoided. Chou et al.
(2018) explore how to infer trajectory feature constraints given a nominal model of the environment
(lacking the full set of constraints) and a set of demonstrated trajectories. The core of their approach is
to sample from the set of trajectories which have better performance than the demonstrated trajectories.
They then infer that the set of possible constraints is the subset of the feature space that contains the
higher-reward sampled trajectories, but not the demonstrated trajectories. Intuitively, they reason that
if the demonstrator could have passed through those features to earn a higher reward, but did not,
then there must have been a previously unknown constraint preventing that behavior. However, while
their approach does allow for a cost function to rank elements from the set of possible constraints, the
authors do not offer a mechanism for determining what cost function will best order these constraints.

Our approach to constraint inference from demonstrations addresses this open question by providing
a principled ranking of the likelihood of constraints. We adapt the MaxEnt framework to allow us to
reason about how adding a constraint will affect the likelihood of demonstrated behaviors, and we can
then select the constraints which maximize this likelihood. We consider feature-space constraints as in
Chou et al. (2018), and we explicitly augment the feature space with state- and action-specific features
to directly compare the impacts of state-, action-, and feature-based constraints on demonstration
likelihood.

3 MAXIMUM LIKELIHOOD CONSTRAINT INFERENCE

3.1 PROBLEM FORMULATION

Following the formulation presented by Ziebart et al. (2008), we base our work in the set-
ting of a (finite-state) Markov Decision Process (MDP). We define an MDP M as a tuple

2

Under review as a conference paper at ICLR 2020

(S, {As}, {Ps,a} , D0, φ,R) where S is a finite set of discrete states; {As} is a set of the sets
of actions available to be taken for each state s, such that As ⊆ A, where A is a finite set of discrete
actions; {Ps,a} is a set of state transition probability distributions such that Ps,a(s′) = P (s′|s, a) is
the probability of transitioning to state s′ after taking action a from state s; D0 : S → [0, 1] is an
initial state distribution; φ : S × A → Rk+ is a mapping to a k-dimensional space of non-negative
features; and R : S ×A→ R is a reward function. A trajectory ξ through this MDP is a sequence
of states st and actions at such that s0 ∼ D0 and state si+1 ∼ Psi,ai . Actions are chosen by an
agent navigating the MDP according to a, potentially time-varying, policy π such that π(·|s, t) is a
probability distribution over actions in As. We denote a finite-time trajectory of length T + 1 by
ξ = {s0:T ,a0:T }.
At every time step t, a trajectory will accumulate features equal to φ(st, at). We use the notation
φi(·, ·) to refer to the i-th element of the feature map, and we use the label φi to denote the i-th
feature itself. We also introduce an augmented indicator feature mapping φ̃1 : S ×A→ {0, 1}nφ ,
where nφ = k+ |S|+ |A|. This augmented feature map uses binary variables to indicate the presence
of a feature and expands the feature space by adding binary features to track occurrences of each state
and action, such that

φ̃1φi(s, a) =

{
1 if φi(s, a) > 0

0 otherwise
, φ̃1si(s, a) =

{
1 if s = si
0 otherwise

, φ̃1ai(s, a) =

{
1 if a = ai
0 otherwise

.

(1)

Typically, agents are modeled as trying to maximize, or approximately maximize, the total reward
earned for a trajectory ξ, given by R(ξ) =

∑T
t=0 γ

tR(st, at), where γ ∈ (0, 1] is a discount factor.
Therefore, an agent’s policy π is closely tied to the form of the MDP’s reward function.

Conventional IRL focuses on inferring a reward function that explains an agent’s policy, revealed
through the behavior observed in a set of demonstrated trajectories D. However, our method for
constraint inference poses a different challenge: given an MDPM, including a reward function, and
a set of demonstrations D, find the set of constraints C∗ which maximizes the likelihood of observing
these demonstrations. We define our notion of constraints in the following section.

3.2 CONSTRAINTS FOR MDPS

Figure 1: Human trajectories
overlaid on a grid world MDP.
The shaded region represents
an obstacle in the human’s en-
vironment, and the red “X”s
represent learned constraints.

