
Under review as a conference paper at ICLR 2020

WATCH THE UNOBSERVED: A SIMPLE APPROACH TO
PARALLELIZING MONTE CARLO TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Monte Carlo Tree Search (MCTS) algorithms have achieved great success on
many challenging benchmarks (e.g., Computer Go). However, they generally re-
quire a large number of rollouts, making their applications to planning costly. Fur-
thermore, it is also extremely challenging to parallelize MCTS due to its inherent
sequential nature: each rollout heavily relies on the statistics (e.g., node visitation
counts) estimated from previous simulations to achieve an effective exploration-
exploitation tradeoff. In spite of these difficulties, we develop an algorithm, P-
UCT, to effectively parallelize MCTS, which achieves linear speedup and exhibits
negligible performance loss with an increasing number of workers. The key idea
in P-UCT is a set of statistics that we introduce to track the number of on-going
yet incomplete simulation queries (named as unobserved samples). These statis-
tics are used to modify the UCT tree policy in the selection steps in a principled
manner to retain effective exploration-exploitation tradeoff when we parallelize
the most time-consuming expansion and simulation steps. Experimental results
on a proprietary benchmark and the public Atari Game benchmark demonstrate
the near-optimal linear speedup and the superior performance of P-UCT when
compared to these existing techniques.

1 INTRODUCTION

Recently, Monte Carlo Tree Search (MCTS) algorithms such as UCT (Kocsis et al., 2006) have
achieved great success in solving many challenging artificial intelligence (AI) benchmarks, includ-
ing video games (Guo et al., 2016) and Go (Silver et al., 2017). However, they rely on a large number
(e.g., thousands) of Monte Carlo rollouts to construct search trees for planning actions in decision-
making systems, which leads to high cost in time (Browne et al., 2012). For this reason, there has
been an increasing demand for parallelizing MCTS over multiple workers. However, paralleliz-
ing MCTS without degrading its performance is difficult (Segal, 2010; Mirsoleimani et al., 2018a;
Chaslot et al., 2008), mainly due to the intrinsic sequential nature in the algorithm (Figure 1(a)).
Specifically, to select the most urgent nodes that allow effective exploration-exploitation tradeoff,
MCTS needs to estimate the most up-to-date statistics from the previous rollouts. On the other hand,
the expansion and the simulation steps are generally the most time-consuming part compared to the
other two steps, and should be intensively parallelized. However, when paralleling these two steps
using multiple workers, it becomes inevitable that the workers can only access a set of outdated
statistics (Section 2.2). The key question is therefore how to keep track of the correct statistics in the
search tree when we parallelize the expansion and the simulation steps, with the hope of retaining
effective exploration-exploitation tradeoff as the original non-parallel UCT (Section 2).

To this end, we propose P-UCT, a novel parallel MCTS algorithm, that attains linear speedup without
sacrificing the performance. This is achieved by a conceptual innovation (Section 3.1) as well as an
efficient real system implementation (Section 3.2). Specifically, the key idea that we introduce in
P-UCT to overcome the aforementioned challenge is a set of statistics that tracks the number of
on-going yet incomplete simulation queries (named as unobserved samples). We combine these
newly devised statistics with the original statistics of observed samples to modify the UCT node-
selection policy in the selection steps in a principled manner, which, as we shall show in Section 4,
effectively retains exploration-exploitation tradeoff during parallelization. Our proposed approach
has been successfully deployed in a production system for efficiently and accurately estimating the
user pass-rates of a mobile game “Joy City”, with the purpose of reducing their design cycles. On

1

Under review as a conference paper at ICLR 2020

this proprietary benchmark, we show that P-UCT achieves near-optimal linear speedup and superior
performance in predicting user pass-rate (Section 5.1). In addition, we further evaluate P-UCT on
the Atari game benchmark and compare it to existing state-of-the-art parallel MCTS algorithms
(Section 5.2), which also demonstrate our superior speedup and performance.

2 ON THE DIFFICULTIES OF PARALLELIZING MCTS

In this section, we briefly introduce the MCTS and the UCT algorithms, and then discuss the key
challenges of their parallelization.

2.1 MONTE CARLO TREE SEARCH AND UPPER CONFIDENCE BOUND FOR TREES (UCT)

We consider the Markov Decision Process (MDP) 〈S,A, R, P, γ〉, where an agent interacts with the
environment in order to maximize a long-term cumulative reward. Specifically, an agent at state
st ∈ S takes an action at ∈ A according to a policy π, so that the MDP transits to the next state
st+1 ∼ P (st+1|st, at) and emits a reward R(st, at, st+1). The objective of the agent is to learn an
optimal policy π∗ such that the long-term cumulative reward is maximized:

max
π

Eat∼π,st+1∼P

[∞∑
t=0

γtR(st, at, st+1) |s0=s
]
, (1)

where s ∈ S denotes the initial state and γ is the discount factor. Many reinforcement learning
(RL) algorithms have been developed to solve the above problem (Sutton & Barto, 2018), including
model-free algorithms (Mnih et al., 2013; 2016; Williams, 1992; Konda & Tsitsiklis, 2000; Schul-
man et al., 2015; 2017) and model-based algorithms (Nagabandi et al., 2018; Weber et al., 2017;
Bertsekas, 2005; Deisenroth & Rasmussen, 2011). Monte Carlo Tree Search (MCTS) is a model-
based RL algorithm that plans the best action at each time step (Browne et al., 2012). Specifically,
it uses the MDP model (or its sampler) to identify the best action at each time step by constructing a
search tree (Figure 1(a)), where each node n represents a visited state, each edge from n denotes an
action an that can be taken at that state, and the landing node n′ denotes the state it transits to after
taking an. As shown in Figure 1(a), MCTS repeatedly performs Monte Carlo rollouts that consist
of four sequential steps: selection, expansion, simulation and backpropagation. The selection step
traverses over the existing search tree until the leaf node (or other termination conditions are sat-
isfied) by choosing actions (edges) an at each node n according to a tree policy. One widely used
node-selection policy is the one used in the Upper Confidence bound for Trees (UCT) (Kocsis et al.,
2006):

an = argmax
c∈C(n)

{
Vc + β

√
2 logNn
Nc

}
, (2)

where C(n) denotes the set of all child nodes for n; the first term Vc is an estimate for the long-
term cumulative reward that can be received when starting from the state represented by node c, and
the second term represents the uncertainty (size of the confidence interval) of that estimate. The
confidence interval is calculated based on the Upper Confidence Bound (UCB) (Auer et al., 2002;
Auer, 2002) using Nn and Nc, which denote the number of times that the nodes n and c have been
visited during the MCTS rollouts, respectively. Therefore, the key idea of the UCT policy (2) is to
select the best action according to an optimistic estimation (i.e., the upper confidence bound) of the
expected return, which strikes a balance between the exploitation (first term) and the exploration
(second term) with β controlling their tradeoff. Once the selection process reaches a leaf node of
the search tree (or other termination conditions are met), we will expand the node according to a
prior policy by adding a new child node. Then, in the simulation step, we estimate its value function
(long-term cumulative reward) V̂n by running the environment simulator with a default (simulation)
policy. Finally, during backpropagation, we update the statistics Vn and Nn along the traversed path
according to:

Nn ← Nn + 1, Vn ←
Nn − 1

Nn
Vn +

1

Nn
V̂n. (3)

2

Under review as a conference paper at ICLR 2020

𝑉"(𝑠%)

𝑉'	𝑁' 𝑛'

𝑛+

𝑛,
	𝑉+	𝑁+

𝑉,	𝑁,

𝑎./ = 𝑛+

𝑎.1 = 𝑛,

Selection

𝑛%
𝑎 𝑛%

Expansion

𝑠%

𝜋

𝑛'

𝑛+

𝑛,

𝑛%
𝑉%	𝑁%

𝑉,	𝑁,
𝑉+ 𝑁+

Simulation Backpropagation

Recursively select child node with Eq. 1 Select an action 𝑎 to expand and
construct child node accordingly

Simulate from current node’s state 𝑠8
with policy 𝜋

Recursively update visited nodes with
simulation return

Repeat

(a) Each (non-parallel) MCTS rollout consists of four sequential steps: selection, expansion, simulation and
backpropagation, where the expansion and the simulation steps are generally most time-consuming.

𝑛"

𝑛# 𝑛$

𝑛% 𝑛&

𝑛'
A

B

C

𝑉'	𝑁'

𝑉#	𝑁# 𝑉$ 	𝑁$

𝑉&	𝑁&𝑉%	𝑁%

𝑛+

(b) Ideal parallelization

𝑛" 𝑛#

𝑛$

𝑛%
A

B

C

𝑉%	𝑁%

𝑉"	𝑁" 𝑉# 	𝑁#

𝑉)	𝑁)𝑉$	𝑁$

𝑛*

𝑛)

(c) Naive parallelization

𝑛"

𝑛# 𝑛$

𝑛% 𝑛&

𝑛'
A

B

C

𝑉'	𝑁'	𝑂'

𝑉#	𝑁# 𝑉$ 	𝑁$	𝑂$

𝑉&	𝑁&	𝑂&𝑉%	𝑁%	𝑂%

complete update
for 𝑽, 𝑵, and 𝑂

Incomplete
update for 𝑂

𝑂#𝑛.

(d) P-UCT

Worker A

Worker B

Worker C

Colored statistics (𝑉, 𝑁) has been
updated by the corresponding worker,
while gray ones (𝑉, 𝑁) are not updated.

Simulation in
progress

After
Backpropagation

Selection in
progress

Figure 1: The MCTS algorithm and its parallelization. (a) An overview of MCTS. (b) The ideal
parallelization: the most up-to-date statistics {Vn, Nn} (in chromatic color) are assumed to be avail-
able to all workers as soon as a simulation begins (unrealistic in practice). (c) The key challenge in
parallelizing MCTS: the workers can only access outdated {Vn, Nn} (in gray-color), leading prob-
lems like collapse of exploration. (d) P-UCT tracks the number of incomplete simulation queries,
which is denoted as On, and modifies the UCT policy in a principled manner to retain effective
exploration-exploitation tradeoff. It achieves comparable speedup and performance as the ideal par-
allelization.

2.2 THE INTRINSIC DIFFICULTIES OF PARALLELIZING MCTS

The above discussion implies that the MCTS algorithm is intrinsically sequential: each selection step
in a new rollout requires the previous rollouts to complete in order to deliver the updated statistics,
Vn and Nn, for the UCT tree policy (2). Although this requirement of up-to-date statistics is not
mandatory for implementation, it is in practice intensively required to achieve effective exploration-
exploitation tradeoff (Auer et al., 2002). Specifically, up-to-date statistics best help the UCT tree
policy to explore and prune non-rewarding branches as well as extensively visit advantageous path
for additional planning depth. Likewise, to achieve the best possible performance, when using
multiple workers to parallelize MCTS rollouts, it is also important to ensure that each worker uses
the most recent statistics (the colored Vn and Nn in Figure 1(b)) in its own selection step. However,
this is impossible in parallelizing MCTS based on the following observations. First, the expansion
step and the simulation step are generally the most time-consuming parts compared to the other two
steps, because they involve a large number of interactions with the environment simulator (Section
3.2). Therefore, as exemplified by Figure 1(c), when a worker C initiates a new selection step, the
other workers A and B are most likely still in their simulation or expansion steps. This prevents them
from updating the (global) statistics for other workers like C, which happens at the backpropagation
step. Using outdated statistics (the gray-colored Vn andNn in Figure 1(c)) at different workers could
lead to a significant loss in speedup and performance, due to behaviors like collapes of exploration or
exploitation failure, which we shall discuss thoroughly in Section 4. To give an example, Figure 1(c)
illustrates the collapse of exploration, where worker C traverses over the same path as the worker
A in its selection step due to the determinism of (2). Specifically, if the statistics are unchanged
between worker A and C begins the selection step, they will choose the same node according to
(2), which greatly reduces the diversity of exploration. Therefore, the key question that we want
to address in parallelizing MCTS is how to keep track of the correct statistics and modify the UCT
policy in a principled manner, with the hope of retaining effective exploration-exploitation tradeoff
at different workers.

3

Under review as a conference paper at ICLR 2020

3 P-UCT

In this section, we first develop the conceptual idea of our P-UCT algorithm (Section 3.1), and then
we present a real system implementation using a master-slave architecture (Section 3.2).

3.1 WATCH THE UNOBSERVED SAMPLES IN UCT TREE POLICY

As we pointed out earlier, the key question we want to address in parallelizing MCTS is how to
deliver the most up-to-date statistics {Vn, Nn} to each worker so that they can achieve effective
exploration-exploitation tradeoff in its selection step. This is assumed to be the case in the ideal
parallelization in Figure 1(b). Algorithmically, it is equivalent to the standard (non-parallel) MCTS
except that the rollouts are performed in parallel by different workers. Unfortunately, in practice,
the statistics {Vn, Nn} available to each worker are generally outdated because of the slow and
incomplete simulation and expansion steps at the other workers (Figure 1(c)). Specifically, since
the estimated value V̂n is unobservable before simulations complete and workers should not wait
for the updated statistics to proceed, the (partial) loss of statistics {Vn, Nn} is unavoidable. Now
the question becomes: is there an alternative way to addressing the issue? The answer is in the
affirmative and will be explained below.

