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ABSTRACT

Answering complex logical queries on large-scale incomplete knowledge graphs
(KGs) is a fundamental yet challenging task. Recently, a promising approach to
this problem has been to embed KG entities as well as the query into a vector space
such that entities that answer the query are embedded close to the query. However,
prior work models queries as single points in the vector space, which is problematic
because a complex query represents a potentially large set of its answer entities, but
it is unclear how such a set can be represented as a single point. Furthermore, prior
work can only handle queries that use conjunctions (∧) and existential quantifiers
(∃). Handling queries with logical disjunctions (∨) remains an open problem.
Here we propose QUERY2BOX, an embedding-based framework for reasoning over
arbitrary queries with ∧, ∨, and ∃ operators in massive and incomplete KGs. Our
main insight is that queries can be embedded as boxes (i.e., hyper-rectangles),
where a set of points inside the box corresponds to a set of answer entities of the
query. We show that conjunctions can be naturally represented as intersections of
boxes and also prove a negative result that handling disjunctions would require
embedding with dimension proportional to the number of KG entities. However, we
show that by transforming queries into a Disjunctive Normal Form, QUERY2BOX
is capable of handling arbitrary logical queries with ∧, ∨, ∃ in a scalable manner.
We demonstrate the effectiveness of QUERY2BOX on two large KGs and show that
QUERY2BOX achieves up to 25% relative improvement over the state of the art.

1 INTRODUCTION

Knowledge graphs (KGs) capture different types of relationships between entities, e.g., Canada
citizen−−−−→ Hinton. Answering arbitrary logical queries, such as “where did Canadian citizens with

Turing Award graduate?”, over such KGs is a fundamental task in question answering, knowledge
base reasoning, as well as AI more broadly.

First-order logical queries can be represented as Directed Acyclic Graphs (DAGs) (Fig. 1(A)) and be
reasoned according to the DAGs to obtain a set of answers (Fig. 1(C)). While simple and intuitive, such
approach has many drawbacks: (1) Computational complexity of subgraph matching is exponential
in the query size, and thus cannot scale to modern KGs; (2) Subgraph matching is very sensitive as
it cannot correctly answer queries with missing relations. To remedy (2) one could impute missing
relations (Koller et al., 2007; Džeroski, 2009; De Raedt, 2008; Nickel et al., 2016) but that would
only make the KG denser, which would further exacerbate issue (1) (Dalvi & Suciu, 2007; Krompaß
et al., 2014).

Recently, a promising alternative approach has emerged, where logical queries as well as KG entities
are embedded into a low-dimensional vector space such that entities that answer the query are
embedded close to the query (Guu et al., 2015; Hamilton et al., 2018; Das et al., 2017). Such
approach robustly handles missing relations (Hamilton et al., 2018) and is also orders of magnitude
faster, as answering an arbitrary logical query is reduced to simply identifying entities nearest to the
embedding of the query in the vector space.

However, prior work embeds a query into a single point in the vector space. This is problematic
because answering a logical query requires modeling a set of active entities while traversing the
KG (Fig. 1(C)), and how to effectively model a set with a single point is unclear. Furthermore, it
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Figure 1: Query2Box reasoning framework. (A) A given conjunctive query “Where did Canadian
citizens with Turing Award graduate?” can be represented with a dependency graph. (B) Computation
graph specifies the reasoning procedure to obtain a set of answers for the query in (A). (C) Example
knowledge graph, where green nodes/entities denote answers to the query. Bold arrows indicate
subgraphs that match the query graph in (A). (D) In QUERY2BOX, nodes of the KG are embedded as
points in the vector space. We then obtain query embedding according to the computation graph (B)
as a sequence of box operations: start with two nodes TuringAward and Canada and apply Win and
Citizen projection operators, followed by an intersection operator (denoted as a shaded intersection
of yellow and orange boxes) and another projection operator. The final embedding of the query is a
green box and query’s answers are the entities inside the box.

is also unnatural to define logical operators (e.g., set intersection) of two points in the vector space.
Another fundamental limitation of prior work is that it can only handle conjunctive queries, a subset
of first-order logic that only involves conjunction (∧) and existential quantifier (∃), but not disjunction
(∨). It remains an open question how to handle disjunction effectively in the vector space.

Here we present QUERY2BOX, an embedding-based framework for reasoning over KGs that is capable
of handling arbitrary Existential Positive First-order (EPFO) logical queries (i.e., queries that include
any set of ∧, ∨, and ∃) in a scalable manner. First, to accurately model a set of entities, our key idea
is to use a closed region rather than a single point in the vector space. Specifically, we use a box
(axis-aligned hyper-rectangle) to represent a query (Fig. 1(D)). This provides three important benefits:
(1) Boxes naturally model sets of entities they enclose; (2) Logical operators (e.g., set intersection)
can naturally be defined over boxes similarly as in Venn diagrams (Venn, 1880); (3) Executing logical
operators over boxes results in new boxes, which means that the operations are closed; thus, logical
reasoning can be efficiently performed in QUERY2BOX by iteratively updating boxes according to the
query computation graph (Fig. 1(B)(D)).