Constraints are those behaviors that are not disallowed explicitly by
the structure of the MDP, but which would be infeasible or prohibited
for the underlying system being modeled by the MDP. This sort of
discrepancy can occur when a general or simplified MDP is designed
without exact knowledge of specific constraints for the modeled
system. For instance, for a general MDP modeling the behavior of
cars, we might want to include states for speeds up to 500km/h
and actions for accelerations up to 12m/s2. However, for a specific
car on a specific roadway, the set of states where the vehicle travels
above 100km/h may be prohibited because of a speed limit, and the
set of actions where the vehicle accelerates above 4m/s2 may be
infeasible because of the physical limitations of the vehicle’s engine.
Therefore, any MDP trajectory of this specific car system would not
contain a state-action pair which violates these legal and physical
limits. Figure 1 shows an example of constraints driving behavior.

We define a constraint set Ci ⊆ S × A as a set of state-action
pairs that violate some specification of the modeled system. We
consider three general classes of constraints: state constraints, action
constraints, and feature constraints. A state constraint set Csi =
{(s, a) | s = si} includes all state-action pairs such that the state
component is si. An action constraint set Cai = {(s, a) | a = ai}
includes all state-action pairs such that the action component is ai.
A feature constraint set Cφi = {(s, a) | φi(s, a) > 0} includes all state-action pairs that produce a
non-zero value for feature φi.

3

Under review as a conference paper at ICLR 2020

If we augment the set of features as described in (1), it is straightforward to see that state and action
constraints become special cases of feature constraints, where Ci = {(s, a) | φ̃1i (s, a) = 1}. It is
also evident that we can obtain compound constraints, respecting two or more conditions, by taking
the union of constraint sets Ci to obtain C =

⋃
i Ci.

3.2.1 ADDING CONSTRAINTS TO AN MDP

We need to be able to reason about how adding a constraint to an MDP will influence the behavior of
agents navigating that environment. Because constraints are sets of state-action pairs, imposing a
constraint within an MDP means restricting the set of actions that can be taken from certain states.
For a given constraint C, we can replace the set of available actions As in every state s with an
alternative set ACs given by

ACs = As \ {a ∈ As | (s, a) ∈ C} . (2)

Performing such substitutions for an MDP M will lead to a modified MDP MC such that
MC = (S, {ACs }, {Ps,a}, D0, φ,R).

The question then arises as to the how we should treat states with empty action sets ACs = {}. Since
an agent arriving in such an empty state would have no valid action to select, any trajectory visiting
an empty state must be deemed invalid. Indeed, such empty action sets will be produced for any state
si such that Csi ⊆ C.

For MDPs with deterministic transitions, it is clear that any agent respecting these constraints
will not visit an empty state. If we consider the set of empty states Sempty, then for the
purposes of reasoning about an agent’s behavior, we can impose an additional constraint set
Cempty = {(s, a) | ∃ sempty ∈ Sempty : Ps,a(sempty) = 1}. In this work, we will always implicitly add
this constraint set, such that MC will be equivalent to MC∪Cempty , and we recursively add these
constraints until reaching a fixed point.

For MDPs with stochastic transitions, the semantics of an empty state are less obvious and could lend
themselves to multiple interpretations depending on the nature of the system being modeled. We
offer a possible treatment in the appendix.

3.3 DEMONSTRATION LIKELIHOOD MAXIMIZATION

Under the maximum entropy model presented by Ziebart et al. (2008), the probability of a cer-
tain finite-length trajectory ξ being executed by an agent traversing a deterministic MDP M is
exponentially proportional to the reward earned by that trajectory.

PM(ξ) =
1

Z
eβR(ξ)

1
M(ξ), (3)

where Z is the partition function, 1M(ξ) indicates if the trajectory is feasible for this MDP, and
β ∈ [0,∞) is a parameter describing how closely an agent adheres to the task of optimizing the
reward function (as β →∞, the agent becomes a perfect optimizer, and as β → 0, the agent’s actions
become perfectly random). In the sequel, we assume that a given reward function will appropriately
capture the role of β, so we omit β from our notation without loss of generality.

