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ABSTRACT

In this work we contribute towards a deeper understanding of the Transformer
architecture by investigating two of its core components: self-attention and con-
textual embeddings. In particular, we study the identifiability of attention weights
and token embeddings, and the aggregation of context into hidden tokens. We
show that attention weights are not unique and propose effective attention as an al-
ternative for better interpretability. Furthermore, we show that input tokens retain
their identity in the first hidden layers and then progressively become less identifi-
able. We also provide evidence for the role of non-linear activations in preserving
token identity. Finally, we demonstrate strong mixing of input information in the
generation of contextual embeddings by means of a novel quantification method
based on gradient attribution. Overall, we show that self-attention distributions
are not directly interpretable and present tools to further investigate Transformer
models.

1 INTRODUCTION

In this paper we investigate neural models of language based on self-attention by leveraging the
concept of identifiability. Intuitively, identifiability refers to the ability of a model to learn stable
representations. This is arguably a desirable property, as it affects the replicability and interpretabil-
ity of the model’s predictions. Concretely, we focus on two aspects of identifiability. The first is
related to structural identifiability (Bellman & Åström, 1970): the theoretical possibility (a priori)
to learn a unique optimal parameterization of a statistical model. From this perspective, we analyze
the identifiability of attention weights, what we call attention identifiability, in the self-attention
components of transformers (Vaswani et al., 2017), one of the most popular neural architectures
for language encoding and decoding. We also investigate token identifiability as the fine-grained,
word-level mappings between input and output generated by the model. The role of attention as a
means of recovering input-output mappings, and various types of explanatory insights, is currently
the focus of much research and depends to a significant extent on both types of identifiability.

We contribute the following findings to the ongoing work: With respect to attention indentifiability,
in Section 3 we show that – under mild conditions with respect to input sequence length and attention
head dimension – the attention weights for a given input are not identifiable. This implies that there
can be many different attention weights that yield the same output. This finding challenges the direct
interpretability of attention distributions. As an alternative, we propose the concept of effective
attention, a diagnostic tool that examines attention weights for model explanations by removing the
weight components that do not influence the model’s predictions.

With respect to token identifiability, in Section 4, we devise an experimental setting where we probe
the hypothesis that contextual word embeddings maintain their identity as they pass through succes-
sive layers of a transformer. This is an assumption made in much current research, which has not
received a clear validation yet. We find that this assumption is correct in earlier layers, while it does
not always hold in later layers. We propose a partial explanation for the identifiability of tokens,
supported by empirical evidence, according to which the non-linearities in the feedforward layers
are responsible to a large degree for maintaining token identity.

In Section 5 we further investigate the contribution of all input tokens in the generation of the con-
textual embeddings in order to quantify the mixing of token and context information. For this pur-
pose, we introduce Hidden Token Attribution, a quantification method based on gradient attribution.
We find that self-attention strongly mixes context and token contributions. The token contribution
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decreases monotonically with depth, but the corresponding token typically remains the largest indi-
vidual contributor. We also find that, despite visible effects of long term dependencies, the context
aggregated into the hidden embeddings is mostly local. We notice how, remarkably, this must be an
effect of learning.

2 BACKGROUND ON TRANSFORMERS

The Transformer (Vaswani et al., 2017) is the neural architecture of choice for natural language
processing (NLP). At its core it consists of several multi-head self-attention layers. In these, every
token of the input sequence attends to all other tokens by projecting its embedding to a query, key
and value vector. Formally, let Q ∈ Rds×dq be the query matrix, K ∈ Rds×dq the key matrix and
V ∈ Rds×dv the value matrix, where ds is the sequence length and dq and dv the dimension of the
query and the value vectors, respectively. The output of an attention head is given by:

Attention(Q,K, V ) = A · V with A = softmax

(
QKT√
dq

)
(1)

The attention matrix A ∈ Rds×ds calculates for each token in the sequence how much the hidden
embedding at this sequence position attends to each of the other (hidden) embeddings. Self-attention
is a non-local operator, which means that at any layer a token can attend to all other tokens regardless
of the distance in the input. Self-attention thus produces so-called contextual word embeddings, as
successive layers gradually aggregate contextual information into the embedding of the input word.

