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ABSTRACT

Text generation is ubiquitous in many NLP tasks, from summarization, to dialogue
and machine translation. The dominant parametric approach is based on locally
normalized models which predict one word at a time. While these work remark-
ably well, they are plagued by exposure bias due to the greedy nature of the gen-
eration process. In this work, we investigate un-normalized energy-based models
(EBMs) which operate not at the token but at the sequence level. In order to make
training tractable, we first work in the residual of a pretrained locally normalized
language model and second we train using noise contrastive estimation. Further-
more, since the EBM works at the sequence level, we can leverage pretrained
bi-directional contextual representations, such as BERT and RoBERTa. Our ex-
periments on two large language modeling datasets show that residual EBMs yield
lower perplexity compared to locally normalized baselines. Moreover, generation
via importance sampling is very efficient and of higher quality than the baseline
models according to human evaluation.

1 INTRODUCTION

The dominant approach to parametric text generation is based on large neural auto-regressive mod-
els (Radford et al., 2019). These models can be trained efficiently via maximum likelihood and they
can efficiently generate samples of remarkable quality. Key to their success is local normalization,
i.e. they are defined in terms of a product of conditional distributions, one for each token in the se-
quence. Such distributions are relatively cheap to compute with modern hardware given the limited
vocabulary size of common sub-word units like BPE (Sennrich et al., 2015).

Unfortunately, local normalization also brings some drawbacks. First, the designer of the model
needs to specify the order in which tokens are generated. Second, at training time the model is
conditioned on ground truth context while at test time it is conditioned on its own generations, a
discrepancy referred to as exposure bias (Ranzato et al., 2016). Finally, while heuristics like beam
search somewhat help rescore at the sequence level, generation generally lacks long-range coherency
because it is produced by the greedy selection of one token at the time without lookahead.

Energy-based models (EBMs) (Hinton, 2002; LeCun et al., 2006; Ranzato et al., 2007) are a more
general framework which potentially address all these issues, as they do not require any local nor-
malization. They only require the definition of an energy function defined over the whole input
sequence. Training aims at shaping the energy function such that regions of high density of training
data points have lower energy than elsewhere. In principle, EBMs are ideal for modeling text as
they can score the whole input at once, they are not prone to label bias (Bottou, 1991) and they may
enable generation of large chunks of text, which should help improve coherency.

However, so far EBMs had limited application in text generation, because sampling from the model
is intractable, and so is maximum likelihood training. The problem is that shaping the energy func-
tion is accomplished by updating the model parameters such that the energy is decreased at the
training data points (a.k.a. positive examples) and increased at other data points (a.k.a. negative
examples). In maximum likelihood training negatives are generated from the model, but in text ap-
plication we cannot use gradient-based MCMC methods (Teh et al., 2003; Du & Mordatch, 2019)
and Gibbs sampling (Welling et al., 2005) would be excruciatingly too slow to be practical. Gen-
erating negatives by local perturbations of the ground truth would be efficient but hardly useful for
generation purposes, when at test time the model needs to generate from scratch.
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Recently, Bakhtin et al. (2019) carefully studied the problem of training a discriminator to dis-
tinguish human written text from language model generations. They experimented with different
language model and discriminator architectures, training/test time corpora and concluded that the
discriminator can generalize rather well to weaker language models when the training/test corpora
match. Bakhtin et al. (2019) found that the learned discriminator is not robust to random perturba-
tions, and argued that the discriminator operates in the “residual” space of the language model.

Concurrently, Grover et al. (2019) proposed a general approach to “de-bias” a generator, by simply
training a discriminator and using its output for importance sampling.

In this work, we build upon these two works. First, we formalize the residual interpretation
by Bakhtin et al. (2019) and propose a generative model of the form:

Pθ(x) ∝ PLM (x) exp(−Eθ(x)) (1)

where PLM (x) is a locally normalized language model which is fixed during training, and Eθ is the
energy function parameterized by θ. The resulting model Pθ(x) is globally normalized due to the
energy term. This formulation has multi-fold benefits. First, by incorporating a locally normalized
language model, we can leverage recent advancements in locally normalized language modeling.
Second, the language model provides a natural proposal distribution for training (Bakhtin et al.,
2019) as we shall see in §3. Third, training can be made efficient by using the conditional noise
contrastive estimation objective (Gutmann & Hyvärinen, 2010). Lastly, this formulation also enables
efficient evaluation and generation via importance sampling (Horvitz & Thompson, 1952; Grover
et al., 2019).