We show that QUERY2BOX can naturally handle conjunctive queries. We first prove a negative result
that embedding EPFO queries to only single points or boxes is intractable as it would require embed-
ding dimension proportional to the number of KG entities. However, we provide an elegant solution,
where we transform a given EPFO logical query into a Disjunctive Normal Form (DNF) (Davey
& Priestley, 2002), i.e., disjunction of conjunctive queries. Given any EPFO query, QUERY2BOX
represents it as a set of individual boxes, where each box is obtained for each conjunctive query in
the DNF. We then return nearest neighbor entities to any of the boxes as the answers to the query.
This means that to answer any EPFO query we first answer individual conjunctive queries and then
take the union of the answer entities.

We evaluate QUERY2BOX on standard KG benchmarks and show: (1) QUERY2BOX provides strong
generalization as it can answer complex queries that it has never seen during training; (2) QUERY2BOX
is robust as it can answer any EPFO query with high accuracy even when relations involving answering
the query are missing in the KG; (3) QUERY2BOX provides up to 25% relative improvement in
accuracy of answering EPFO queries over state-of-the-art baselines.
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2 FURTHER RELATED WORK

Most related to our work are embedding approaches for multi-hop reasoning over KGs (Bordes et al.,
2013; Das et al., 2017; Guu et al., 2015; Hamilton et al., 2018). Crucial difference is that we provide a
way to tractably handle a larger subset of the first-order logic (EPFO queries vs. conjunctive queries)
and that we embed queries as boxes, which provides better accuracy and generalization.

Second line of related work is on structured embeddings, which associate images, words, sentences,
or knowledge base concepts with geometric objects such as regions (Erk, 2009; Vilnis et al., 2018; Li
et al., 2019), densities (Vilnis & McCallum, 2014; He et al., 2015; Athiwaratkun & Wilson, 2018),
and orderings (Vendrov et al., 2015; Lai & Hockenmaier, 2017; Li et al., 2017). While the above
work uses geometric objects to model individual entities and their pairwise relations, we use the
geometric objects to model sets of entities and reason over those sets. In this sense our work is also
related to classical Venn Diagrams (Venn, 1880), where boxes are essentially the Venn Diagrams in
vector space, but our boxes and entity embeddings are jointly learned, which allows us to reason over
incomplete KGs.

3 QUERY2BOX: LOGICAL REASONING OVER KGS IN VECTOR SPACE

Here we present the QUERY2BOX, where we will define an objective function that allows us to
learn embeddings of entities in the KG, and at the same time also learn parameterized geometric
logical operators over boxes. Then given an arbitrary EPFO query q (Fig. 1(A)), we will identify its
computation graph (Fig. 1(B)), and embed the query by executing a set of geometric operators over
boxes (Fig. 1(D)). Entities that are enclosed in the final box embedding are returned as answers to the
query (Fig. 1(D)).

In order to train our system, we generate a set of queries together with their answers at training
time and then learn entity embeddings and geometric operators such that queries can be accurately
answered. We show in the following sections that our approach is able to generalize to queries and
query structures never seen during training.

3.1 KNOWLEDGE GRAPHS AND CONJUNCTIVE QUERIES

We denote a KG as G = (V,R), where v ∈ V represents an entity, and r ∈ R is a binary function
r : V × V → {True,False}, indicating whether the relation r holds between a pair of entities or not.
In the KG, such binary output indicates the existence of the directed edge between a pair of entities,
i.e., v r−→ v′ iff r(v, v′) = True.

Conjunctive queries are a subclass of the first-order logical queries that use existential (∃) and
conjunction (∧) operations. They are formally defined as follows.

q[V?] = V? . ∃V1, . . . , Vk : e1 ∧ e2 ∧ ... ∧ en, (1)
where ei = r(va, V ), V ∈ {V?, V1, . . . , Vk}, va ∈ V, r ∈ R,

or ei = r(V, V ′), V, V ′ ∈ {V?, V1, . . . , Vk}, V 6= V ′, r ∈ R,
where va represents non-variable anchor entity, V1, . . . , Vk are existentially quantified bound variables,
V? is the target variable. The goal of answering the logical query q is to find a set of entities JqK ⊆ V
such that v ∈ JqK iff q[v] = True. We call JqK the denotation set (i.e., answer set) of query q.

As shown in Fig. 1(A), the dependency graph (DG) is a graphical representation of conjunctive query
q, where nodes correspond to variable or non-variable entities in q and edges correspond to relations
in q. In order for the query to be valid, the corresponding DG needs to be a Directed Acyclic Graph
(DAG), with the anchor entities as the source nodes of the DAG and the query target V? as the unique
sink node (Hamilton et al., 2018).

From the dependency graph of query q, one can also derive the computation graph, which consists of
two types of directed edges that represent operators over sets of entities:

• Projection: Given a set of entities S ⊆ V , and relation r ∈ R, this operator obtains
∪v∈SAr(v), where Ar(v) ≡ {v′ ∈ V : r(v, v′) = True}.
• Intersection: Given a set of entity sets {S1, S2, . . . , Sn}, this operator obtains ∩ni=1Si.
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Figure 2: The geometric intuition of the two operations and distance function in QUERY2BOX. (A)
Projection generates a larger box with a translated center. (B) Intersection generates a smaller box
lying inside the given set of boxes. (C) Distance distbox is the weighted sum of distoutside and
distinside, where the latter is weighted less.