We focus on a Transformer model called BERT (Devlin et al., 2019), although our analysis can be
easily extended to other models such as GPT (Radford et al., 2018; 2019). BERT operates on input
sequences of length ds. We denote input tokens in the sentence as xi, where i ∈ [1, ..., ds]. We
use xi ∈ Rd with embedding dimension d to refer to the sum of the token-, segment- and position
embeddings corresponding to the input word at position i. We denote the contextual embedding at
position i and layer l as eli. Lastly, we refer to the inputs and embeddings of all sequence positions as
matrices X and E, respectively, both in Rds×d. For all experiments we use the pre-trained uncased
BERT-Base model as provided by Devlin et al. (2019)1.

3 ATTENTION IDENTIFIABILITY

In this section, we present the identifiability analysis of self-attention weights. Drawing an analogy
with structural identifiability (Bellman & Åström, 1970), we state that the attention weights of a
attention head for a given input are identifiable if they can be uniquely determined from the head’s
output.2 We emphasize that attention weights are input dependent and not model parameters. How-
ever, their identifiability affects the interpretability of the output, as discussed in (Jain & Wallace,
2019; Wiegreffe & Pinter, 2019). If attention is not identifiable, explanations based on attention may
be unwarranted.

The output of a multi-head attention layer is the summation of the output of h single heads (cf. Eq.
1) multiplied by the matrix H ∈ Rdv×d with reduced head dimension dv = d/h,

Attention(Q,K, V )H = AEWVH = AT (2)

where WV ∈ Rd×dv projects the embedding E into the value matrix V = EWV , and we define
T = EWVH . Here, the layer and head indices are omitted for simplicity, since the proof below is
valid for each individual head and layer in Transformer models. We now prove, by analyzing the
null space dimension of T , that attention weights are not identifiable using the head or final model
output.

1https://github.com/google-research/bert
2Cf. Appendix A.1 for some background on attention indentifiability.
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3.1 UPPER BOUND FOR RANK(T )

We first derive the upper bound of the rank of matrix T = EWVH . Note that rank(ABC) ≤
min (rank(A), rank(B), rank(C)), therefore,

rank (T ) ≤ min
(
rank(E), rank(WV ), rank(H)

)
(3)

≤ min(ds, d, d, dv, dv, d)
= min (ds, dv) .

The second step holds because rank(E) ≤ min(ds, d), rank(WV ) ≤ min(d, dv) and rank(H) ≤
min(dv, d).

3.2 THE NULL SPACE OF T

The null space of T describes all vectors that are mapped to 0 by T :

null(T ) = {x̃T ∈ R1×ds |x̃TT = 0} (4)

Its special property is that, for Ã = [x̃1, x̃2, ..., x̃ds ]
T where x̃Ti is any vector in this null space,

(A+ Ã)T = AT. (5)

This implies that there are infinitely many different attention weights A + Ã that lead to the exact
same attention layer output and final model outputs, if the dimension of the null space is not zero.

Due to the Rank Nullity theorem, the dimension of the null space of T is

dim(null(T )) = ds − rank (T ) ≥ ds −min (ds, dv) =
{
ds − dv, if ds > dv
0, otherwise

(6)

where equality holds if E, WV and H are of full rank and their matrix product does not bring
further rank reductions. Hence, when the sequence length is larger than the attention head dimension
(ds > dv), self-attention is non-identifiable. Furthermore, the null space dimension increases with
the sequence length.

3.3 EFFECTIVE ATTENTION

The non-identifiability of multi-head self-attention, due to the existence of the non-trivial null space
of T , challenges the interpretability of attention weights. However, one can decompose attention
weights A into the component in the null space A‖ and the component orthogonal to the null space
A⊥:

AT = (A‖ +A⊥)T = A⊥T (7)

since A‖ ∈ null(T ) =⇒ A‖T = 0. Hence, we propose a novel concept named effective attention,

A⊥ = A− Projectionnull(T )A, (8)

which is the part of the attention weights that actually influence model behavior.

Effective attention can serve as a better diagnostic tool for examining attention weights. To illustrate
the point, Figure 1 compares (a) raw attention A and (b) effective attention A⊥. Using the same
Wikipedia samples as in Clark et al. (2019) with maximum sequence length 128, we compute
the average attention of BERT and compare it to the corresponding average effective attention.
Clark et al. (2019) conclude that the [CLS] token attracts more attention in early layers, the [SEP]
tokens attract more in middle layers, and periods and commas do so in deep layers. However,
effective attention weights suggest a different interpretation: while periods and commas seem to
generally attract more attention than [CLS] and [SEP], the pattern observed by Clark et al. (2019)
has disappeared. An additional example showing similar results can be found in Appendix A.2.