In §4 we show that our joint model decreases perplexity on two large datasets, when compared to
various auto-regressive language model baselines. Finally, the EBM generations are significantly
preferred by humans according to our qualitative evaluation. To the best of our knowledge, this
is the first time that an EBM has provably demonstrated improved generation ability against very
strong auto-regressive baselines.

2 RELATED WORK

Energy-based models have a long history in machine learning (Hopfield, 1982; Hinton, 2002; LeCun
et al., 2006; Ranzato et al., 2007). The key challenge of training is mining for good negatives.
This can be accomplished explicitly by fantasizing inputs where the energy should be increased
or implicitly via global constraints such as sparsity (Ranzato et al., 2007). Methods attempting at
maximizing the likelihood of the data require to sample from the distribution induced by the model.
Unfortunately, gradient-based MCMC approaches like Hybrid Monte Carlo (Teh et al., 2003) and
Langevyn dynamics (Ranzato et al., 2007; Du & Mordatch, 2019) are not applicable when the input
is discrete like in text applications. Other approaches like Gibbs sampling (Hinton, 2002) were
applied to binary inputs but do not scale well to large dictionaries once the energy function is a large
bidirectional transformer model like the one used in this work. Several variants of auto-encoders
have also been investigated for representing and generating text (Bowman et al., 2016; Zhao et al.,
2018), but they have not shown significant improvements in terms of perplexity and they have so far
been applied to relatively small datasets only.

Our approach appears similar to discriminative reranking approaches used in the parsing and ma-
chine translation community (Shen et al., 2004). However, our approach provides a generative
model, and parameters/hyper-parameters are directly tuned to close the gap between the model dis-
tribution and the data distribution, rather than relying on surrogate ranking losses. This approach is
also related to other sequence level training objectives (Edunov et al., 2018), with the major differ-
ence that in those works training aims at improving the baseline model, but generation at test time
is still greedy.

Generative Adversarial Networks (Goodfellow et al., 2014) also relate to EBMs, except that in
EBMs the generator is implicit and negatives samples are produced by the discriminator itself. In
our work, the pretrained locally normalized language model can be seen as as fixed generator, like in
Bakhtin et al. (2019). Azadi et al. (2018) also share our same goal but their generator is not locally
normalized and they propose to improve the sampling from the generator by using the discriminator
for rejection sampling. Most similar to our work, Grover et al. (2019) propose to use the discrim-
inator to de-bias the pretrained generator using importance sampling. We adapt this work to the
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application of text generation. In particular, we adopt the conditional noise contrastive estimation
(NCE) objective (Ma & Collins, 2018; Gutmann & Hyvärinen, 2010) to our residual model energy
function and then sample from the joint model using importance sampling. While Ma & Collins
(2018) used conditional NCE to predict the next word in a sequence, we apply it to produce a whole
sequence at once with the pretrained auto-regressive language model as the noise distribution.

3 RESIDUAL ENERGY-BASED MODELS

We study the problem of conditional generation of discrete sequences. Given a prefix x1, · · · , xp
with xj ∈ V where V is the vocabulary, we want to model the probabilities of generating a sequence
of total length T > p1. The generative model is:

Pθ(xp+1, · · · , xT |x1, · · · , xp) =
PLM (xp+1, · · · , xT |x1, · · · , xp) exp(−Eθ(x1, · · · , xT ))

Zθ(x1, · · · , xp)
(2)

where Zθ(x1, · · · , xp) is a normalizing factor known as partition function. Computing the partition
function is intractable in our case since it involves a sum over |V |T−p terms which grow expo-
nentially with the sequence length: in our experiments the size of the vocabulary is 50,096 and the
length of the generation is 40 tokens. We call Pθ the joint model, andEθ the residual energy function
since PLM is fixed throughout training. The goal of training is to learn the parameters of the energy
function such that the joint model distribution gets close to the data distribution. For the sake of
reducing clutter in the notation, we will drop the conditioning variables in the following discussion.