Aiming at bridging the gap between naive parallelization (Figure 1(b)) and the ideal case (Fig-
ure 1(b)), we closely examine their difference in terms of the availability of statistics. As illustrated
by the colors of the statistics, their only difference in {Vn, Nn} is caused by the on-going simulation
process. As suggested by (3), although Vn can only be updated after a simulation step is completed,
the newest Nn information can actually be available as early as a worker initiates a new rollout.
This is the key insight that we leverage to enable effective parallelization in our P-UCT algorithm.
Motivated by this, we introduce another quantity, On, to count the number of rollouts that have been
initiated but not yet completed, which we name as unobserved samples. That is, our new statistics
On watch the number of unobserved samples, and are then used to correct the UCT tree policy (2)
into the following form:

an = argmax
c∈C(n)

{
Vc + β

√
2 log(Nn +On)

Nc +Oc

}
. (4)

The intuition of the above modified node-selection policy is that when there are On workers sim-
ulating (querying) node n, the confidence interval at node n will eventually be shrunk after they
complete. Therefore, adding On and Oc to the exploration term considers such a fact beforehand
and let other workers be aware of it. Despite its simple form, (4) provides a principled way to retain
effective exploration-exploitation tradeoff under parallel settings; it corrects the confidence bound
towards better exploration-exploitation tradeoff. As the confidence level is instantly updated (i.e.,
at the beginning of simulation), more recent workers are guaranteed to observe additional statistics,
which prevent them from extensively querying the same node as well as finding better nodes to
query. For example, when multiple children are in demand for exploration, (4) allows them to be ex-
plored evenly. In contrast, when a node has been sufficiently visited (i.e., large Nn and Nc), adding
On and Oc from the unobserved samples have little effect on (4) because the confidence interval is
sufficiently shrunk around Vc, allowing extensively exploitation of the best-valued child.

3.2 SYSTEM IMPLEMENTATION USING MASTER-SLAVE ARCHITECTURES

We now proceed to explain the system implementation of P-UCT, where the overall architecture is
shown in Figure 2 (see Appendix A for the details). Specifically, we use a master-slave architecture
to implement the P-UCT algorithm with the following considerations. First, recall that the expansion
and the simulation steps are the most time-consuming part compared to the selection and the back-
propagation steps. Therefore, these two steps should be intensively parallelized, and in fact, they
are relatively easy to parallelize (e.g., different simulations could be performed independently). For
this reason, we will use multiple simulation (expansion) workers to run them in parallel. Second, as
we discussed earlier, different workers need to access the most up-to-date statistics {Vn, Nn, On} in
order to achieve successful exploration-exploitation tradeoff. To this end, a centralized architecture
for the selection and backpropagation step is more preferable as it allows adding strict restrictions
to the retrieval and update of the statistics, making them up-to-date. Specifically, we use a central-
ized master process to maintain a global set of statistics (in addition to other data such as game

4

Under review as a conference paper at ICLR 2020

Main process (master)

Perform selection according to Eq. 2 until
termination criterion satisfied

If expansion needed, add to expansion task buffer,
otherwise add simulation task

Expansion workers (slave)

Select an action to expand, then load the
game-state, execute that action. Return
reward, episode terminal signal, and the

result game-state.

Wait for a completed expansion task, perform
incomplete update, and assign simulation task.

Simulation workers (slave)

Load game-state, then perform rollout
until termination. Return the cumulative

discounted reward.

Game-state

If simulation workers are fully occupied, wait for
a complete task and perform complete update.

Cumulative reward Task buffer

Game-state & copy
of current node

Game-state

new game-state,
reward, etc.

Expansion workers fully occupied?

Yes

No

Simulation workers fully occupied?No

Assign/gather task to/from slave workers.Assign/gather task to/from slave workers.

Task buffer

Yes

Figure 2: The overall system architecture that implements the P-UCT algorithm. The Green blocks
and the task buffers are operated at the master (main) process, while the blue blocks are executed by
and the slave processes (workers). Pseudo-code is provided in Appendix A.

Slave (expansion)Master

Slave (simulation)

(a) Tap-elimination game

Slave (simulation)

Slave (expansion)Master

(b) Atari games

Figure 3: The breakdown of the time consumption on two game benchmarks (Section 5). The sim-
ulation (expansion) time at the master process is defined as the time that it waits for the simulation
(expansion) workers to complete, which happens only when the corresponding set of workers is
full (Figure 2). The backpropagation time is the sum of the time spent on incomplete update and
on complete update. All speed-tests are performed under 16 expansion workers and 16 simulation
workers, and are averaged over 5 game-levels in task (a) or 5 games in task (b).

states), and let it be in charge of the backpropagation step (i.e., updating the glocal statistics) and
the selection step (i.e., using the global statistics). As shown in Figure 2, the master process repeat-
edly performs rollouts until a predefined number of simulations is reached. During each rollout, it
selects nodes to query, assign expansion and simulation tasks to different workers, and collect the
returned results to update the global statistics. In particular, we use the following complete update
and incomplete update to track Nn and On along the traversed path (see Figure 1(d)):

[complete update] On ← On − 1; Nn ← Nn + 1 (5)
[incomplete update] On ← On + 1 (6)

In addition, Vn is also updated in the complete update step using (3). Such a clear division of labor
between the master process and the slave workers provides sequential selection and backpropagation
steps when we parallelize the costly expansion and simulation steps. It ensures up-to-date statistics
for all workers by the centralized master process and achieves linear speedup without much perfor-
mance degradation (see Section 5 for the experimental results).

To justify the above rationale of our system design, we perform a set of running time analysis for
our developed P-UCT system and report the results in Figure 3. We show the breakdown of the
time-consumption for different parts at the master process and at the slave workers. First, we focus
exclusively on slave workers. With close-to-100% occupancy rate for the simulation workers, the
simulation step is fully parallelized. Although the expansion workers are not fully utilized, the
expansion step is maximumly parallelized since the number of required simulation and expansion
tasks is identical. This suggests the existence of an optimal (task-dependent) ratio between the

5

Under review as a conference paper at ICLR 2020

A B C

During simulation,
multiple workers
(e.g. A, B, C)
simultaneously
query the same
node. Selection,
expansion, and
backpropagation
similar to UCT.

(a) Leaf parallelization (LeafP)

𝑉"−= 𝑟&'

𝑉(−=𝑟&'

𝑉)−= 𝑟&'

𝑛(

𝑛"

A B

C

𝑉+−= 𝑟&'

An virtual loss 𝑟&'
is subtracted from
𝑉, of nodes that
have been
traversed by some
worker. 𝑟&' will
be added back to
nodes during
backpropagation.

𝑛+

𝑛-

(b) Tree parallelization (TreeP)

A B C
Different
workers perform
tree search in a
local memory,
each starts from
different child
nodes

(c) Root parallelization (RootP)

Figure 4: Three popular parallel MCTS algorithms. LeafP parallelizes the simulation steps, TreeP
uses virtual loss to encourage exploration, and RootP parallelizes the subtrees of the root node.

number of expansion workers and the number of simulation workers that fully parallelize both steps
with the least resources (e.g. memory). Returning to the master process, on both benchmarks,
we see a clear dominance of the time spent on the simulation and the expansion steps even they
are both extensively parallelized by 16 workers. This supports our design to parallelize only the
simulation and expansion steps. We finally focus on the additional communication overhead caused
by parallelization. Although more time-consuming compared to simulation and backpropagation,
the communication overhead is negligible compared to the time used by the expansion and the
simulation steps. Other details in our system, such as the centralized game-state storage and the
reduction of the communication overhead, are further discussed in Appendix A.