We note that the Pearson correlation between effective and raw attention decreases with sequence
length as shown in Figure 1c. This is in line with our theoretical finding in Eq. 6 that states an
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Figure 1: (a) Raw attention vs. (b) effective attention, where each point represents the average
(effective) attention of a given head to a token type. (c) Each point represents the Pearson correlation
coefficient of effective attention and raw attention as a function of token length.

increase in the dimension of the null space with the sequence length. Given a bigger null space,
more of the raw attention becomes irrelevant, yielding a lower correlation between effective and raw
attention. Note also that for sequences with fewer than dv = 64 tokens, the associated null space
dimension is zero, and hence attention and effective attention are identical (Pearson correlation of
value 1). This loss of correlation with increased sequence length questions the use of attention as
explanation in practical models, where it is not uncommon to use large sequence lengths. A few
examples include: BERT for question answering (Alberti et al., 2019) and XL-Net (Yang et al.,
2019) with ds = 512, or document translation (Junczys-Dowmunt, 2019) with ds = 1000.

4 TOKEN IDENTIFIABILITY

We now study the other fundamental element of transformers; the internal vector representations of
tokens, or contextual word embeddings. It is commonly assumed that a contextual word embedding
keeps its “identity”, which is tied to the input word, as it passes through the self-attention layers.
Specifically, we identify three cases where this assumption is made implicitly without justification.

First, visualizations/interpretations linking attention weights to attention between words, when in
fact the attention is between embeddings, i.e., mixtures of multiple words (Vaswani et al., 2017;
Devlin et al., 2019; Vig, 2019; Clark et al., 2019; Raganato & Tiedemann, 2018; Voita et al., 2019;
Tang et al., 2018; Wangperawong, 2018; Padigela et al., 2019; Baan et al., 2019; Dehghani et al.,
2019; Zenkel et al., 2019). Second, accumulation methods that sum the attention to a specific se-
quence position over layers and/or attention heads, when the given position might encode a different
mixture of inputs in each layer (Clark et al., 2019; Baan et al., 2019; Klein & Nabi, 2019; Coenen
et al., 2019). Finally, using classifiers to probe hidden embeddings for word-specific aspects without
factoring in how much the word is still represented (Lin et al., 2019; Peters et al., 2018).

To investigate this assumption we introduce the concept of token identifiability, as the existence of
a one-to-one mapping between contextual embeddings and their corresponding input tokens. For-
mally, a token eli is identifiable if there exists a function g(·) such that g(eli) = xi. We cannot prove
the existence of g analytically. Instead, for each layer l we use a function approximator ĝl(eli) = x̂i
trained on a dataset of (eli,xi) pairs. We then search for the nearest neighbour x̂1nn

i of x̂i within
the same sentence, and say that elj is identifiable if x̂1nn

i = xi. For evaluation we then report the
token identifiability rate defined as the percentage of correctly identified tokens.

4.1 SETUP

For the experiments in this and subsequent sections we use the evaluation data set from the Mi-
crosoft Research Paraphrase Corpus (MRPC) dataset (Dolan & Brockett, 2005). The evaluation set
contains 408 examples with a sequence length ds between 26 and 92 tokens, with 58 tokens on av-
erage. We pass all 408 sentences (21,723 tokens) through BERT and extract for each token the input
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Figure 2: (a) Identifiability of contextual word embeddings at different layers. Here, ĝ is trained and
tested on the same layer. We do 10-fold cross-validation: Solid lines show the mean, shaded areas
show the min/max across all folds. (b) MLP trained on layer l and tested on all layers.

embeddings xi and the hidden embeddings eli at all layers. We then train ĝ on the regression task
of predicting input tokens xi from hidden tokens eli. We use 70/15/15 train/validation/test splits and
ensure that tokens from the same sentence are not split across sets. The validation set is used for
early stopping. See Appendix B.1 for more details on the setup and training procedure.