For a given query q, the computation graph specifies the procedure of reasoning to obtain a set of
answer entities, i.e., starting from a set of anchor nodes, the above two operators are applied iteratively
until the unique sink target node is reached. The entire procedure is analogous to traversing KGs
following the computation graph (Guu et al., 2015).

3.2 REASONING OVER SETS OF ENTITIES USING BOX EMBEDDINGS

So far we have defined conjunctive queries as computation graphs that can be executed directly over
the nodes and edges in the KG. Now, we define logical reasoning in the vector space. Our intuition
follows Fig. 1: Given a complex query, we shall decompose it into a sequence of logical operations,
and then execute these operations in the vector space. This way we will obtain the embedding of the
query, and answers to the query will be entities that are enclosed in the final query embedding box.

In the following, we detail our two methodological advances: (1) the use of box embeddings to
efficiently model and reason over sets of entities in the vector space, and (2) how to tractably handle
disjunction operator (∨), expanding the class of first-order logic that can be modeled in the vector
space (Section 3.3).

Box embeddings. To efficiently model a set of entities in the vector space, we use boxes (i.e.,
axis-aligned hyper-rectangles). The benefit is that unlike a single point, the box has the interior;
thus, if an entity is in a set, it is natural to model the entity embedding to be a point inside the box.
Formally, we operate on Rd, and define a box in Rd by p = (Cen(p),Off(p)) ∈ R2d as:

Boxp ≡ {v ∈ Rd : Cen(p)− Off(p) � v � Cen(p) + Off(p)}, (2)

where � is element-wise inequality, Cen(p) ∈ Rd is the center of the box, and Off(p) ∈ Rd
≥0 is the

positive offset of the box, modeling the size of the box. Each entity v ∈ V in KG is assigned a single
vector v ∈ Rd (i.e., a zero-size box), and the box embedding p models {v ∈ V : v ∈ Boxp}, i.e.,
a set of entities whose vectors are inside the box. For the rest of the paper, we use the bold face to
denote the embedding, e.g., embedding of v is denoted by v.

Our framework reasons over KGs in the vector space following the computation graph of the query, as
shown in Fig. 1(D): we start from the initial box embeddings of the source nodes (anchor entities) and
sequentially update the embeddings according to the logical operators. Below, we describe how we
set initial box embeddings for the source nodes, as well as how we model projection and intersection
operators (defined in Sec. 3.1) as geometric operators that operate over boxes. After that, we describe
our entity-to-box distance function and the overall objective that learns embeddings as well as the
geometric operators.

Initial boxes for source nodes. Each source node represents an anchor entity v ∈ V , which we can
regard as a set that only contains the single entity. Such a single-element set can be naturally modeled
by a box of size/offset zero centerd at v. Formally, we set the initial box embedding as (v,0), where
v ∈ Rd is the anchor entity vector and 0 is a d-dimensional all-zero vector.

Geometric projection operator. We associate each relation r ∈ R with relation embedding r =
(Cen(r),Off(r)) ∈ R2d with Off(r) � 0. Given an input box embedding p, we model the projection
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by p + r, where we sum the centers and sum the offsets. This gives us a new box with the translated
center and larger offset because Off(r) � 0, as illustrated in Fig. 2(A). The adaptive box size
effectively models a different number of entities/vectors in the set.

Geometric intersection operator. We model the intersection of a set of box embeddings
{p1, . . . ,pn} as pinter = (Cen(pinter),Off(pinter)), which is calculated by performing attention
over the box centers (Bahdanau et al., 2014) and shrinking the box offset using the sigmoid function:

Cen(pinter) =
∑
i

ai � Cen(pi), ai =
exp(MLP(pi))∑
j exp(MLP(pj))

,

Off(pinter) = Min({Off(p1), . . . ,Off(pn)})� σ(DeepSets({p1, . . . ,pn})),

where � is the dimension-wise product, MLP(·) : R2d → Rd is the Multi-Layer Perceptron, σ(·)
is the sigmoid function, DeepSets(·) is the permutation-invariant deep architecture (Zaheer et al.,
2017), and both Min(·) and exp(·) are applied in a dimension-wise manner. The intuition behind
our geometric intersection is to generate a smaller box that lies inside a set of boxes, as illustrated in
Fig. 2(B).1 Different from the generic deep sets to model the intersection (Hamilton et al., 2018), our
geometric intersection operator effectively constrains the center position and models the shrinking set
size.

Entity-to-box distance. Given a query box q ∈ R2d and an entity vector v ∈ Rd, we define their
distance as

distbox(q,v) = distoutside(q,v) + α · distinside(q,v), (3)

where qmax = Cen(q) + Off(q) ∈ Rd, qmin = Cen(q) − Off(q) ∈ Rd and 0 < α < 1 is a fixed
scalar, and

distoutside(q,v) = ‖Max(v − qmax,0) + Max(qmin − v,0)‖1,
distinside(q,v) = ‖Cen(q)−Min(qmax,Max(qmin,v))‖1.

As illustrated in Fig. 2(C), distoutside corresponds to the distance between the entity and closest
corner/side of the box. Analogously, distinside corresponds to the distance between the center of the
box and its side/corner (or the entity itself if the entity is inside the box).