4 THE BENEFITS OF WATCHING UNOBSERVED SAMPLES

In this section, we discuss the benefits of watching unobserved samples in P-UCT, and compare it
with several popular parallel MCTS algorithms (Figure 4), including Leaf Parallelization (LeafP),
Tree Parallelization (TreeP) with virtual loss, and Root Parallelization (RootP).1 LeafP parallelizes
the leaf simulation, which leads to an effective hex game solver (Wang et al., 2018). TreeP with vir-
tual loss has recently achieved great success in challenging real-world tasks such as Go (Silver et al.,
2017). And RootP parallelizes the subtrees of the root node at different workers, and aggregates the
statistics of the subtrees after all the workers complete their simulations (Soejima et al., 2010).

We argue that, by introducing the additional statistics On, P-UCT achieves a better exploration-
exploitation tradeoff than the above existing methods. First, LeafP and TreeP represent two extremes
of parallelization in such a tradeoff. LeafP lacks diversity in exploration as all its workers are
assigned to simulating (querying) the same node, leading to performance drop caused by collapse
of exploration in much the same way as the naive parallelization. This could be observed from
our experiments in Section 5. In contrast, although the virtual loss used in TreeP could encourage
exploration diversity, this hard additive penalty could cause exploitatin failure: workers will be less
likely to co-simulating the same node even when they are certain that it is optimal (Mirsoleimani
et al., 2017). RootP tries to avoid these issues by letting workers perform an independent tree search.
However, this reduces the equivalent number of rollouts at each worker, decreasing the accuracy of
the UCT policy (2). Different from the above three approaches, P-UCT achieves a much better
exploration-exploitation tradeoff in the following manner. It encourages exploration by using On to
“penalize” the nodes that have many in-progress simulations. Meanwhile, it allows multiple workers
to exploit the most rewarding node since this “penalty” vanishes when Nn becomes large (see (4)).

While we have seen the severe disadvantages of neglecting information of the unobserved samples
(as is done by LeafP, TreeP, and RootP), we now examine whether keeping track of them provides
substantial benefits. Specifically, we examine how far away P-UCT is from the ideal parallelization
in Figure 1(b). Recall that the blue-colored statistics in Figure 1(b)-(c) at nodes 3, 5 and 9 imply
that they are available to workers, while the gray-colored statistics means they are outdated. Al-
though the unobserved sample counts On compensates the outdated Nn and make it up-to-date, the
expected return Vn can not be corrected before the simulation completes and returns V̂ (i.e., V̂ is
missing). Therefore, we now focus on analyzing the influence of missing V̂ , and we argue that the
tree structure of the search tree could mitigate its harm on the Vn’s along the selected path. To see

1We refer the readers to Chaslot et al. (2008) for more details.

6

Under review as a conference paper at ICLR 2020

(a) Screenshots of the Joy City game

released levels (training)
new levels (inference)

Policy π
(as default policy)

A3C learner
Perform multiple
game plays
using P-UCT
with different
number of
simulations

Game play
results

feature
extraction

Pass rate,
aveg. used
step, … (6
features in
total)

Linear
regression

User pass-rate
(for training only)

Predicted user pass rate
(for inference only)

(b) The user pass-rate prediction system

Figure 5: Overview of the Joy City game and our deployed user pass-rate prediction system.

this, first note that all the selected trajectories start from the root node and ends at some terminal
node. Therefore, shallower nodes are generally visited more frequently, and their Vn are thus more
robust to missing V̂ ’s. In contrast, for nodes with deeper path depth, they are less frequently visited
and their Vn estimates are supposed to be more sensitive to missing V̂ ’s. Recall that the problem
of missing V̂ is caused by in-progress simulations at the leaf node, and the number of missing V̂
is determined by the number of in-progress simulations (i.e., the number of unobserved samples).
However, these deeper nodes are less likely to have a large number of unobserved samples (in-
progress simulations) because the probability for selecting the same path decreases significantly as
the node depth increases. Therefore, the Vn’s at these deeper nodes are generally less outdated.

5 EXPERIMENTS

In this section, we evaluate the proposed P-UCT algorithm on two benchmarks. First, we success-
fully deploy our P-UCT algorithm in a production system to accurately and efficiently predict the
user pass-rate of a proprietary level-oriented mobile game (Section 5.1), with the objective being
significantly reducing the game design cycle. Due to the 16× speedup by P-UCT with negligible
performance loss, our system saves a huge amount of human cost in game-testing. In addition, we
further evaluate P-UCT on the public Atari Game benchmark and compare it with several state-of-
the-art baseline algorithms, which also demonstrates its superior performance and speedup.

5.1 EXPERIMENTS ON THE “JOY CITY” GAME

Joy City is a proprietary level-oriented game with diverse and challenging gameplay (Figure 5(a)).
Its basic rule is tapping the connected items to eliminate them (see Appendix B.1 for the details), and
to pass a level, players are required to complete certain level-goals within a given number of steps.
For this reason, we refer it as the tap game below. It is a challenging reinforcement learning task
due to its large number of game-state (129×9 ≈ 2.5 × 1087) and high randomness of the transition
probability. In particular, since new items could be randomly dropped into the game board, there are
hundreds of possible outcomes after a single move, which results in a large branching factor.

The user pass-rate prediction system During a game design cycle, to achieve the desired game
pass-rates, a game designer needs to hire many human testers to extensively test all the levels before
its release, which generally takes a long time and is inaccurate. Therefore, it would greatly reduce
the game design cycle if we can develop a testing system that is able to provide quick and accurate
feedback about the user pass-rates. Figure 5(b) gives an overview of our deployed pass-rate pre-
diction system, where P-UCT is used to mimic average user performance and provide features for
predicting the human pass-rate. As we will show later, it can achieve significant speedup without
significant performance loss,2 allowing the game designer to get the feedback in 20 minutes instead
of 12 hours. Specifically, we use P-UCT with different numbers of rollouts to mimic players with

2Due to the complexity the tap game, model-free RL algorithms such as A3C (Mnih et al., 2016) and PPO
(Schulman et al., 2017) fail to achieve satisfactory performance and thus cannot perform an accurate prediction.
On the other hand, MCTS could achieve good performance but takes a long time in testing.

7

Under review as a conference paper at ICLR 2020

Table 1: Pair-wise sample t-test of pass-rate across 130
levels between two AI bots (different number of MCTS
rollouts) and the players. “Avg. diff” means the average
difference between the pass-rate of the bot and that of
the human players. p-value measures the likelihood that
two sets of paired samples are statistically similar (i.e.
larger means similar). Effect size measures the strength
of the difference (larger means greater difference).