4.2 EXPERIMENTAL RESULTS AND DISCUSSION

In a first experiment, we use a linear perceptron ĝlinl and a non-linear MLP ĝMLP
l , where training,

validation and test data all come from layer l. Figure 2a shows the test set token identifiability rate
of ĝl for l = [1, ..., 12]. We also report a naive baseline ĝnaivel (eli) = eli, i.e., we directly retrieve
the nearest neighbour of eli from the input tokens. The results for ĝnaivel show that contextual
embeddings stay close to their input embeddings up to layer 4, followed by a linear decrease in
token identifiability rate. ĝlinl and ĝMLP

l are close, but perform considerably better than ĝnaivel .
ĝMLP
l starts outperforming ĝlinl after layer 6. In the last layer, ĝMLP

l can recover 82% of tokens,
and ĝlinl 73%. See Appendix B.2 for a comparison of train and test performance.

This experiment shows that tokens remain identifiable in the first layers of BERT. Starting from layer
3, the identifiability rate starts to decrease and at layer 12, almost 20% of hidden tokens cannot be
mapped back to their input token anymore by ĝMLP

l . This suggests that the implicit assumption of
token identifiability does not hold in later layers. Thus, one should confirm identifiability on a per-
token level before interpreting contextual embeddings. ĝMLP

l achieves roughly a 30% reduction in
error at the last layer compared to ĝlinl , indicating that the non-linearities in BERT play an important
role in maintaining token identifiability. Finally, Lin et al. (2019) show that BERT discards much
of the positional information after layer 3. This is also reflected in our results by the decrease in
identifiability rate after layer 3. However, tokens remain largely identifiable throughout the model,
indicating that BERT does not only rely on the positional embeddings to track token identity.

In a second experiment we test how well the ĝMLP
l trained only on (eli,xi) pairs from one layer l

generalizes to all layers, see Figure 2b. For l = 1, the token identifiability rate on subsequent layers
drops quickly to 91% at layer 6 and 15% at layer 12. Interestingly, for l = 12 a very different pattern
can be observed, where the identifiability is 82% for layer 12 and then increases when testing on
earlier layers. Further, for l = 6 we see both patterns.

This experiment suggests that the nature of token identity changes as tokens pass through the model,
and patterns learned on data from later layers transfer well to earlier layers. The experiment also
shows that layer 12 is behaving differently than the other layers. In particular, generalizing to layer
12 from layer 11 seems to be difficult, signified by a sudden drop in token identifiability rate. We
believe this is due to a task dependent parameter adaptation induced in the last layer by the next-
sentence prediction task which only uses the CLS token. See Appendix B.3 for results of ĝlinl and
ĝMLP
l for all layers.

5



Under review as a conference paper at ICLR 2020

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

Layer

C
on

tr
ib

ut
io

n
[%

]

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

Layer

P̃
[%

]

(b)

Figure 3: (a) Contribution of the input token to the embedding at the same position. The orange line
represents the median value and outliers are not shown. (b) Percentage of tokens P̃ that are not the
main contributors to their corresponding contextual embedding at each layer.

5 ATTRIBUTION ANALYSIS TO IDENTIFY CONTEXT CONTRIBUTION

We conclude by considering the role of the contextual information in the hidden embeddings. We in-
troduce Hidden Token Attribution, a context quantification method based on gradient attribution (Si-
monyan et al., 2014) to investigate the hidden tokens’ sensitivity with respect to the input tokens.

5.1 HIDDEN TOKEN ATTRIBUTION

Gradient based attribution approximates the neural network function f(X) around a given sequence
of input word embeddings X ∈ Rds×d by the linear part of the Taylor expansion. With this, the
network sensitivity is analyzed by looking at how small changes at the input correlate with changes
at the output. Since in the linear approximation this change is given by the gradient ∇xif = δf(X)

δxi

for a change in the i-th input token xi ∈ Rd ofX , the attribution of how much input token xi affects
the network output f(X) can be approximated by the L2 norm of the gradient: attr(xi) = ||∇xi

f ||2.
Since we are interested in how much a given hidden embedding elj attributes to the input tokens xi,
i ∈ [1, 2, . . . , ds], we define the relative input contribution cli,j of input xi to output f(X) = elj as

cli,j =
||∇li,j ||2∑ds
k=0 ||∇lk,j ||2

with ∇li,j =
δelj
δxi

Since we normalize by dividing by the sum of the attribution values to all input tokens, we obtain
values between 0 and 1 that represent the contribution of each input token xi to the hidden embed-
ding elj . Hidden Token Attribution differs from the standard use of gradient attribution in that, instead
of taking the gradients of the output of the model with respect to the inputs in order to explain the
model’s decision, we calculate the contribution of the inputs to intermediate embeddings in order to
track the mixing of information. Further details of this method are discussed in Appendix C.1.