The key here is to downweight the distance inside the box by using 0 < α < 1. This means that
as long as entity vectors are inside the box, we regard them as “close enough” to the query center
(i.e., distoutside is 0, and distinside is scaled by α). When α = 1, distbox reduces to the ordinary L1

distance, i.e., ‖Cen(q)− v‖1, which is used by the conventional TransE (Bordes et al., 2013) as well
as prior query embedding methods (Guu et al., 2015; Hamilton et al., 2018).

Training objective. Our next goal is to learn entity embeddings as well as geometric projection and
intersection operators.

Given a training set of queries and their answers, we optimize a negative sampling loss (Mikolov
et al., 2013) to effectively optimize our distance-based model (Sun et al., 2019):

L = − log σ (γ − distbox(q,v))−
k∑

i=1

1

k
log σ (distbox(q,v′i)− γ) , (4)

where γ represents a fixed scalar margin, v ∈ JqK is a positive entity (i.e., answer to the query q),
and vi /∈ JqK is the i-th negative entity (non-answer to the query q) and k is the number of negative
entities.

3.3 TRACTABLE HANDLING OF DISJUNCTION USING DISJUNCTIVE NORMAL FORM

So far we have focused on conjunctive queries, and our aim here is to tractably handle in the vector
space a wider class of logical queries, called Existential Positive First-order (EPFO) queries (Dalvi
& Suciu, 2012) that involve ∨ in addition to ∃ and ∧. We specifically focus on EPFO queries whose
computation graphs are a DAG, same as that of conjunctive queries (Section 3.1), except that we now
have an additional type of directed edge, called union defined as follows:

1One possible choice here would be to directly use raw box intersection, however, we find that this richer
learnable parameterization is more expressive and robust to noise.
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Figure 3: Illustration of converting a computation graph of an EPFO query into an equivalent
computation graph of the Disjunctive Normal Form.

• Union: Given a set of entity sets {S1, S2, . . . , Sn}, this operator obtains ∪ni=1Si.

A straightforward approach here would be to define another geometric operator for union and embed
the query as we did in the previous sections. An immediate challenge for our box embeddings is that
boxes can be located anywhere in the vector space, so their union would no longer be a simple box.
In other words, union operation over boxes is not closed.

Theoretically, we can prove a general negative result for any embedding-based method that maps
query q into q such that dist(v;q) ≤ β iff v ∈ JqK. Here, dist(v;q) is the distance between entity
and query embeddings, e.g., distbox(v;q) or ‖v − q‖1, and β is a fixed threshold.

Theorem 1. Consider any M conjunctive queries q1, . . . , qM whose denotation sets Jq1K, . . . , JqM K
are disjoint with each other, ∀ i 6= j, JqiK ∩ JqjK = ∅. Let D be the VC dimension of the function
class {sign(β − dist(·;q)) : q ∈ Ξ}, where Ξ represents the query embedding space and sign(·) is
the sign function. Then, we need D ≥M to model any EPFO query, i.e., dist(v;q) ≤ β ⇔ v ∈ JqK
is satisfied for every EPFO query q.

The proof is provided in Appendix A, where the key is that the introduction of the union operation
forces us to model the powerset {∪

qi∈S
JqiK : S ⊆ {q1, . . . , qM}} in a vector space.

For a real-world KG, there are M ≈ |V| conjunctive queries with non-overlapping answers. For
example, in the commonly-used FB15k dataset (Bordes et al., 2013), derived from the Freebase
(Bollacker et al., 2008), we find M = 13,365, while |V| is 14,951 (see Appendix B for the details).

Theorem 1 shows that in order to accurately model any EPFO query with the existing framework,
the complexity of the distance function measured by the VC dimension needs to be as large as the
number of KG entities. This implies that if we use common distance functions based on hyper-plane,
Enclidian sphere, or axis-aligned rectangle,2 their parameter dimensionality needs to be Θ(M), which
is Θ(|V|) for real KGs we are interested in. In other words, the dimensionality of the logical query
embeddings needs to be Θ(|V|), which is not low-dimensional; thus not scalable to large KGs and
not generalizable in the presence of unobserved KG edges.

To rectify this issue, our key idea is to transform a given EPFO query into a Disjunctive Normal Form
(DNF) (Davey & Priestley, 2002), i.e., disjunction of conjunctive queries, so that union operation only
appears in the last step. Each of the conjunctive queries can then be reasoned in the low-dimensional
space, after which we can aggregate the results by a simple and intuitive procedure. In the following,
we describe the transformation to DNF and the aggregation procedure.

Transformation to DNF. Any first-order logic can be transformed into the equivalent DNF (Davey
& Priestley, 2002). We perform such transformation directly in the space of computation graph, i.e.,
moving all the edges of type “union” to the last step of the computation graph. Let Gq = (Vq, Eq)
be the computation graph for a given EPFO query q, and let Vunion ⊂ Vq be a set of nodes whose
in-coming edges are of type “union”. For each v ∈ Vunion, define Pv ⊂ Vq as a set of its parent nodes.

2For the detailed VC dimensions of these function classes, see Vapnik (2013). Crucially, their VC dimensions
are all linear with respect to the number of parameters d.
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Dataset Entities Relations Training Edges Validation Edges Test Edges Total Edges
FB15k 14,951 1,345 483,142 50,000 59,071 592,213

FB15k-237 14,505 237 272,115 17,526 20,438 310,079

Table 1: Knowledge graph dataset statistics as well as the split into training, validation, and test sets.