AI bot # rollouts Avg. diff. Effect size p-value

P-UCT 10 -1.54 0.07 0.4120
P-UCT 100 22.18 0.88 0.0000

67%
84%
93%

MAE: 8.6%

Figure 6: Distribution of the pass-rate
prediction error on 130 game-levels.

15.57

11.23

5.73

3.702.91
2.31

3.01
5.12

10.12

12.87

8.84
8.43

4.56

2.57
1.70

1.00

4.50
3.62

2.80
2.04

6.33
5.70

4.15
2.29

1.41

(a) Speedup (level 35)

20.97

16.16

7.67

3.66
2.51 2.21

3.85
6.75

13.28

16.16

12.88

6.05

3.44
1.14

1.00

5.194.85
4.12

1.88

8.47
6.78

5.39
3.12

1.07

10.14

(b) Speedup (level 58) (c) Performance (level 35) (d) Performance (level 58)

Figure 7: P-UCT speedup and performance. Results are averaged over 10 runs. P-UCT achieves
linear speedup without much loss in performance (measured in average number of game steps).

different skill levels, where P-UCT with 10 rollouts is used to represent average players while the
agent with 100 rollouts mimics skillful players. This is verified by the pair-wise sample t-test result
provided in Table 1. With 10 simulations, the P-UCT agent performs statistically similar (p-value
> 5%) to human players, while with 100-simulation, the agent performs statistically better (p-value
< 5%). Besides, Figure 6 shows that our pass-rate prediction system achieves 8.6% mean absolute
error (MAE) on 130 released game-levels, with 93% of them having MAE less than 20%.

Speedup and performance loss We now examine the speedup and the performance of P-UCT
on two typical levels (Level-35 and Level-58)3 of the tap game. An ideal parallel algorithm should
exhibit linear speedup with an increasing number of workers without significant performance loss.
We evaluate P-UCT with different numbers of expansion and simulation workers (from 1 to 16)
and report the speedup results in Figures 7(a)–(b). First, note that when we have the same number
of expansion workers and simulation workers, P-UCT achieves ideal linear speedup. Furthermore,
Figures 7 also suggest that both the expansion workers and the simulation workers are important. For
example, when the number of the expansion worker is small, the speedup is significantly restricted.
The full speedup numbers can also be found in Appendix B.3. Besides the ideal speedup property,
P-UCT suffers negligible performance loss with the increasing number of workers, as shown in
Figures 7(c)–(d). The standard deviations of the performance (measured in the average number of
game steps) over different numbers of expansion and simulation servers are only 0.67 and 1.22 for
Level-35 and Level-58, respectively, which are much smaller than their average game steps (10 and
30).

5.2 EXPERIMENTS ON THE ATARI GAME BENCHMARK

We now further evaluate P-UCT on the Arcade Learning Environment (ALE) (Bellemare et al.,
2013), a classical benchmark for reinforcement learning (RL) and planning algorithms. ALE is an
ideal testbed for MCTS algorithms as it is challenging for the following reasons. First, the Atari

3Level-35 is relatively simple, requiring 18 steps for an average player to pass, while Level-58 is relatively
difficult and needs more than 50 steps to solve.

8

Under review as a conference paper at ICLR 2020

Table 2: The performance on 15 Atari games. Average episode return (± standard deviation) over
3 trials are reported. Bold indicates the best average episode return. * indicates statistically better
performance, indicated by p-value < 0.05 in t-test, between P-UCT and TreeP (not marked if both
methods perform statistically similar). Similarly, † means that P-UCT performs statistically better
than LeafP, and ‡ implies that P-UCT performs statistically better than RootP.

Environment P-UCT TreeP LeafP RootP PPO

Alien 6536±1093*† 3990±980 4715±295 5063±365 1850
Boxing 100±0*†‡ 99±0 93±4 99±0 94

Breakout 413±14†‡ 407±15 325±31 269±21 274
Centipede 703561±122633*†‡ 238421±23865 129974±42368 145569±8759 4386
Freeway 32±0† 32±0 31±1 32±0 32
Gravitar 5238±221† 4926±514 3365±216 4230±643 737

MsPacman 20941±1250*†‡ 14030±2450 5060±210 7820±643 2096
NameThisGame 31155±5645† 22616±3376 17455±625 24463±2637 6254

RoadRunner 43800±2050*†‡ 20830±4540 25900±351 34300±2160 25076
Robotank 95±10 83±7 79±12 78±15 5

Qbert 17953±225 18033±218 16525±125 14137±1630 14293
SpaceInvaders 3000±813*† 2488±705 2931±230 3587±63 942

Tennis 4±2*†‡ -1±0 -1±0 -1±1 -14
TimePilot 48390±6721* 33800±1099 38453±707 37833±612 4342
Zaxxon 38200±1560†‡ 39200±4440 11100±351 13920±420 5008

Figure 8: Speed and performance test of our P-UCT along with three baselines on four Atari games.
All experiments are repeated three times and the mean and standard deviation (for episode reward
only) is reported. For P-UCT, the number of expansion workers is fixed as one.

games in ALE generally last thousands of time steps, which requires a substantially long planning
horizon. Second, many Atari games have a sparse reward as well as complex game strategy, which
adds additional difficulties to effective exploration. We compare P-UCT to three parallel MCTS
algorithms discussed earlier in Section 4: (i) TreeP with virtual loss, (ii) LeafP, and (iii) RootP.
Additionally, we compare the results with PPO (Schulman et al., 2017), which is regarded as one of
the most stable and effective on-policy RL algorithms. Though not exhaustive, this set of baselines
still embodies many of the latest advancements and can be indeed regarded as the state-of-the-art. In
P-UCT, we use a small policy network distilled (Hinton et al., 2015; Rusu et al., 2015) from a pre-
trained policy network using PPO as the simulation policy. Using a pre-trained simulation policy in
MCTS is shown to achieve more accurate estimations of the outcome and better overall performance
(Silver et al., 2017). More details about the experiment can be found in Appendix C.

We first compare the performance, measured by average episode reward, between P-UCT and the
baselines on 15 Atari games, which is done with 16 simulation workers and one expansion worker
(for a fair comparison). Each task is repeated 3 times with the mean and standard deviation reported
in Table 2. Due to the better exploration-exploitation tradeoff during selection, P-UCT out-performs
all comparison models in 12 out of 15 tasks. Student t-test further show that P-UCT performs sig-
nificantly better (p-value < 0.05) than TreeP, LeafP, and RootP in 8, 12, and 7 tasks, respectively.
Next, we examine the influence of the number of simulation workers on the speed and the perfor-
mance. In Figure 8, we compare the average episode return as well as time consumption (per step)
for 4, 8, and 16 simulation workers. The bar plots in Figure 8 indicates that P-UCT experiences little
performance loss with an increasing number of workers. In contrast, the baseline approaches exhibit
significant performance degradation when parallelized using more workers. P-UCT also achieves

9

Under review as a conference paper at ICLR 2020

the fastest speed compared to the baselines, thanks to the efficient master-slave architecture that min-
imizes the time consumption of non-parallelized steps (Section 3.2). In conclusion, our proposed
P-UCT not only out-performs baseline approaches significantly under the same number of workers
but also achieves negligible performance loss with the increasing level of parallelization. Moreover,
this performance is achieved without compromise for efficiency.