5.2 TOKEN MIXING: CONTRIBUTION OF INPUT TOKENS

We use Hidden Token Attribution to extend the token identity results of Section 4 by showing how
much of the input token is actually contained in a given hidden embedding. In Figure 3a we report
the contribution clj,j of input tokens xj to their corresponding hidden embeddings elj at the same
position j for each layer l. Already after the first layer the median contribution of the input token is
less than a third (30.6%). The contribution then decreases monotonically with depth; at layer 6 the
median contribution is only 14.4% and after the last layer it is 10.7%. In Appendix C.5 we provide
detailed results by word type.

Next, we study which input token is the largest contributor to a given hidden embedding elj . We
observe that the corresponding input token xj generally has the largest contribution. Figure 3b
shows the percentage P̃ of tokens that are not the highest contributor to their hidden embedding at
each layer. In the first three layers the original input xj always contributes the most to the embedding
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Figure 4: (a) Relative contribution per layer of neighbours at different positions. (b) Total contribu-
tion per neighbour for the first, middle and last layers.

elj . In subsequent layers, P̃ increases monotonically, reaching 18% in the sixth layer and 30% in the
last two layers.

These results show that, starting from layer three, self-attention strongly mixes the input informa-
tion by aggregating the context into the hidden embeddings. This is in line with the results from
Section 4, where we see a decrease in token identifiability rate after layer three. However, P̃ is
always higher than the token identifiability error at the same layer, indicating that tokens are mixed
in a way that often permits recovering token identity even if the contribution of the original token is
outweighed by other tokens. This implies that there is some “identity information” that is preserved
through the layers. The strong mixing of information further questions the common assumption that
attention distributions can be interpreted as “how much a word attends to another word”.

5.3 CONTRIBUTION OF CONTEXT TO HIDDEN TOKENS

In this section we study how context is aggregated into hidden embeddings. Figure 4a shows the
relative contribution of neighbouring tokens at each layer for the relative positions: first, second,
third, fourth and fifth together, sixth to 10th together, and the rest. The closest neighbours (1st)
contribute significantly more in the first layers than in later layers. Conversely, the most distant
neighbours (11th onwards) contribute the most in deeper layers (cf. Appendix C.2).

Despite the progressive increase in long-range dependencies, the context in the hidden embeddings
remains mostly local. Figure 4b represents the normalized total contribution aggregated over all
tokens from each of their neighbours at the first, middle and last layer. This figure shows that the
closest neighbours consistently contribute the most to the contextual word embedding regardless of
depth. On the other hand, we indeed observe an increase of distant contributions at later layers.

The results of this section imply that transformers learn local operators from data in an unsupervised
manner, in the absence of any such prior in the architecture. This behavior is not obvious, since
attention is a highly non-local operator, and in turn indicates the importance of local dependencies
in natural language. While contribution is local on average, we find that there are exceptions, such
as the [CLS] token (cf. Appendix C.3). Furthermore, using our Hidden Token Attribution method,
one can track how context is aggregated for specific tokens (cf. Appendix C.4).

6 RELATED WORK

Input-output mappings play an important role in NLP. In machine translation, for example, they were
originally introduced in the form of explicit alignments between source and target words (Brown
et al., 1993). Neural translation architectures re-introduced this concept early, in the form of atten-
tion (Bahdanau et al., 2015). The development of multi-head self-attention (Vaswani et al., 2017)
has led to a wide range of impressive results in NLP. Encouraged by the success of attention based

7



Under review as a conference paper at ICLR 2020

models, much work has been devoted to gaining a better understanding of what these models learn.
A particular focus has been placed on using attention distributions to explain model decisions.