In the case of finite horizon planning, the partition function will be the sum of the exponentially
weighted rewards for all feasible trajectories on MDPM of length no greater than the planning
horizon. We denote this set of trajectories by ΞM. Because adding constraints C modifies the set of
feasible trajectories, we express this dependence as

Z(C) =
∑
ξ∈ΞM

eR(ξ)
1
MC

(ξ). (4)

Assuming independence among demonstrated trajectories, the probability of observing a set D of N
demonstrations is given by the product

PMC (D) =
1

Z(C)N

∏
ξ∈D

eR(ξ)
1
MC

(ξ). (5)

4

Under review as a conference paper at ICLR 2020

Our goal is to maximize the demonstration probability given by (5). Because we take the reward
function and demonstrations as given, our only available decision variable in this maximization is the
constraint set C which alters the indicator 1M

C

and partition function Z(C).

C∗ = arg max
C∈C

PMC (D), (6)

where C ⊆ 2S×A is the hypothesis space of possible constraints.

From the form of (5), it is clear that to solve (6), we must choose a constraint set that does not
invalidate any demonstrated trajectory while simultaneously minimizing the value of Z(C). Consider
the set of trajectories that would be made infeasible by augmenting the MDP with constraint C,
which we denote as Ξ−MC = {ξ ∈ ΞM | 1M

C

(ξ) = 0}. The value of Z(C) is minimized when we
maximize the sum of exponentiated rewards of these infeasible trajectories. Considering the form of
the trajectory probability given by (3), we can see that this sum is proportional to the total probability
of observing a trajectory from Ξ−MC on the original MDPM∑

ξ∈Ξ−
MC

eR(ξ) ∝
∑

ξ∈Ξ−
MC

PM(ξ) = PM(Ξ−MC). (7)

This insight leads us to the final form of the optimization

C∗ = arg max
C∈C

PM(Ξ−MC)

s.t. D ∩ Ξ−MC = {}
. (8)

In order to solve (8), we must reason about the probability distribution of trajectories on the original
MDPM, then find the constraint C such that Ξ−MC contains the most probability mass while not
containing any demonstrated trajectories. While equation (8) is derived for deterministic MDPs, if
we can assume, as proposed by Ziebart et al. (2008), that for a given stochastic MDP, the stochastic
outcomes have little effect on an agent’s behavior and the partition function, then the solution to
(8) will also approximate the optimal constraint selection for that MDP. However, in order to fully
address the stochastic case, we would need to reformulate our approach based on maximum causal
entropy (Ziebart, 2010). We save this extension for future work.

3.3.1 CONSTRAINT HYPOTHESIS SPACE

In order for the solutions to (8) to be meaningful, we must be careful with our choice of the constraint
hypothesis space C. For instance, if we let C = 2S×A, then the optimal solution will always be to
choose the most restrictive C to constrain all state-action pairs not observed in the demonstration set.

One approach to avoid this trivial solution is to use domain knowledge of the modeled system to
restrict C to a library of plausible or common constraints. McPherson et al. (2018) construct such a
library by using reachability theory to calculate a family of likely unsafe sets.

Another approach, which we will explore in this work, is the use of minimal constraint sets for our
hypothesis space. These minimal sets constrain a single state, action, or feature, and were introduced
in Section 3.2 as Csi , Cai , and Cφi , respectively. By iteratively selecting minimal constraint sets, it is
possible to gradually grow the full estimated constraint set and avoid over-fitting to the demonstrations.
Section 3.4 details our approach for selecting the most likely minimal constraint, and Section 3.5
details our approach for iteratively growing the estimated constraint set.

3.4 PROBABILITY MASS FOR MINIMAL CONSTRAINTS

As detailed in Section 3.3, the most likely constraint set is the one whose eliminated trajectories Ξ−MC

have the highest probability of being demonstrated on the original, unconstrained MDP. Therefore, to
find the most likely of the minimal constraints, we must find the expected proportion of trajectories
which will contain any state or action, or accrue any feature. By using our augmented indicator
feature map from (1), we can reduce this problem to only examine feature accruals.