6 RELATED WORK

MCTS Monte Carlo Tree Search is a planning method for optimal decision making in problems
with either deterministic (Silver et al., 2016) or stochastic (Schäfer et al., 2008) environments. It
has already had a profound influence on Artificial Intelligence applications (Browne et al., 2012).
Recently, there has been a wide range of work that combines MCTS and other reinforcement learn-
ing (RL) methods, providing mutual improvements to both methods. For example, Guo et al. (2014)
harnesses the power of MCTS to boost the performance of model-free RL approaches, achieving
both significant performance gain and policy effectiveness; Shen et al. (2018) bridges the gap be-
tween MCTS and graph-based search with recurrent neural networks (RNN), achieving significant
performance gain compared to RL and other knowledge base completion (KBC) baselines.

Parallel MCTS There have been many approaches developed to design parallel MCTS methods,
with the objective being two-fold: achieve near-linear speedup under a large number of workers and
maintain the performance of the non-parallel algorithm. In the following, we summarize related
work on both aspects. Popular parallelization approaches of MCTS include leaf parallelization, root
parallelization, and tree parallelization (Chaslot et al., 2008). Leaf parallelization aims at collect-
ing better statistics by assigning multiple workers to query the same node (Cazenave & Jouandeau,
2007). However, this comes at the cost of wasting diversity of the tree search. Therefore, its perfor-
mance degrades significantly despite the near-ideal speedup with the help of a client-server network
architecture (Kato & Takeuchi, 2010). In root parallelization, multiple search trees are built and
assigned to different workers. Additional work incorporates periodical synchronization of statistics
from different trees, which results in better performance in real-world tasks (Bourki et al., 2010).
However, a case study on Go reveals its inferiority with even a small number of workers (Soejima
et al., 2010). Compared to the above approaches, tree parallelization is more promising for its po-
tential to use more accurate statistics. In this setting, multiple workers traverse, perform queries,
and update on a shared search tree. Tree parallelization benefits significantly from two techniques.
First, a virtual loss is added to avoid querying the same node by different workers (Chaslot et al.,
2008). This has been adopted in various successful applications of MCTS such as Go (Silver et al.,
2016) and Dou-di-zhu (Whitehouse et al., 2011). Additionally, architecture side improvements such
as using pipeline (Mirsoleimani et al., 2018b) or lock-free structure (Mirsoleimani et al., 2018a)
speedup the algorithm significantly. However, though being able to increase diversity, virtual loss
degrades the performance under even four workers (Mirsoleimani et al., 2017; Bourki et al., 2010).

7 CONCLUSION

In this paper, we developed P-UCT, a novel parallel MCTS algorithm. It addresses the problem of
outdated statistics when parallelizing MCTS by watching the number of unobserved samples. Based
on the newly devised statistics, it modifies the UCT node-selection policy in a principled manner,
which achieves effective exploration-exploitation tradeoff. Specifically, it avoids the undesirable
behaviors like the collapse of exploration or exploitation failure as in other existing parallel MCTS
algorithms. Together with our efficiency-oriented system implementation, P-UCT achieves near-
optimal linear speedup as well as negligible performance degradation across a wide range of tasks.
Specifically, it has been successfully deployed in a real-world production system, breaking the effi-
ciency barrier that limits many MCTS applications. In particular, it could be used to efficiently and
accurately predict the user pass-rate of a game, which provides timely feedback for a game designer
and greatly reduces the game design cycle. In addition, it also achieves superior performance and
speed on 15 Atari games compared to existing state-of-the-art algorithms.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Dimitri P Bertsekas. Dynamic programming and suboptimal control: A survey from adp to mpc.
European Journal of Control, 11(4-5):310–334, 2005.

Amine Bourki, Guillaume Chaslot, Matthieu Coulm, Vincent Danjean, Hassen Doghmen, Jean-
Baptiste Hoock, Thomas Hérault, Arpad Rimmel, Fabien Teytaud, Olivier Teytaud, et al. Scala-
bility and parallelization of monte-carlo tree search. In International Conference on Computers
and Games, pp. 48–58. Springer, 2010.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Tristan Cazenave and Nicolas Jouandeau. On the parallelization of uct. In proceedings of the
Computer Games Workshop, pp. 93–101. Citeseer, 2007.

Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-carlo tree
search. In International Conference on Computers and Games, pp. 60–71. Springer, 2008.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. In Advances in neural
information processing systems, pp. 3338–3346, 2014.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. arXiv preprint arXiv:1604.07095, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hideki Kato and Ikuo Takeuchi. Parallel monte-carlo tree search with simulation servers. In 2010
International Conference on Technologies and Applications of Artificial Intelligence, pp. 491–
498. IEEE, 2010.

Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search. Univ. Tartu,
Estonia, Tech. Rep, 1, 2006.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

S Ali Mirsoleimani, Aske Plaat, H Jaap van den Herik, and Jos Vermaseren. An analysis of virtual
loss in parallel mcts. In ICAART (2), pp. 648–652, 2017.

S Ali Mirsoleimani, Jaap van den Herik, Aske Plaat, and Jos Vermaseren. A lock-free algorithm for
parallel mcts. In ICAART (2), pp. 589–598, 2018a.

S Ali Mirsoleimani, Jaap van den Herik, Aske Plaat, and Jos Vermaseren. Pipeline pattern for
parallel mcts. In ICAART (2), pp. 614–621, 2018b.

11

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Jan Schäfer, Michael Buro, and Knut Hartmann. The uct algorithm applied to games with imperfect
information. Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg, Germany, 2008.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard B Segal. On the scalability of parallel uct. In International Conference on Computers and
Games, pp. 36–47. Springer, 2010.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning to
walk over graphs using monte carlo tree search. In Advances in Neural Information Processing
Systems, pp. 6786–6797, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluating root parallelization in go.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):278–287, 2010.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shiqi Wang, Meng Ding, and Shuqin Li. Hex game system based on p-mcts. In 2018 Chinese
Control And Decision Conference (CCDC), pp. 6639–6642. IEEE, 2018.

Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia
Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.

Daniel Whitehouse, Edward J Powley, and Peter I Cowling. Determinization and information set
monte carlo tree search for the card game dou di zhu. In 2011 IEEE Conference on Computational
Intelligence and Games (CIG’11), pp. 87–94. IEEE, 2011.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

12

Under review as a conference paper at ICLR 2020

SUPPLEMENTARY MATERIAL

A ALGORITHM DETAILS FOR P-UCT

Pseudo-code of the proposed P-UCT algorithm is provided in Algorithm 1. Specifically, it provides
the workflow of the master process. When the number of completed updates (tcomplete) has not
exceeded the maximum simulation step Tmax, the main process keeps performing selection, expan-
sion, simulation, and backpropagation. Selection and backpropagation are performed in the main
process, while the two others are assigned to slave workers. The backpropagation step is divided into
two sub-routines incomplete update (Algorithm 2) and complete update (Algorithm 3). The former
is evoked before simulation, while the latter is called after receiving simulation results. Task index τ
is added to help the main process to track different tasks returned from slave workers. To maximize
efficiency, the master process keeps assigning expansion and simulation tasks until all slave workers
are occupied.