Jain & Wallace (2019) show that attention distributions of LSTM based encoder-decoder models
are not unique, and that adversarial attention distributions that do not change much the model’s
output can be constructed. They further show that attention distributions only correlate weakly to
moderately with dot-product based gradient attribution. Wiegreffe & Pinter (2019) also find that ad-
versarial attention distributions can be easily found, but that these alternative distributions perform
worse on a simple diagnostic task. Serrano & Smith (2019) find that zero-ing out attention weights
based on gradient attribution changes the output of a multi-class prediction task more quickly than
zero-ing out based on attention weights, thus showing that attention is not the best predictor of
learned feature importance. These papers differ in their approaches, but they all provide empirical
evidence showing that attention distributions are not unique with respect to downstream parts of the
model (e.g., output) and hence should be interpreted with care. Here, we support these empirical
findings by presenting a theoretical proof of the identifiability of attention weights: when the se-
quence length is larger than the attention head dimension, the attention weights are not identifiable
due to the non-trivial null space. Further, while these works focus on RNN-based language models
with a single layer of attention, we instead consider multi-head multi-layer self-attention models.
Our token classification and token mixing experiments show that the percentage of non-identifiable
tokens increases with depth. These results further reinforce the point that the factors that contribute
to the mixing of information are complex and deserve further study.

Voita et al. (2019) and Michel et al. (2019) find that only a small number of heads in BERT seem
to have a relevant effect on the output. These results are akin to our conclusions about the non-
identifiability of the attention weights, showing that a significant part of the attention weights do
not affect downstream parts of the model. One specific line of work investigates the internal repre-
sentations of transformers by attaching probing classifiers to different parts of the model. Tenney
et al. (2019) find that BERT has learned to perform steps from the classical NLP pipeline. Similarly,
Jawahar et al. (2019) show that lower layers of BERT learn syntactic features, while higher layers
learn semantic features. They also argue that long-range features are learned in later layers, which
agrees with our attribution-based experiments.

7 CONCLUSION

In this work we explore the concept of identifiability in transformers from different yet complemen-
tary angles. We first prove that attention weights are non-identifiable when the sequence length is
longer than the attention head dimension, implying that infinitely many attention distributions can
lead to the same internal representation and model output. We therefore propose effective attention
as a tool to improve the interpretability of attention weights. Second, we show that non-linearities
in transformers help maintaining the identifiability of hidden embeddings. However, input tokens
gradually lose their identity after the early layers. Finally, we present Hidden Token Attribution,
a gradient-based method to quantify information mixing, and we use it to demonstrate that input
tokens get heavily mixed inside transformers. Therefore, attention-based attribution, which suggests
that a word at some layer is attending to a specific input word, can be misleading. Rather, a hidden
mixture of embeddings is attending to other hidden mixtures of embeddings. We further show that
context is progressively aggregated into the hidden embeddings while some identity information is
preserved. Moreover, we show that context aggregation is mostly local and that distant dependen-
cies become relevant only in the last layers, which highlights the importance of local information
for natural language understanding.

In summary, we show that representations learned via self-attention are the result of complex factor-
izations that can be further characterized. We hope our work is a step towards a deeper understanding
of this process. Our results suggest that some of the conclusions in prior work (Vaswani et al., 2017;
Vig, 2019; Marecek & Rosa, 2018; Clark et al., 2019; Raganato & Tiedemann, 2018; Voita et al.,
2019; Tang et al., 2018; Wangperawong, 2018; Padigela et al., 2019; Baan et al., 2019; Lin et al.,
2019; Dehghani et al., 2019; Zenkel et al., 2019; Klein & Nabi, 2019; Coenen et al., 2019) may be
worth re-examining using the tools introduced here.
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A IDENTIFIABILITY OF SELF-ATTENTION

A.1 BACKGROUND ON ATTENTION IDENTIFIABILITY

Often, the identifiability issue arises for a model with a large number of unknown parameters and
limited observations. Taking a simple linear model y = x1β1 + x2β2 as an example, when there
is only one observation (y, x1, x2), model parameters β1 and β2 cannot be uniquely determined.
Moreover, in the matrix form Y = Xβ, by definition the parameter β is identifiable only if Y =
Xβ1 and Y = Xβ2 imply β1 = β2. So if the null space contains only the zero solution {β|Xβ =
0} = {0}, i.e., Xβ1 − Xβ2 = X(β1 − β2) = 0 =⇒ β1 − β2 = 0, the model is identifiable.
Therefore, the identifiability of parameters in a linear model is linked to the dimension of the null
space, which in the end is determined by the rank of X .