We first generate N =
∏

v∈Vunion
|Pv| different computation graphs Gq(1) , . . . , Gq(N) as follows,

each with different choices of vparent in the first step.

1. For every v ∈ Vunion, select one parent node vparent ∈ Pv .
2. Remove all the edges of type ‘union.’
3. Merge v and vparent, while retaining all other edge connections.

We then combine the obtained computation graphs Gq(1) , . . . , Gq(N) as follows to give the final
equivalent computation graph.

1. Convert the target sink nodes of all the obtained computation graphs into the existentially
quantified bound variables nodes.

2. Create a new target sink node V?, and draw directed edges of type “union” from all the
above variable nodes to the new target node.

An example of the entire transformation procedure is illustrated in Fig. 3. By the definition of
the union operation, our procedure gives the equivalent computation graph as the original one.
Furthermore, as all the union operators are removed from Gq(1) , . . . , Gq(N) , all of these computation
graphs represent conjunctive queries, which we denote as q(1), . . . , q(N). We can then apply existing
framework to obtain a set of embeddings for these conjunctive queries as q(1), . . . ,q(N).

Aggregation. Next we define the distance function between the given EPFO query q and an entity
v ∈ V . Since q is logically equivalent to q(1) ∨ · · · ∨ q(N), we can naturally define the aggregated
distance function using the box distance distbox:

distagg(v; q) = Min({distbox(v;q(1)), . . . ,distbox(v;q(N))}), (5)

where distagg is parameterized by the EPFO query q. When q is a conjunctive query, i.e., N = 1,
distagg(v; q) = distbox(v;q). For N > 1, distagg takes the minimum distance to the closest box as
the distance to an entity. This modeling aligns well with the union operation; an entity is inside the
union of sets as long as the entity is in one of the sets. Note that our DNF-query rewriting scheme is
general and is able to extend any method that works for conjunctive queries (e.g., (Hamilton et al.,
2018)) to handle more general class of EPFO queries.

Computational complexity. The computational complexity of answering an EPFO query with our
framework is equal to that of answering the N conjunctive queries. In practice, N might not be so
large, and all the N computations can be parallelized. Furthermore, answering each conjuctive query
is very fast as it requires us to execute a sequence of simple box operations (each of which takes
constant time) and then perform a range search (Bentley & Friedman, 1979) in the embedding space,
which can also be done in constant time using techniques based on Locality Sensitive Hashing (Indyk
& Motwani, 1998).

4 EXPERIMENTS

Our goal in the experiment section is to evaluate the performance of QUERY2BOX on discovering
answers to complex logical queries that cannot be obtained by traversing the incomplete KG. This
means, we will focus on answering queries where one or more missing edges in the KG have to be
successfully predicted in order to obtain the additional answers.

4.1 KNOWLEDGE GRAPHS AND QUERY GENERATION

We perform experiments on standard KG benchmarks, FB15k (Bordes et al., 2013) and FB15k-237
(Toutanova & Chen, 2015). Both are subsets of Freebase (Bollacker et al., 2008), a large-scale KG
containing general facts. Dataset statistics are shown in Table 1.
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Figure 4: Query structures considered in the experiments, where anchor entities and relations are
to be specified to instantiate logical queries. Naming for each query structure is provided under
each subfigure, where ‘p’, ‘i’, and ‘u’ stand for ‘projection’, ‘intersection’, and ‘union’, respectively.
Models are trained on the first 5 query structures, and evaluated on all 9 query structures.

Queries Training Validation Test
Dataset 1p others 1p others 1p others
FB15k 273,710 273,710 59,097 8,000 67,016 8,000
FB15k-237 149,689 149,689 20,101 5,000 22,812 5,000

Table 2: Number of training, validation, and test queries generated for different query structures.

We follow the standard evaluation protocol in KG literture: Given the standard split of edges into
training, test, and validation sets (Table 1), we first augment the KG to also include inverse relations
and effectively double the number of edges in the graph. We then create three graphs: Gtrain, which
only contains training edges and we use this graph to train node embeddings as well as box operators.
We then also generate two bigger graphs: Gvalid which contains Gtrain plus the validation edges, and
Gtest, which includes Gvalid as well as the test edges.

We consider 9 kinds of diverse query structures shown and named in Fig. 4. We use 5 query structures
for training and then evaluate on all the 9 query structures. Given a query q, let JqKtrain, JqKval, and
JqKtest denote a set of answer entities obtained by running subgraph matching of q on Gtrain, Gvalid,
and Gtest, respectively. (We refer the reader to Appendix C for full details on query generation.) At
the training time, we use JqKtrain as positive examples for the query and other random entities as
negative examples (Table 2). However, at the test/validation time we proceed differently. Note that
we focus on answering queries where generalization performance is crucial and at least one edge
needs to be imputed in order to answer the queries. Thus, rather than evaluating a given query on
the full validation (or test) set JqKval (JqKtest) of answers, we validate the method only on non-trivial
answers that include missing relations. Given how we constructed Gtrain ⊆ Gvalid ⊆ Gtest, we have
JqKtrain ⊆ JqKval ⊆ JqKtest and thus we evaluate the method on JqKval\JqKtrain to tune hyper-parameters
and then report results identifying answer entities in JqKtest\JqKval. This means we always evaluate on
queries/entities that were not part of the training set and the method has not seen them before.