Communication overhead of P-UCT The choice for centralized game-state storage stems from
the following observations: (i) size of the game-state is usually small, which allows efficient inter-
process transformation, and (ii) each game-state is used at most |A| times, thus is inefficient to store
in multiple processes. Although this design may not be ideal for all tasks, it is at least a reasonable
one. During rollouts, game-states generated by any expansion worker may be later used by any
other expansion and simulation workers. Therefore, either a per-task transformation or decentralized
storage is needed. For the latter case, however, since a game-state will be used at most |A| times,
most workers will not need it, which results in inefficiency of the decentralized storage.

Another possible solution is to store the game-states in shared memory. However, to receive benefit
from it, the following conditions should be satisfied: (i) each process can access (read/write) the
memory relatively fast even if some collisions may happen, and (ii) the shared memory is big enough
to hold all game-states that may be accessed. If the two condition holds, we may be able to reduce the
communication overhead. Although, since the communication overhead is negligible even with 16
simulation and expansion workers, we should consider using more workers to speedup the algorithm.

B EXPERIMENT DETAILS AND SYSTEM DESCRIPTION OF THE JOY CITY
GAME

This section describes the basic rules of the Joy City game (Appendix B.1) as well as details about
the deployed pass-rate prediction system (Appendix B.2).

B.1 DESCRIPTION OF THE JOY CITY GAME

This section serves as an introduction to the basic rules of the tap game. We can click cells with
connected color regions to eliminate them. The remaining cells then collapse to fill in the gaps of
exploded ones. To goal is to fulfill all level requirements (goals) within a fixed number of clicks.
Figure 9(a) provides consecutive snapshots for playing level 10 of the game. The goal of this level
is depicted on the top, which is 3 “cats” and 24 “balloons”. The top-left corner represents the
remaining steps. Players have to accomplish all given goals before the step runs out. Figure 9(a)
demonstrates successful gameplay, where only 6 steps are used to complete the level. In each of the
three left frames, the cell noted by the purple circle is clicked. Immediately, the same-color region
marked with a red frame is eliminated. Different goals/obstacles react differently. For instance,
when some cell is exploded beside a balloon, it will also explode. Frame two demonstrates the use
of props. Tapping regions with connectivity above a certain threshold will provide prop as a bonus.
They have special effects that can help players pass the level faster. Finally, in the last screenshot,
all goals are completed and we pass the level.

Figure 9(b) further demonstrates the variety of levels. Specifically, the left-most frame depicts a
special “boss level”, where the goal is the “kill” the evil cat. The cat will randomly throw objects to

13

Under review as a conference paper at ICLR 2020

Algorithm 1 P-UCT
Input: environment emulator E , root tree node nroot, maximum simulation step Tmax, maximum simulation
depth dmax, number of expansion workers Nexp, and number of simulation workers Nsim

Initialize: expansion worker pool Wexp, simulation worker pool Wsim, game-state buffer B, t ← 0, and
tcomplete ← 0
while tcomplete < Tmax do

Traverse the tree top down from root node nroot following (4) until (i) its depth greater than dmax, (ii) it
is a leaf node, or (iii) it is a node that has not been fully expanded and random() < 0.5
if expansion is required then
n̄← shallow copy of the current node; s← game state of node n (retrieved from B)
Assign expansion task (t, n̄, s) to poolWexp // t is the task index

else
s← game state of node n; assign simulation task (t, s) to poolWsim if episode not terminated
Call incomplete update(n); if episode terminated, call complete update(t, n, 0.0)

end if
ifWexp fully occupied then

Wait for a expansion task with return: (task index τ , game state s, reward r, terminal signal d, task
index τ); expand the tree according to s, τ , r, and d; assign simulation task (τ, s) to poolWsim

Call incomplete update(t, n)
else continue
ifWsim fully occupied then

Wait for a simulation task with return: (task index τ , node n, cumulative reward r̄)
Call complete update(τ, n, r̄); tcomplete ← tcomplete + 1

else continue
t← t+ 1

end while

Algorithm 2 incomplete update
input: node n
while n 6= null do
On ← On + 1
n ← PR(n) // PR(n) denotes the parent
node of n

end while

Algorithm 3 complete update
input: task index t, node n, reward r̄, γ
while n 6= null do
Nn ← Nn + 1; On ← On − 1
Retrieve reward r according to task index t
r̄ ← r + γr̄; Vn ← Nn−1

Nn
Vn + 1

Nn
r̄

n ← PR(n) // PR(n) denotes the parent
node of n

end while

the cells, adding additional randomness. Three other frames illustrate relatively hard levels, which is
revealed from their low-connectivity, abundance and complexity of the obstacles, and special layout.

B.2 DETAILS OF THE LEVEL PASS-RATE PREDICTION SYSTEM

Workflow of the pass-rate prediction model is provided in Figure 5(b). The system has two working
phases, i.e., training and inference. Specifically, training and validation are done on 300 levels that
have been released in a test version of the game. In the training phase, the system has access to
both the level and players’ pass-rate, while only levels are available in the inference phase. In both
phases, the levels are first fed into an asynchronous advantage actor-critic (A3C) (Mnih et al., 2016)
learner for a base policy π. It is then used by the P-UCT agent as a prior to select expand action as
well as the default policy for simulation. We then use P-UCT to perform multiple gameplays. The
maximum depth and width (maximum number of child nodes for each node) of the search tree is
10 and 5, respectively. The number of simulations is set to 10 and 100 to get AI bots with different
skill levels. Six features (three for both the 10-simulation and 100-simulation agent) are extracted
from the gameplay results. Specifically, the features are AI’s pass-rate, average used step divided by
the provided step (the number at the top-left corner in the screenshots in Figure 9), and median used
step divided by the provided step. During training, the features, as well as the players’ pass-rate, is
used to learn a linear regressor, while in the inference phase, the regression model is used to predict
user pass-rate.

14

Under review as a conference paper at ICLR 2020

(a) A demonstrated game play in level 10 of the tap game. Purple dots refers to the tapped cell, and red regions
indicate directly eliminated cells.

A “boss level” Small initial connectivity Various kinds of hard-to-remove obstacles and spiral layout

(b) Examples of levels with different rule, difficulty, and layout.

Figure 9: Snapshots of the Tap-elimination game.

Table 3: Speedup on two levels of the tap game. Me is the number of expansion workers and Ms is
the number of simulation workers.