3.1 TRAINING

When the partition function is intractable, Maximum Likelihood Estimation (MLE) requires samples
from the model distribution, which is usually approximated with Monte Carlo sampling or mean
field inference (Hinton, 2012; LeCun et al., 2006) for globally normalized models. Unfortunately,
both approaches are too expensive for text applications when using large bidirectional transformer
models. For instance, if we were to employ Gibbs sampling exactly, we would need to perform
at every position as many forward passes as words in the dictionary to compute each marginal
distribution. On large datasets where training locally normalized models on multiple machines
already takes days, having such additional overhead means that the model would learn from much
less data for the same amount of time, and this is seldom a beneficial strategy for learning models
that generalize well. Therefore, we do not use either MCMC nor mean field methods, as the latter
would introduce additional variational parameters or an inference network which anyway yields an
approximation to MLE learning.

Instead, we train our residual energy function using Noise Contrastive Estimation (NCE) (Gutmann
& Hyvärinen, 2010), and more specifically its conditional version (Ma & Collins, 2018). NCE
requires two distributions: The model distribution and a noise distribution. In our case, the model
distribution is the joint model of Eq. 2, Pθ, while the noise distribution is the pretrained language
model, PLM . NCE then trains a binary classifier on the difference of log-probability scores of these
two models. Since our joint model is the product of the energy function (whose parameters we want
to learn) with PLM , the difference reduces to: logPθ − logPLM = −Eθ. Therefore, under these
modeling assumptions of residual learning and noise model, the objective function becomes:

maxEx+∼Pdata
log

1

1 + exp(Eθ(x+))
+ Ex−∼PLM

log
1

1 + exp(−Eθ(x−))
(3)

where x+ is a positive sequence taken from the human generated training set, and x− is a negative
sequence drawn from PLM (for a given ground truth prefix). In other words, training the energy
function reduces to training a binary classifier to discriminate between real text and text generated
by an auto-regressive language model. The aim of training is to assign as negative energy as pos-
sible to real data, and as positive energy as possible to machine generated data. Interestingly, the
role of positive and negative samples is totally symmetric in this loss function, §5 will discuss the
consequences of this.

1We assume a fixed T for simplicity of analysis and implementation, but our method generalizes to varying
length generation with an end-of-sequence symbol.
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With the theoretical guarantee of NCE, we can show that the optimum of the above objective is
reached at data distribution with infinite amount of data and model with enough capacity, which is
also proved in Ma & Collins (2018)2.

Theorem 1. If PLM has the same support as Pdata, then the objective function in Eq. 3 reaches its
maximum at logPLM (x)− Eθ(x) = logPdata.

Proof. This theorem directly follows from the proof in Gutmann & Hyvärinen (2010). Note that
at optimum, PLM (x) exp(−Eθ(x)) is self-normalizing: instead of P (x) ∝ PLM (x) exp(−Eθ(x)),
we have Pθ(x) = PLM (x) exp(−Eθ(x)). However, we still need to estimate the partition function
throughout the rest of this paper, since we cannot guarantee that this optimum can be reached.

3.2 EVALUATION

A commonly used protocol for evaluating generative sequence models, especially language models,
is perplexity (PPL), which is equal to 2−

1
M

∑T
i=p+1 log2 P (xi|xi−1,··· ,x1). PPL can be interpreted as

the average number of tokens the model is uncertain of at every time step. Since the log-likelihood
required by PPL relies on estimating the partition function Zθ =

∑
x PLM (x) exp(−Eθ(x)) =

Ex∼PLM
exp(−Eθ(x)), we derive two estimators for the log-partition function logZθ based on the

work of Nowozin (2018).

Theorem 2. Denote Tn as the empirical estimate of logEx∼PLM
exp(−E(x)) with n samples xi ∼

PLM (i = 1, · · · , n), and let Tn = log 1
n

∑n
i=1 exp(−E(xi)), then ∀ε > 0, ∃N > 0 such that

∀n > N we have

Zθ − ε < E[Tn] < Zθ < E[(2n− 1)Tn − 2(n− 1)Tn−1] < Zθ + ε (4)

The proof is given in Appendix A.2.

We can use the above two estimators to estimate the lower and upper bounds of the partition function,
but we want to emphasize that they are true only asymptotically (when n is sufficiently large). We
also want to note that to get lower variance estimates we use leave-one-out strategy to estimate Tn−1.
See Nowozin (2018) for implementation details and methods to improve numeric stability.