Ziebart et al. (2008) present their forward-backward algorithm for calculating expected feature counts
for an agent following a policy in the maximum entropy setting. This algorithm nearly suffices for our

5

Under review as a conference paper at ICLR 2020

purposes, but it computes the expectation of the total number of times a feature will be accrued (i.e.
how often will this feature be observed per trajectory), rather than the expectation of the number of
trajectories that will accrue that feature at any point. To address this problem, we present a modified
form of the “forward” pass as Algorithm 1. Our algorithm tracks state visitations as well as feature
accruals at each state, which allows us to produce the same maximum entropy distribution over
trajectories as Ziebart et al. (2008) while not counting additional accruals for trajectories that have
already accrued a feature.

Algorithm 1 Feature Accrual History Calculation
Input: an MDPM, a policy π(a|s, t), a time horizon T
Output: expected feature accrual history Φ̃[1,T]

/* Initialize state visitation and feature accrual history */
1: for s ∈ S do
2: Ds,0 ← D0(s)

3: Φ̃s,0 ← 0nφ×1

4: end for

/* Track feature accruals over the time horizon */
5: for t ∈ [0, T − 1] do
6: for s ∈ S do
7: for a ∈ As do
8: /* New feature accruals */
9: /* “�” denotes element-wise multiplication */

10: ∆Φ̃s,t(a)← φ̃1(s, a)�
(
Ds,t1nφ×1 − Φ̃s,t

)
11: end for
12: end for
13: for s′ ∈ S do
14: Ds′,t+1 ←

∑
s∈S

∑
a∈As

Ds,tπ(a|s, t)P (s′|s, a)

15: Φ̃s′,t+1 ←∑
s∈S

∑
a∈As

(
Φ̃s,t + ∆Φ̃s,t(a)

)
π(a|s, t)P (s′|s, a)

16: end for
17: Φ̃t+1 ←

∑
s∈S

Φ̃s,t+1

18: end for
19: Return Φ̃[1,T]

The input of Algorithm 1 includes
the MDP itself, a time horizon, and
a time-varying policy. This policy
should capture the expected behav-
ior of the demonstrator on the nom-
inal MDPM, and can be computed
via the “backward” part of the algo-
rithm from Ziebart et al. (2008). The
output of Algorithm 1, Φ̃[1,T], is an
nφ × T array such that the t-th col-
umn Φ̃t is a vector whose i-th entry
is the expected proportion of trajecto-
ries to have accrued the i-th feature
by time t. In particular, the i-th ele-
ment of Φ̃T is equal to PM(Ξ−MCi

),
which allows us to now directly select
the most likely constraint according
to (8).

3.5 MAXIMUM-
COVERAGE-BASED ITERATIVE
CONSTRAINT INFERENCE

When using minimal constraint sets
as the constraint hypothesis space, it
is possible that the most likely con-
straint still does not provide a satisfac-
tory explanation for the demonstrated
behavior. In this case, it can be bene-
ficial to combine minimal constraints.
If the task of solving (8) is framed as
finding the combination of constraint
sets that “covers” the most probability mass, then the problem becomes a direct analog for the classic
maximum coverage problem. While this problem is known to be NP-hard, there exist a simple greedy
algorithm with known suboptimality bounds (Hochbaum & Pathria, 1998).

We present Algorithm 2 as our approach for adapting this greedy heuristic to solve the problem of
constraint inference. At each iteration, we grow our estimated constraint set by augmenting it with
the constraint set in our hypothesis space that covers the most currently uncovered probability mass.
By analog to the maximum coverage problem, we derive the following bound on the suboptimality of
our approach.
Theorem 1. Let Cnc be the set of all constraints Cnc such that Cnc =

⋃nc
i=1 Ci for Ci ∈ C, and let

C∗nc be the solution to (8) using Cnc as the constraint hypothesis space. It follows, then, that at the
end of every iteration i of Algorithm 2,

P
(

Ξ−
MĈ∗

)
≥

(
1−

(
i− 1

i

)i)
P
(

Ξ−
MC∗

i

)
.

This bound is directly analogous to the suboptimality bound for the greedy solution to the maximum
coverage problem proven by (Hochbaum & Pathria, 1998). For space, the proof is included in the
appendix.