Lv. Level 35 Level 58

Me

Ms 1 2 4 8 16 1 2 4 8 16

1 1.0 2.0 2.8 3.6 4.5 1.0 1.8 4.1 4.8 5.1
2 1.4 2.2 4.1 5.7 6.3 1.1 3.1 5.3 6.7 8.4
4 1.7 2.5 4.5 8.4 8.8 1.1 3.4 6.1 10.1 12.8
8 2.3 3.0 5. 10.1 12.8 1.2 3.6 6.7 13.2 16.1
16 2.9 3.7 5.7 11.2 15.5 1.2 3.8 7.6 16.1 20.9

B.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we list the additional experimental results. In Table 3, we report the specific speedup
number for different numbers of expansion worker and simulation workers.

15

Under review as a conference paper at ICLR 2020

State input

Conv2d (out-filters: 32, kernel size: 8×8, stride: 4)

ReLU

Conv2d (out-filters: 64, kernel size: 4×4, stride: 2)

ReLU

Conv2d (out-filters: 64, kernel size: 4×4, stride: 2)

ReLU

Dense (fan-out: 512)

ReLU

Policy output Value output

State input

Conv2d (out-filters: 16, kernel size: 3×3, stride: 4)

ReLU

Conv2d (out-filters: 16, kernel size: 3×3, stride: 4)

ReLU

Dense (fan-out: 512)

ReLU

Policy output Value output

Full-size PPO network Distilled network

Figure 10: Architecture of the original PPO network (left) and the distilled network (right).

Table 4: Performance in 15 Atari benchmarks between the original PPO policy and our distilled
policy.

Environment Origin PPO policy Distilled policy

Alien 1850 850
Boxing 94 7

Breakout 274 191
Centipede 4386 1701
Freeway 32 32
Gravitar 737 600

MsPacman 2096 1860
NameThisGame 6254 6354

RoadRunner 25076 26600
Robotank 5 13

Qbert 14293 12725
SpaceInvaders 942 1015

Tennis -14 -10
TimePilot 4342 4400
Zaxxon 5008 3504

C EXPERIMENT DETAILS OF THE ATARI GAMES

This section provides the implementation details of the experiments on Atari games. Specifically,
we first describe the training pipeline of the default policy. We then illustrate how the default policy
is connected with MCTS algorithm to perform simulation.

Training default policy for MCTS To allow better overall performance, we used the Proximal
Policy Gradient (PPO) (Schulman et al., 2017), one of the state-of-the-art on-policy reinforcement
learning (RL) algorithms. We adopted the highest-starred third-party code of PPO on GitHub. The
implementation uses the same hyper-parameters with the original paper. The architecture of the
policy network is shown in Figure 10. The original PPO network is trained on 10 million frames for
each task. To reduce computation count, we shrank the network using network distillation (Hinton
et al., 2015). Specifically, it is a teacher-student training framework where the student (distilled)
network mimics the output of the teacher network. Samples are collected by the PPO network with
the ε-greedy strategy (ε = 0.1). The student network optimizes its parameters to minimize the mean
square error of the policy’s logits as well as the value. Performance of the original PPO policy
network as well as the distilled network is provided in Table 4.

16

Under review as a conference paper at ICLR 2020

Figure 11: Relative performance between P-UCT and three baseline approaches on 15 Atari bench-
marks. Relative performance is calculated according to the mean episode reward in 3 trials. The
average percentile improvement of P-UCT on TreeP, LeafP, and RootP is 56%, 109%, and 83%,
respectively.

MCTS simulation Both the policy output and the value output of the distilled network is used in
the simulation phase. Particularly, if simulation is started from state s, rollout is performed using
the policy network with an upper bound of 100 steps, where it results in state s′. If the environment
does not terminate, the full return is compensated by the value function at state s′. Formally, the
cumulative reward provided by the simulation is Rsimu =

∑99
i=0 γ

iri + γ100V (s′), where V (s)
denotes the value of state s. To reduce the variance of Monte Carlo sampling, value function V (s) at
state s is used additionally. The final return of the simulation phase is thenR = 0.5Rsimu+0.5V (s).

Hyperparameters and experiment details for P-UCT For all tree search based algorithms (i.e.,
P-UCT, TreeP, LeafP, and RootP), the maximum depth of the search tree is set to 100. The search
width is limited by 20 and the maximum number of simulations is 128. The discount factor γ is
set to 0.99 (note that the reported score is not discounted). When performing gameplays, a tree
search subroutine is invoked to plan for the best action in each time step. The sub-routine iteratively
constructs a search tree from its initial status with a root node only. Experiments are deployed on
4 Intelr Xeonr E5-2650 v4 CPUs and 8 NVIDIAr GeForcer RTX 2080 Ti GPUs. To minimize
the speed fluctuation caused by the different workload on the machine, we ensure the total number
of simulation slave workers is smaller than the total number of CPU cores, allowing each process
to fully occupy one single core. The P-UCT is implemented with multiple processes, with an inter-
process pipe between the master process and each slave process.

Hyperparameters and experiments for baseline algorithms Failing to find appropriate third-
party packages for baseline algorithms (i.e., tree parallelization, leaf parallelization, and root par-
allelization), we built our implementation of them based on the corresponding papers. Building all
algorithms in the same package additionally allows us to accurately conduct speed-tests as it elimi-
nates other factors (e.g. different language) that may bias the result. Specifically, leaf parallelization
is implemented with a master-slave structure: when the main process enters the simulation step, it
assigns the task to all slave workers. When return from all workers is available, the master process
performs backpropagation according to these statistics and begin a new rollout.

As suggested by Browne et al. (2012), tree parallelization is implemented using a decentralized
structure, i.e., each worker performs rollouts on a shared search tree. At the selection step, each
traversed node is added a fixed virtual loss −rV L to guarantee diversity of the tree search. When
performing backpropagation, rV L is again added to the traversed nodes. rV L is chosen from 1.0 and
5.0 for each particular task. In other words, we ran TreeP with rV L = 1.0 and rV L = 5.0 for each
task, and report the better result.

Root parallelization is implemented according to Chaslot et al. (2008). Similar to leaf parallelization,
root parallelization consists of sub-processes that do not share information with each other. At the
beginning of the tree search process, each sub-process is assigned several actions of the root node
to query. They then perform sequential UCT rollouts until reaches a pre-defined step size. When all
sub-processes complete the jobs, statistics from them is gathered by the main process, which then
uses this information to choose the best action.

17

	Introduction
	On the Difficulties of parallelizing MCTS
	Monte Carlo Tree Search and Upper Confidence bound for Trees (UCT)
	The intrinsic difficulties of parallelizing MCTS

	P-UCT
	Watch the unobserved samples in UCT tree policy
	System implementation using Master-Slave architectures

	The Benefits of Watching Unobserved Samples
	Experiments
	Experiments on the ``Joy City'' game
	Experiments on the Atari Game benchmark

	Related Work
	Conclusion
	Algorithm details for P-UCT
	Experiment details and system description of the Joy City game
	Description of the Joy City game
	Details of the level pass-rate prediction system
	Additional experimental results

	Experiment details of the Atari games