4.2 EVALUATION PROTOCOL

Given a test query q, for each of its non-trivial answers v ∈ JqKtest\JqKval, we use distbox in Eq. 3 to
rank v among V\JqKtest. Denoting the rank of v by Rank(v), we then calculate evaluation metrics for
answering query q, such as Mean Reciprocal Rank (MRR) and Hits at K (H@K):

Metrics(q) =
1

|JqKtest\JqKval|
∑

v∈JqKtest\JqKval

fmetrics(Rank(v)), (6)

where fmetrics(x) = 1
x for MRR, and fmetrics(x) = 1[x ≤ K] for H@K.

We then average Eq. 6 over all the queries within the same query structure,3 and report the results
separately for different query structures. The same evaluation protocol is applied to the validation
stage except that we evaluate on JqKval\JqKtrain rather than JqKtest\JqKval.

3Note that our evaluation metric is slightly different from conventional metric (Nickel et al., 2016; Hamilton
et al., 2018; Guu et al., 2015), where average is taken over query-answer pairs. The conventional metric is
problematic as it can be significantly biased toward correctly answering generic queries with huge number of
answers, while dismissing fine-grained queries with a few answers. Here, to treat queries equally regardless of
the number of answers they have, we take average over queries.
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Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.268 0.467 0.24 0.186 0.324 0.453 0.108 0.205 0.239 0.193
GQE 0.228 0.402 0.213 0.155 0.292 0.406 0.083 0.170 0.169 0.163
GQE-DOUBLE 0.230 0.405 0.213 0.153 0.298 0.411 0.085 0.182 0.167 0.160

Table 3: H@3 on test set for QUERY2BOX vs. GQE on FB15k-237.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.484 0.786 0.413 0.303 0.593 0.712 0.211 0.397 0.608 0.330
GQE 0.386 0.636 0.345 0.248 0.515 0.624 0.151 0.31 0.376 0.273
GQE-DOUBLE 0.384 0.63 0.346 0.250 0.515 0.611 0.153 0.32 0.362 0.271

Table 4: H@3 on test set for QUERY2BOX vs. GQE on FB15k.

4.3 BASELINE AND MODEL VARIANTS

We compare our framework QUERY2BOX against the state-of-the-art GQE (Hamilton et al., 2018).
GQE embeds a query to a single vector, and models projection and intersection operators as translation
and deep sets (Zaheer et al., 2017), respectively. The L1 distance is used as the distance between
query and entity vectors. For a fair comparison, we also compare with GQE-DOUBLE (GQE with
doubled embedding dimensionality) so that QUERY2BOX and GQE-DOUBLE have the same amount of
parameters. Although the original GQE cannot handle EPFO queries, we apply our DNF-query rewrit-
ing strategy and in our evaluation extend GQE to handle general EPFO queries as well. Furthermore,
we perform extensive ablation study by considering several variants of QUERY2BOX (abbreviated as
Q2B). We list our method as well as its variants below.

• Q2B (our method). The box embeddings are used to model queries, and the attention
mechanism is used for the intersection operator.
• Q2B-AVG. The attention mechanism for intersection is replaced with averaging.
• Q2B-DEEPSETS. The attention mechanism for intersection is replaced with the deep sets.
• Q2B-AVG-1P. The variant of Q2B-AVG that is trained with only 1p queries (see Fig. 4); thus,

logical operators are not explicitly trained.
• Q2B-SHAREDOFFSET. The box offset is shared across all queries (every query is represented

by a box with the same size).

Following Hamilton et al. (2018), we model all the deep sets by DeepSets({x1, . . . ,xN}) =

MLP((1/N) ·
∑N

i=1 MLP(xi)), where all the hidden dimensionalities of the two MLPs are the same
as the input dimensionality.

4.4 EXPERIMENTAL DETAILS

We use embedding dimensionality of d = 400 and set γ = 24, α = 0.2 for the loss in Eq. 4. We train
all types of training queries jointly. In every iteration, we sample a minibatch size of 512 queries
for each query structure (details in Appendix C), and we sample 1 answer entity and 128 negative
entities for each query. We optimize the loss in Eq. 4 using Adam Optimizer (Kingma & Ba, 2014)
with learning rate = 0.0001. We train all models for 250 epochs, monitor the performance on the
validation set, and report the test performance.