6

Under review as a conference paper at ICLR 2020

(a) True MDP (b) Nominal MDP

(c) Ĉ∗, nc = 1 (d) Ĉ∗, nc = 2 (e) Ĉ∗, nc = 6

Figure 2: Algorithm performance on a synthetic grid world MDP. Each subfigure represents the MDP
by showing (clockwise from left) its states, actions, and features. Each element is shaded according to
the proportion of trajectories that are expected to accrue the respective augmented feature, computed
via Algorithm 1. Constraints are marked with a red “X,” and bright bounding boxes mark the green
and blue feature-producing states. The result here are shown for a set of 100 demonstrations sampled
according to the expectation for the True MDP (a). We begin with the nominal MDP shown in (b),
and produce (c), (d), and (e) by applying Algorithm 2. Note that (c), (d), and (e) show the selections
of feature, action, and state constraints, respectively.

Algorithm 2 Greedy Iterative Constraint Inference
Input: MDPM, constraint hypothesis space C,

empirical probability distribution PD, threshold dDKL

Output: estimated constraint set Ĉ∗

1: Ĉ∗ ← {}
2: for i ∈ [1, |C|] do
3: Ci ← solution to (8) usingMĈ∗ , C, and D
4: ∆DKL = DKL

(
PD ||PMĈ∗

)
−DKL

(
PD ||PMĈ∗∪Ci

)
5: if ∆DKL ≤ dDKL then
6: break
7: end if
8: Ĉ∗ ← Ĉ∗ ∪ Ci
9: end for

10: Return Ĉ∗

Rather than selecting the number of
constraints nc to be used ahead of
time, we check a condition based
on KL divergence to decide if we
should continue to add constraints.
The quantity DKL

(
PD ||PMĈ∗

)
pro-

vides a measure of how well the
distribution over trajectories induced
by our inferred constraints, PMĈ∗ ,
agrees with the empirical probabil-
ity distribution over trajectories ob-
served in the demonstrations, PD.
The threshold parameter dDKL is cho-
sen to avoid over-fitting to the demon-
strations, combating the tendency to
select additional constraints that may
only marginally better align our pre-
dictions with the demonstrations.

4 EXAMPLES

4.1 SYNTHETIC GRID WORLD

We consider the grid world MDP presented in Figure 2. The environment consists of a 9-by-9 grid of
states, and the actions are to move up, down, left, right, or diagonally by one cell. The objective is to
move from the starting state in the bottom-left corner (s0) to the goal state in the bottom-right corner
(sG). Every state-action pair produces a distance feature, and the MDP reward is negative distance,
which encourages short trajectories. There are additionally two more features, denoted green and
blue, which are produced by taking actions from certain states, as shown in Figure 2.

7

Under review as a conference paper at ICLR 2020

The true MDP, from which agents generate trajectories, is shown in Figure 2a, including its constraints.
The nominal, more generic MDP shown in Figure 2b is what we take asM for applying the iterative
maximum likelihood constraint inference in Algorithm 2, with feature accruals estimated using
Algorithm 1. While Figures 2c through 2e show the iteratively estimated constraints, which align
with the true constraints, it is interesting to note that not all constraints present in the true MDP are
identified. For instance, it is so unlikely that an agent would ever select the up-left diagonal action,
that the fact that demonstrated trajectories did not contain that action is unsurprising and does not
make that action an estimated constraint.

Figure 3 shows how the performance of our approach varies based on the number of available
demonstrations and the selection for the threshold dDKL . The false positive rate shown in Figure 3a
is the proportion of selected constraints which are not constraints of the true system. As we would
expect, having more demonstrations available reduces the rate at which obstacles are incorrectly
identified. Further, Figure 3b shows that more demonstrations also allows the behavior predicted by
constraints to better align with the observations. It is interesting to note, however, that with fewer
than 10 demonstrations and a very low dDKL , we may produce very low KL divergence, but at the
cost of a high false positive rate. This phenomenon highlights the role of selecting dDKL to avoid
over-fitting. The threshold dDKL = 0.1 achieves a good balance of producing few false positives
with sufficient examples while also producing lower KL divergences, and we used this threshold to
produce the results in Figures 2 and 1.

4.2 HUMAN OBSTACLE AVOIDANCE

(a) False positives

(b) DKL

Figure 3: Algorithm performance on the
synthetic grid world. Each data point
represents the mean result of 10 indepen-
dent trajectory draws, and the margins
show ±1 standard error.