A.2 ADDITIONAL RESULTS OF THE EFFECTIVE ATTENTION VS. RAW ATTENTION RESULTS

In Figure 5 we provide a recreation of the Figure regarding the attention of tokens towards the [SEP]
token found in (Clark et al., 2019) with average attention as well as average effective attention. Again
we see that most of the raw attention lies effectively in the Null space, rendering the conclusions
drawn questionable. The Figures are produced using the code from Clark et al. (2019).
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Figure 5: Effective attention (a) vs. raw attention (b). (a) Each point represents the average effec-
tive attention from a token type to a token type. Solid lines are the average effective attention of
corresponding points in each layer. (b) is the corresponding figures using raw attention weights.
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B TOKEN IDENTIFIABILITY EXPERIMENTS

B.1 EXPERIMENTAL SETUP AND TRAINING DETAILS

The linear perceptron and MLP are both trained by minimizing the L2 loss using the ADAM opti-
mizer (Kingma & Ba, 2015) with a learning rate of α = 0.0001, β1 = 0.9 and β2 = 0.999. We use
a batch size of 256. We monitor performance on the validation set and stop training if there is no
improvement for 20 epochs. The input and output dimension of the models is d = 768; the dimen-
sion of the contextual word embeddings. For both models we performed a learning rate search over
the values α ∈ [0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001, 0.000003]. The weights are initial-
ized with the Glorot Uniform initializer (Glorot & Bengio, 2010). The MLP has one hidden layer
with 1000 neurons and uses the gelu activation function (Hendrycks & Gimpel, 2016), follwing the
feed-forward layers in BERT and GPT. We chose a hidden layer size of 1000 in order to avoid a
bottleneck. We experimented with using a larger hidden layer of size 3072 and adding dropout to
more closely match the feed-forward layers in BERT, which only resulted in increased training times
and we hence deferred from further architecture search.

We split the data by sentences into train/validation/test according to a 70/15/15 split. This way of
splitting the data ensures that the models have never seen the test sentences (i.e., contexts) during
training. In order to get a more robust estimate of performance we perform the experiments in Fig-
ure 2a using 10-fold cross validation. The variance, due to the random assignment of sentences to
train/validation/test sets, is small. We thus do not perform 10-fold cross validation for the experi-
ments in Figure 2b, also because we are doing a relative comparison of the same model trained using
the same train/validation/test splits.

B.2 GENERALIZATION ERROR

Figure 6 shows the token identifiability rate for train and test set for both models. Both models are
overfitting to the same degree. The fact that the linear model has about the same generalization error
as the MLP suggests that more training data would not significantly increase performance on the test
set. Further, we trained the MLP on layer 11 using 50%, 80%, 90% and 100% of the training data
set. The MLP achieved the following token identifiability rate on the test set: 0.74, 0.8, 0.81, 0.82.
This indicates that the MLP would not profit much from more data.
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Figure 6: Train and test token identifiability rates for the linear perceptron and MLP.
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B.3 ADDITIONAL RESULTS FOR FIGURE 2B

For better readability, Figure 2b in the main text only shows results of the MLP trained on layers
l = [1, 6, 11, 12] and tested on all other layers. Figures 7 and 8 show the complete results for
the MLP and linear perceptron trained on layer l = [1, ..., 12] and tested on all layers. The linear
and non-linear perceptrons show similar trends. However, the MLP trained on layer 10 behaves
strangely. We verified that this result persists for different random seeds leading to different weight
initializations and dataset splits. We hypothesize that the MLP overfits to a spurious pattern in layer
10 which does not generalize well to previous layers.
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Figure 7: Linear Perceptron generalizing to all layers
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C CONTEXT CONTRIBUTION ANALYSIS

C.1 HIDDEN TOKEN ATTRIBUTION: DETAILS

The attribution method proposed in Section 5.1 to calculate the contribution of input tokens to a
given embedding does not look at the output of the model but at the intermediate hidden representa-
tions and therefore is task independent. Since the contribution values do not depend on the task that
is evaluated, we can compare these values directly to attention distributions, which are also task-
independent. In this way, we can compare to other works in the literature (Vig, 2019; Clark et al.,
2019; Klein & Nabi, 2019; Coenen et al., 2019; Lin et al., 2019) by using the publicly available
pretrained BERT model in our analyses without fine-tuning it to a specific task.

Furthermore, since we are not interested in analysing how the input affects the output of the model
but in quantifying the absolute contribution of the input tokens to the hidden embeddings, we use the
L2 norm of the gradients. If we were analyzing whether the input contributed positively or negatively
to a given decision, the dot-product of the input token embedding with the gradient would be the
natural attribution choice (Pörner et al., 2018).