Similarly to locally normalized models, we can also factorize the probabilities of an entire sequence
step by step, as P (x) =

∏T
t=1 P (xt|x<t), and evaluate the PPL for each generation step. By

marginalizing over the future, we can derive the following per step probabilities:

P (xt|x<t) = PLM (xt|x<t)
Ex′t+1,··· ,x′T∼PLM (·|x≤t)[exp(−Eθ(x≤t, x′t+1, · · · , x′T ))]
Ex′t,··· ,x′T∼PLM (·|x≤t−1)[exp(−Eθ(x≤t−1, x′t, · · · , x′T ))]

. (5)

The step-wise probabilities in Eq. 5 are an instance of importance sampling (Horvitz & Thompson,
1952). The basic PLM distribution is adjusted by the probability assigned to token xt by the energy
function (numerator is clamped at xt while denominator sums over all the possible values of the
token at position t), with the additional marginalization over all subsequent tokens up to the horizon
T . Since the summation involves exponentially many terms, unless t = T , this is approximated by
samples drawn by PLM .

For t = T , we can calculate the log probability by exhaustive enumeration. This gives us an idea of
the true performance of our model at the last step, and it also provides a sanity-check of the tightness
of our estimators.

3.3 GENERATION

Generating from the joint model is a non-trivial task. A naive way is to generate from the joint model
auto-regressively, by marginalizing the future as in Eq. 5, which we term Top-k auto-regressive
sampling. However, doing so is expensive and impractical, and we only use this method for a
qualitative analysis of the joint model in Appendix A.1.

2From Ma & Collins (2018) Assumption 2, for conditional NCE the model needs to be flexible enough such
that the self-normalizing property can be satisfied conditioned on any prefix.
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Algorithm 1: Top-k Joint Sampling
Input: number of samples n drawn from PLM , value of k in top-k
// Get a set of samples from PLM
sample n samples {x1, · · · , xn} from PLM with top-k sampling
calculate energies si = Eθ(x

i) for each xi ∈ {x1, · · · , xn}
// Resample from the set of LM samples

sample x = xi with probability exp(−si)∑n
j=1 exp(−sj)

return x

In order to generate efficiently, we use self-normalizing importance sampling (Owen, 2013; Grover
et al., 2019). Under the assumptions that the model from which we wish to draw samples is the
joint model, which is the product of the auto-regressive model and the energy function, and that
the proposal distribution is the auto-regressive model itself, sampling proceeds simply by: a) sam-
pling from the auto-regressive language model, followed by b) resampling according to the energy
function. The algorithm is shown in Algorithm 1, where we introduce an optional top-k constraint
on the pretrained language model to improve the quality of samples in the set3. Without the top-k
constraint, as the number of samples goes to infinity, we would recover exact samples from the joint
model distribution.

4 EXPERIMENTS

In this section, we describe the experimental set up and the results we obtained by using the residual
EBM for text generation, both in terms of perplexity and generation quality.

4.1 EXPERIMENTAL SETUP

Datasets We consider two datasets: the Toronto Book Corpus (Zhu et al., 2015; Kiros et al., 2015)
and CC-News (Bakhtin et al., 2019). The former dataset consists of fiction books in 16 different
genres, totaling about half a billion words. The latter is a de-duplicated subset of the English portion
of the CommonCrawl news dataset (Nagel, 2016), which totals around 16 Billion words. The book
corpus is more challenging because the range of style and topics is more diverse than CC-News.
Also, the book corpus is 30 times smaller than CC-News and may pose generalization challenges
because of its smaller size.

In all our experiments we use a prefix of size 120 tokens and we generate the following 40 tokens;
with the notation of Eq. 2, p = 120 and T = 160. For training the joint models, for efficiency we
generated 16/128 samples per prefix for CC-News/Book Corpus offline, and sample uniformly from
those samples at training time.

Baselines We consider as base language model (BASE LM) used to generate negatives for the
residual EBM, a transformer language model with 12 layers, h = 16, dmodel = 1024, dff = 4096
(we refer to Vaswani et al. (2017) for notations). This is also our first baseline model.

The joint model has as many parameters as the sum of the number of parameters in the base LM
and the number of parameters in the energy network. To make a fair comparison, we consider two
additional baselines that have the same number of parameters as our joint model.

The first baseline is a Residual Auto-regressive Language Model baseline (RALM):

logPRALM (xt|x<t) = logPLM (xt|x<t) + logPφ(xt|x<t) + const (6)

where Pφ takes the form of another auto-regressive language model. The parameters of Pφ are
trained by exact maximum likelihood training of PRALM .

3Adapting to other types of local constraints such as nucleus sampling (Holtzman et al., 2019) is straight-
forward.