In our second example, we analyze trajectories from hu-
mans as they navigate around an obstacle on the floor. We
map these continuous trajectories into trajectories through
a grid world where each cell represents a 1ft-by-1ft area
on the ground. The human agents are attempting to reach
a fixed goal state (sG) from a given initial state (s0), as
shown in Figure 1. We performed MaxEnt IRL on hu-
man demonstrations of the task without the obstacle to
obtain the nominal distance-based reward function. We
restrict ourselves to estimating only state constraints, as
we do not supply our algorithm with knowledge of any
additional features in the environment and we assume that
the humans’ motion is unrestrained.

Demonstrations were collected from 16 volunteers, and
the results of performing constraint inference are shown
in Figure 1. Our method is able to successfully predict the
existence of a central obstacle. While we do not estimate
every constrained state, the constraints that we do estimate
make all of the obstacle states unlikely to be visited. In
order to identify those states as additional constraints, we
would have to decrease our dDKL threshold, which could
also lead to more spurious constraint selections, such as
the three shown in Figure 1.

5 CONCLUSION AND FUTURE WORK

We have presented our novel technique for learning con-
straints from demonstrations. We improve upon previous
work in constraint-learning IRL by providing a principled
framework for identifying the most likely constraint(s),
and we do so in a way that explicitly makes state, action,
and feature constraints all directly comparable to one an-
other. We believe that the numerical results presented in Section 4 are promising and highlight the
usefulness of our approach.

8

Under review as a conference paper at ICLR 2020

Despite its benefits, one drawback of our approach is that the formulation is based on (3), which
only exactly holds for deterministic MDPs. As mentioned in Section 3.3, we plan to investigate the
use of a maximum causal entropy approach to address this issue and fully handle stochastic MDPs.
Additionally, the methods presented here require all demonstrations to contain no violations of the
constraints we will estimate. We believe that softening this requirement, which would allow reasoning
about the likelihood of constraints that are occasionally violated in the demonstration set, may be
beneficial in cases where trajectory data is collected without explicit labels of success or failure.
Finally, the structure of Algorithm 1, which tracks the expected features accruals of trajectories over
time, suggests that we may be able to reason about non-Markovian constraints by using this historical
information to our advantage.

Overall, we believe that our formulation of maximum likelihood constraint inference for IRL shows
promising results and presents attractive avenues for further investigation.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1. ACM, 2004.

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of reinforcement
learning to aerobatic helicopter flight. In Advances in neural information processing systems, pp.
1–8, 2007.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. CoRR, abs/1606.06565, 2016. URL http://arxiv.org/
abs/1606.06565.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstrations. CoRR,
abs/1812.07084, 2018. URL http://arxiv.org/abs/1812.07084.

Mark K Ho, Michael L Littman, Fiery Cushman, and Joseph L Austerweil. Teaching with rewards
and punishments: Reinforcement or communication? In CogSci, 2015.

Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in problems of maximum
k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

Rudolf Emil Kalman. When is a linear control system optimal? Journal of Basic Engineering, 86(1):
51–60, 1964.

David L. McPherson, Dexter R. R. Scobee, Joseph Menke, Allen Y. Yang, and S. Shankar Sastry.
Modeling supervisor safe sets for improving collaboration in human-robot teams. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 861–868, Oct 2018. doi:
10.1109/IROS.2018.8593865.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Michael Pardowitz, Raoul Zollner, and Rüdiger Dillmann. Learning sequential constraints of tasks
from user demonstrations. In 5th IEEE-RAS International Conference on Humanoid Robots, 2005.,
pp. 424–429. IEEE, 2005.

Claudia Pérez-D’Arpino and Julie A Shah. C-learn: Learning geometric constraints from demonstra-
tions for multi-step manipulation in shared autonomy. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4058–4065. IEEE, 2017.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736. ACM, 2006.

Dexter R R Scobee, Vicenc Rubies Royo, Claire J Tomlin, and S Shankar Sastry. Haptic assistance
via inverse reinforcement learning. In 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 1510–1517. IEEE, 2018.

9

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1812.07084

Under review as a conference paper at ICLR 2020

Guru Subramani, Michael Zinn, and Michael Gleicher. Inferring geometric constraints in human
demonstrations. In Conference on Robot Learning, pp. 223–236, 2018.