4.5 MAIN RESULTS

We start by comparing our Q2B with state-of-the-art query embedding method GQE (Hamilton
et al., 2018) on FB15k and FB15k-237. As listed in Table 3 and Table 4, our method significantly
and consistently outperforms the state-of-the-art baseline across all the query structures, including
those not seen during training as well as those with union operations. On average, we obtain
9.8% (25% relative) and 3.8% (15% relative) higher H@3 than the best baselines on FB15k and
FB15k-237, respectively. Notice that naïvely increasing embedding dimensionality in GQE yields
limited performance improvement. Our Q2B is able to effectively model a set of entities by the box
embedding, and achieves a large performance gain compared with GQE-DOUBLE (with same number
of parameters) that represents queries as point vectors. Also notice that Q2B performs well on new

9
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Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.268 0.467 0.240 0.186 0.324 0.453 0.108 0.205 0.239 0.193
Q2B-AVG 0.249 0.462 0.242 0.182 0.278 0.391 0.101 0.158 0.236 0.189
Q2B-DEEPSETS 0.259 0.458 0.243 0.186 0.303 0.432 0.104 0.187 0.231 0.190
Q2B-AVG-1P 0.219 0.457 0.193 0.132 0.251 0.319 0.083 0.142 0.241 0.152
Q2B-SHAREDOFFSET 0.207 0.391 0.199 0.139 0.251 0.354 0.082 0.154 0.150 0.142

Table 5: H@3 on test set for QUERY2BOX vs. several of its variants on FB15k-237.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.484 0.786 0.413 0.303 0.593 0.712 0.211 0.397 0.608 0.330
Q2B-AVG 0.468 0.779 0.407 0.300 0.577 0.673 0.199 0.345 0.607 0.326
Q2B-DEEPSETS 0.467 0.755 0.407 0.294 0.588 0.699 0.197 0.378 0.562 0.324
Q2B-AVG-1P 0.385 0.812 0.262 0.173 0.463 0.529 0.126 0.263 0.653 0.187
Q2B-SHAREDOFFSET 0.372 0.684 0.335 0.232 0.442 0.559 0.144 0.282 0.417 0.252

Table 6: H@3 on test set for QUERY2BOX vs. several of its variants on FB15k.

queries with the same structure as the training queries as well as on new query structures never seen
during training.

We also conduct extensive ablation studies, which are summarized in Tables 5 and 6:

Importance of attention mechanism. First, we show that our modeling of intersection using the
attention mechanism is important. Given a set of box embeddings {p1, . . . ,pn}, Q2B-AVG is the most
naïve way to calculate the center of the resulting box embedding pinter while Q2B-DEEPSETS is too
flexible and neglects the fact that the center should be a weighted average of Cen(p1), . . . ,Cen(pn).
Compared with the two methods, Q2B achieves better performance in answering queries that involve
intersection operation, e.g., 2i, 3i, pi, ip. Specifically, on FB15k-237, Q2B obtains more than 4% and
2% absolute gain in H@3 compared to Q2B-AVG and Q2B-DEEPSETS, respectively.

Necessity of training on complex queries. Second, we observe that explicitly training on complex
logical queries beyond one-hop path queries (1p in Fig. 4) improves the reasoning performance.
Although Q2B-AVG-1P is able to achieve strong performance on 1p and 2u, where answering 2u is
essentially answering two 1p queries with an additional minimum operation (see Eq. 5 in Section
3.3), Q2B-AVG-1P fails miserably in answering other types of queries involving logical operators. On
the other hand, other methods (Q2B, Q2B-AVG, and Q2B-DEEPSETS) that are explicitly trained on
the logical queries achieve much higher accuracy, with up to 10% absolute average improvement of
H@3 on FB15k.

Adaptive box size for different queries. Third, we investigate the importance of learning adaptive
offsets (box size) for different queries. Q2B-SHAREDOFFSET is a variant of our Q2B where all the
box embeddings share the same learnable offset. Q2B-SHAREDOFFSET does not work well on all
types of queries. This is possibly because different queries have different numbers of answer entities,
and the adaptive box size enables us to better model it.

5 CONCLUSION

In this paper we proposed a reasoning framework called QUERY2BOX that can effectively model
and reason over sets of entities as well as handle EPFO queries in a vector space. Given a logical
query, we first transform it into DNF, embed each conjunctive query into a box, and output entities
closest to their nearest boxes. Our approach is capable of handling all types of EPFO queries scalably
and accurately. Experimental results on standard KGs demonstrate that QUERY2BOX significantly
outperforms the existing work in answering diverse logical queries.
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A PROOF OF THEOREM 1

Proof. To model any EPFO query, we need to at least model a subset of EPFO queriesQ = {∨
qi∈S

qi :

S ⊆ {q1, . . . , qM}}, where the corresponding denotation sets are {∪
qi∈S

JqiK : S ⊆ {q1, . . . , qM}}.
For the sake of modeling Q, without loss of generality, we consider assigning a single entity
embedding vqi

to all v ∈ JqiK, so there are M kinds of entity vectors, vq1 , . . . ,vqM
. To model all

queries in Q, it is necessary to satisfy the following.

∃vq1 , . . . ,∃vqM
,∀S ⊆ {q1, . . . , qM},∃qS ∈ Ξ, such that dist(vqi

;qS)

{
≤ β if qi ∈ S,
> β if qi /∈ S.

(7)

where qS is the embedding of query ∨
qi∈S

qi. Eq. 7 means that we can learn the M kinds of entity
vectors such that for every query in Q, we can obtain its embedding to model the corresponding set
using the distance function. Notice that this is agnostic to the specific algorithm to embed query
∨

q∈S
q into qS; thus, our result is generally applicable to any method that embeds the query into a

single vector.

Crucially, satisfying Eq. 7 is equivalent to {sign(β − dist(·;q)) : q ∈ Ξ} being able to shutter
{vq1 , . . . ,vqM

}, i.e., any binary labeling of the points can be perfectly fit by some classifier in the
function class. To sum up, in order to model any EPFO query, we need to at least model any query in
Q, which requires the VC dimension of the distance function to be larger than or equal to M .