C.2 CONTEXT IDENTIFIABILITY: DETAILS

To calculate the relative contribution values shown in Figure 4a we firstly calculate the mean of the
left and right neighbours for each of the groups of neighbours, i.e., first, second, third, fourth and
fifth, sixth to 10th and, from 11th onwards. Then we aggregate the values averaging over all the
tokens in the MRPC evaluation set. Finally, we normalize for each group so that the sum of the
contribution values of each group is one. In this way, we can observe in which layer the contribution
of a given group of neighbours is the largest.

Our results on context identifiability from Section 5.3 complement some of the studies in previous
literature. In (Jawahar et al., 2019) the authors observe that transformers learn local syntactic tasks
in the first layers and long range semantic tasks in the last layers. We explain this behavior from
the point of view of context aggregation by showing that distant context acquires more importance
in the last layers (semantic tasks) while the first layers aggregate local context (syntactic tasks).
Furthermore, the results showing that the context aggregation is mainly local, specially in the first
layers, provide an explanation for the increase in performance observed in (Yang et al., 2018). In that
work, the authors enforce a locality constraint in the first layers of transformers, which pushes the
model towards the local operators that it naturally tends to learn, as we show in Figure 4b, improving
in this way the overall performance.

C.3 CONTEXT CONTRIBUTION TO CLS TOKEN

In this section we use Hidden Token Attribution to look at the contribution of the context to the
[CLS] token, which is added to the beginning of the input sequence by the BERT pre-processing
pipeline. This is an especially interesting token to look at because the decision of BERT for a
classification task is based on the output in the [CLS] token. Furthermore, like the [SEP] token,
it does not correspond to a natural language word and its position in the input sequence does not
have any meaning. Therefore, the conclusion that context is on average predominantly local (cf.
Section 5.3), is likely to not hold for [CLS].

The second and final pre-training task that BERT is trained on is next sentence prediction. During
this task, BERT receives two sentences separated by a [SEP] token as input, and then has to predict
whether the second sentence follows the first sentence or not. Therefore, it is expected that the
context aggregated into the [CLS] token comes mainly from the tokens around the first [SEP] token,
which marks the border between the first and second sentence in the input sequence. In Figure 9 we
show the contribution to the [CLS] token from all of its neighbours averaged over all the examples
in the MRPC evaluation set for the first, middle and last layers. In Figure 9a, the [CLS] token
is placed at position 0 and we see how the context contribution comes mainly from the tokens
around position 30, which is roughly the middle of the input examples. In Figure 9b we center
the contribution around the first [SEP] token and indeed, it becomes clear that the [CLS] token is
aggregating most of its context from the tokens around [SEP], i.e., from the junction between both
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sentences. In particular, the two tokens with the highest contribution are the tokens directly before
and after [SEP]. Also, it seems that the second sentence contributes more to [CLS] than the first one.

These results give an insight on what information BERT uses to solve next sentence prediction and
serves as an illustrative example of how Hidden Token Attribution can be used to analyze transform-
ers.
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Figure 9: Normalized total contribution to the [CLS] token (a) centered around [CLS] at position 0
(b) centered around [SEP].

C.4 TRACKING CONTEXT CONTRIBUTION

Here we show examples of how Hidden Token Attribution can track how context is aggregated for
a given word at each layer. For reasons of space we show only few words of a randomly picked
sentence of the MRPC evaluation set, which is tokenized as follows:

[CLS] he said the foods ##er ##vic ##e pie business doesn ’ t fit
the company ’ s long - term growth strategy . [SEP] " the foods
##er ##vic ##e pie business does not fit our long - term growth
strategy . [SEP]
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Figure 11: he
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Figure 12: said
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Figure 13: fit
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Figure 14: said
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Figure 15: strategy
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[SEP]
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C.5 TOKEN CONTRIBUTIONS BY POS TAG

Here we show the contribution of input tokens to hidden representations in all layers splitted by
part-of-speech (POS) tag. The POS tags are ordered according to the contribution in layer 12.
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Figure 17: Layer 1
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Figure 18: Layer 2
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Figure 19: Layer 3
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Figure 20: Layer 4
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Figure 21: Layer 5
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Figure 22: Layer 6
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Figure 23: Layer 7
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Figure 24: Layer 8
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Figure 25: Layer 9
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Figure 26: Layer 10
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Figure 27: Layer 11
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Figure 28: Layer 12
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