5



Under review as a conference paper at ICLR 2020

Model (#parameters) CC-News Toronto Book Corpus
Val Test Val Test

BASE LM (203M) 18.41 17.57 16.16 18.29
RALM (LM+203M) 17.01 16.17 15.71 17.85
BALM (408M) 16.50 15.74 15.00 16.99
JOINT UNIT (LM+203M) 16.42-16.44 15.57-15.58 15.12-15.13 16.98-17.00
JOINT BIT-BASE (LM+125M) 15.32-15.35 14.61-14.64 - -
JOINT BIT-BASE* (LM+125M) 15.11-15.17 14.37-14.42 14.14-14.16 15.72-15.74
JOINT BIT-LARGE* (LM+355M) 14.59-14.61 13.97-14.00 13.80-13.83 15.33-15.36

BASE LM-24L (203M) 15.71 14.89 - -
BALM-24L (408M) 14.58 13.92 - -
JOINT BIT-BASE (LM-24L+125M) 13.68-13.69 13.01-13.03 - -

Table 1: Validation and test perplexity on CC-News and Toronto Book Corpus. * denotes models initialized
with RoBERTa trained on additional data. The joint model perplexity ranges are estimated using 100,000
samples, see Eq. 4. The number of parameters of each model is shown in parantheses.

The second baseline is an auto-regressive language model of the same size of our joint model (sum
of the base LM and energy function parameters), we dub this model Big Auto-regressive Language
Model (BALM). BALM has 12 layers, h = 16, dmodel = 1568, dff = 6272, and is trained by
standard token level cross-entropy loss.

Residual EBM Architecture We consider two architectures for our residual EBM, both of them
are based on transformers (Vaswani et al., 2017; Devlin et al., 2018). The first version uses causal
self-attention and is derived from the base LM, a unidirectional transformer (UNIT). It is of the
same architecture as BASE LM, except that in the final layer we project the mean-pooled hidden
states to a scalar energy value. We initialize its parameters with a language model trained on the
same dataset.

The second version is instead bi-directional (BIT), and the energy function is computed by project-
ing the mean-pooled top hidden states down to a single scalar value. We consider two variants, a
BIT-BASE following the architecture of RoBERTa-Base, and a BIT-LARGE∗ following RoBERTa-
Large (Liu et al., 2019). We initialize the parameters with a trained BERT, and we use ∗ to mark
usage of external data (Liu et al., 2019), otherwise it means that BERT was trained on our train-
ing set. Notice how our model can be interpreted as a natural way to fine tune large bidirectional
pretrained models for the text generation task.

While we expect BIT to yield better results because it can fully leverage context also for intermediate
tokens, we also consider UNIT to compare to the RALM baseline, which uses the same architecture
and only differs in the way parameters are trained and for the presence of local normalization.

We train our models on 8 DGX nodes, each with 8 Nvidia V100s. We use the Adam optimizer, with
cosine learning rate decay and learning rate warmup. To stabilize training we used gradient norm
clipping. Detailed hyper-parameter settings can be found in Appendix A.3.

For generation, we use top-k sampling with k = 10 for all human evaluations. We take 10,000
samples from BASE LM for our joint sampling.

4.2 RESULTS

Automatic Evaluation Our main result is reported in Table 1 where we compare models in terms
of their perplexity. We can see that on both datasets, residual EBMs with causal attention JOINT
UNITRANSF outperforms the baseline RALM with approximately the same number of parame-
ters. The non-residual baseline BALM performs similarly to JOINT UNITRANSF, which might
be due to the limitation that PLM is not trained jointly with the residual model in both JOINT
UNITRANSF and RALM. However, by using our EBM approach, we can remove the causal at-
tention mask and use bi-directional models, which achieves better performance than baselines and
JOINT UNITRANSF: without external data, JOINT BITRANSF-BASE reaches a higher performance
than JOINT UNITRANSF with fewer parameters. By initializing from the state-of-the-art pretrained
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Figure 1: Perplexity gain of JOINT BIT-BASE and JOINT BIT-LARGE∗ at each position relative to BASE LM
on the test set of CC-News. At each position the lower and upper bounds (see Eq. 4) are estimated using 20,000
samples. The shorter the horizon (moving to the right), the tighter the estimation is but also the more limited
the gains compared to base LM as un-normalized models are most useful on longer generations.