B DETAILS ABOUT COMPUTING M IN THEOREM 1

Given the full KG Gtest for the FB15k dataset, our goal is to find conjunctive queries q1, . . . , qM such
that Jq1K, . . . , JqM K are disjoint with each other. For conjunctive queries, we use two types of queries:
‘1p’ and ‘2i’ whose query structures are shown in Figure 4. On the FB15k, we instantiate 308,006
queries of type ‘1p’, which we denote by S1p. Out of all the queries in S1p, 129,717 queries have
more than one answer entities, and we denote such a set of the queries by S′1p. We then generate a set
of queries of type ‘2i’ by first randomly sampling two queries from S′1p and then taking conjunction;
we denote the resulting set of queries by S2i.

Now, we use S1p and S2i to generate a set of conjunctive queries whose denotation sets are disjoint
with each other. First, we prepare two empty sets Vseen = ∅, andQ = ∅. Then, for every q ∈ S1p, if
Vseen ∩ JqK = ∅ holds, we letQ ← Q∪ {q} and Vseen ← Vseen ∪ JqK. This procedure already gives
us Q, where we have 10, 812 conjunctive queries whose denotation sets are disjoint with each other.
We can further apply the analogous procedure for S2i, which gives us a further increased Q, where
we have 13, 365 conjunctive queries whose denotation sets are disjoint with each other. Therefore,
we get M = 13, 365.

C DETAILS ON QUERY GENERATION

Given Gtrain, Gvalid, and Gtest as defined in Section 4.1, we generate training, validation and test queries
of different query structures. During training, we consider the first 5 kinds of query structures. For
evaluation, we consider all the 9 query structures in Fig. 4, containing query structures that are both
seen and unseen during training time. We instantiate queries in the following way.

Given a KG and a query structure (which is a DAG), we use pre-order traversal to assign an entity
and a relation to each node and edge in the DAG of query structure to instantiate a query. Namely,
we start from the root of the DAG (which is the target node), we sample an entity e uniformly from
the KG to be the root, then for every node connected to the root in the DAG, we choose a relation r
uniformly from the in-coming relations of e in the KG, and a new entity e′ from the set of entities that
reaches e by r in the KG. Then we assign the relation r to the edge and e′ to the node, and move on
the process based on the pre-order traversal. This iterative process stops after we assign an entity and
relation to every node and edge in DAG. The leaf nodes in the DAG serve as the anchor nodes. Note
that during the entity and relation assignment, we specifically filter out all the degenerated queries, as
shown in Fig. C. Then we perform a post-order traversal of the DAG on the KG, starting from the
anchor nodes, to obtain a set of answer entities to this query. All of our generated datasets will be
made publicly available.
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Figure 5: Example of the degenerated queries, including (1) r and r−1 appear along one path and (2)
same anchor node and relation in intersections.

When generating validation/test queries, we explicitly filter out trivial queries that can be fully
answered by subgraph matching on Gtrain/Gvalid.

D ADDITIONAL EXPERIMENTAL RESULTS

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.41 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301
Q2B-AVG 0.396 0.648 0.368 0.27 0.476 0.564 0.182 0.295 0.465 0.3
Q2B-DEEPSETS 0.402 0.631 0.371 0.269 0.499 0.605 0.181 0.325 0.437 0.298
Q2B-AVG-1P 0.324 0.688 0.236 0.159 0.378 0.435 0.122 0.225 0.498 0.178
Q2B-SHAREDOFFSET 0.296 0.511 0.273 0.199 0.351 0.444 0.132 0.233 0.311 0.213

Table 7: MRR results of QUERY2BOX vs. several variants on FB15k-237.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.41 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301
GQE 0.328 0.505 0.320 0.218 0.439 0.536 0.139 0.272 0.3 0.244
GQE-DOUBLE 0.326 0.49 0.3 0.222 0.438 0.532 0.142 0.28 0.285 0.242

Table 8: MRR results of QUERY2BOX vs. GQE on FB15k-237.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.41 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301
Q2B-AVG 0.396 0.648 0.368 0.27 0.476 0.564 0.182 0.295 0.465 0.3
Q2B-DEEPSETS 0.402 0.631 0.371 0.269 0.499 0.605 0.181 0.325 0.437 0.298
Q2B-AVG-1P 0.324 0.688 0.236 0.159 0.378 0.435 0.122 0.225 0.498 0.178
Q2B-SHAREDOFFSET 0.296 0.511 0.273 0.199 0.351 0.444 0.132 0.233 0.311 0.213

Table 9: MRR results of QUERY2BOX vs. several variants on FB15k.

Method Avg 1p 2p 3p 2i 3i ip pi 2u up
Q2B 0.41 0.654 0.373 0.274 0.488 0.602 0.194 0.339 0.468 0.301
GQE 0.328 0.505 0.320 0.218 0.439 0.536 0.139 0.272 0.3 0.244
GQE-DOUBLE 0.326 0.49 0.3 0.222 0.438 0.532 0.142 0.28 0.285 0.242

Table 10: MRR results of QUERY2BOX vs. GQE on FB15k.
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