Dizan Vasquez, Billy Okal, and Kai O Arras. Inverse reinforcement learning algorithms and features
for robot navigation in crowds: an experimental comparison. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1341–1346. IEEE, 2014.

Marcell Vazquez-Chanlatte, Susmit Jha, Ashish Tiwari, Mark K Ho, and Sanjit Seshia. Learning task
specifications from demonstrations. In Advances in Neural Information Processing Systems, pp.
5367–5377, 2018.

Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

APPENDIX

A ADDING CONSTRAINTS TO STOCHASTIC MDPS

For MDPs with non-deterministic transitions, the semantics of an empty state are less obvious
and could lend themselves to multiple interpretations depending on the nature of the system being
modeled. In our context, we use constraints to describe how observed behaviors from demonstrations
differ from possible behaviors allowed by the nominal MDP structure. We therefore assume that
any demonstrations provided are, by the fact that they were selected to be provided, consistent
with the system’s constraints, including avoiding empty states. This assumption implies that any
stochastic state transitions that would have led to an empty state will not be observed in trajectories
from the demonstration set. The omission of these transitions means that, for a given (s, a), if
Ps,a(Sempty) = p, then a proportion p of these (s, a) pairs which occur as an agent navigates the
environment will be excluded from demonstrations. Therefore, as we modify the MDP to reason
about demonstrated behavior, we need updated transition probabilities which eliminate the probability
mass of transitioning to empty states, an event which will never be observed in a demonstration. Such
modified probabilities can be given as

PCs,a(s′) =

{
0 if s′ ∈ Sempty

Ps,a(s′)
1−Ps,a(Sempty)

otherwise
. (9)

We must also capture the change to observed state-action pair frequencies by understanding that any
observed policy πC will be related to an agent’s actual policy π according to

πC(a|s, t) =
π(a|s, t)(1− Ps,a(Sempty))∑

a′∈ACs
π(a′|s, t)(1− Ps,a(Sempty))

. (10)

It is important to note that the modifications presented in (9) and (10) for non-deterministic MDPs
are not meant to directly reflect the reality of the underlying system (we wouldn’t expect the actual
transition dynamics to change, for instance), but to reflect the apparent behavior that we would expect
to observe in the subset of trajectories that would be selected as demonstrations. We further note
that applying these modifications to deterministic MDPs will result in the same expected behavior as
augmenting the constraint set with Cempty.

B PROOF FOR THEOREM 1

Theorem 2. Let Cnc be the set of all constraints Cnc such that Cnc =
⋃nc
i=1 Ci for Ci ∈ C, and let

C∗nc be the solution to (8) using Cnc as the constraint hypothesis space. It follows, then, that at the
end of every iteration i of Algorithm 2,

P
(

Ξ−
MĈ∗

)
≥

(
1−

(
i− 1

i

)i)
P
(

Ξ−
MC∗

i

)
.

10

Under review as a conference paper at ICLR 2020

Proof. The problem of finding C∗nc is analogous to solving the maximum cover-
age problem, where the set of elements to be covered is the set of trajectories
{ξ | ∃C ∈ C : ξ ∈ Ξ−MC and D ∩ Ξ−MC = {}} and the weight of each element ξ is PM(ξ). Be-
cause Algorithm 2 constructs Ĉ∗ iteratively by taking the union of the previous value of Ĉ∗ and
the set Ci ∈ C which solves (8), the value of Ĉ∗ at the end of the i-th iteration is analogous to the
greedy solution of the maximum coverage problem with nc = i. Therefore, we can directly apply the
suboptimality bound for the greedy solution proven in [20] to arrive at our given bound on eliminated
probability mass.

11

	Introduction
	Related Work
	Inverse Reinforcement Learning
	Beyond Reward Functions

	Maximum Likelihood Constraint Inference
	Problem Formulation
	Constraints for MDPs
	Adding Constraints to an MDP

	Demonstration Likelihood Maximization
	Constraint Hypothesis Space

	Probability Mass for Minimal Constraints
	Maximum-Coverage-Based Iterative Constraint Inference

	Examples
	Synthetic Grid World
	Human Obstacle Avoidance

	Conclusion and Future Work
	Adding constraints to Stochastic MDPs
	Proof for Theorem 1