Model1 (baseline) Model2 (compared model) Rate p-value

BASE LM

<

JOINT UNIT 52.85% 0.16
BASE LM JOINT BIT-BASE 56.25% 0.015
BASE LM JOINT BIT-LARGE* 58.93% 0.00084
BASE LM BALM 46.77% 0.88
BALM JOINT UNIT 50.00% 0.52
BALM JOINT BIT-BASE 57.89% 0.0027
BALM JOINT BIT-LARGE* 59.89% 0.00020

BASE LM ≤ BALM 54.85% 0.050

Table 2: Human evaluation results on a subset of 333 sentences on the CC-News test set. Attention check is
used to drop some votes, so there might exist ties. p-value is based on single-sided binomial test.

bi-directional transformers RoBERTa-Base and RoBERTa-Large, JOINT BITRANSF-BASE* and
JOINT BITRANSF-LARGE* reach even better performance than JOINT BITRANSF-BASE.

In the lower part of the table, we show that if we make the big language model baseline BALM
deeper (BALM-24L) (24 layers instead of 12, for the same number of parameters) we attain lower
perplexity. However, training the joint model JOINT BITRANSF-BASE on the residual of a deeper
language model BASE LM-24L yields even lower perplexity, despite having fewer parameters.

One caveat of our evaluation protocol is that the perplexity bounds are only estimates, which might
not reflect the true value, particularly since the number of possible sequences grows exponentially
with the number of words that are generated. We therefore break down perplexity per position in the
generated sequences as in Eq. 5, and compare the estimated PPLs to the true enumerated PPLs at the
last position, as shown in Figure 1. We find that at the final generation step, the estimated bounds
agree remarkably well with the exact values, proving that our method at least gets a reasonable PPL
estimate at the last generation step.

Human Evaluation Better perplexity results do not necessarily imply better generations. Besides,
since generation from the residual EBM requires approximations as in Algorithm 1, the limited sam-
ple size might induce approximation errors compared to truly sampling from the joint distribution.
Therefore, we conducted human evaluations to compare generations from the residual EBM model
to generations from the baseline language models.

For each prefix, we present one completion from each model, and ask humans to select the one that is
a better continuation. More details about human evaluation can be found in the Appendix A.4. The
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Figure 2: Left: PPL estimation for joint BIT-BASE on CC-News validation set as we vary the number of
samples. Right: Percentage of Unique n-grams found in real data, samples from the joint model BIT-BASE and
samples from the base language model. The joint sampling is done with 10,000 samples.

preference rates reported in Table 2 confirm that indeed the generation quality of JOINT BIT-BASE
and JOINT BIT-LARGE∗ is better than both language model baselines. Depending on the model
variant, our joint model is preferred between 56% and almost 60% of the times; interestingly, the
preference rate does not change much as we compare against base LM as opposed to BALM. In
fact, humans do not seem to have a preference for BALM over base LM, despite the former scores
two perplexity points lower. Similarly, JOINT UNIT is not preferred over BASE LM despite its
lower perplexity score. We surmise that unidirectional scoring functions and auto-regressive models
exhibit generation artifacts which are easily detected by humans, and these may overshadow the
improvements brought by perplexity gains.

4.3 ANALYSES

In this section, we analyze some of the results we obtained. First, we check whether we used a
sufficient number of samples in our perplexity estimates. Second, we assess whether the joint model
produces less repetitions compared to the base language model, and finally we check how well some
statistics of the model and data distributions match.

Number of samples. In Figure 2, we vary the number of samples we take in order to estimate PPL
upper and lower bounds. Beyond 20,000 samples the upper estimate becomes very stable, although
we have to emphasize that these estimates might be biased even though the gap between lower and
upper bound closes as we take more samples.

Repetitions. A typical artifact of auto-regressive language models is their tendency to repeat
phrases. It is then interesting to check whether the joint model is able to alleviate this artifact.
Fig. 2 shows that indeed the joint model has a slightly higher percentage of unique n-grams com-
pared to the baseline language model with n = 2, 3, 4, although still not as high as the original
human generated text.

A necessary condition for the model to match the data distribution. If the joint model pθ
matches the data distribution pd, then statistics computed on a large population of samples from the
two distributions should also match. In particular, Fig. 3 show the density plots of log-likelihood
scores of the baseline language model (left) and joint model (right) when fed with their own samples
versus samples from the test set. We observe that the histogram of samples from the joint model
matches the real data distribution more closely: The difference of means in the LM BASE case is
21.64 whereas the difference is 6.20 in the joint approach.

5 LIMITATIONS

In the previous sections we highlighted the strengths of residual EBMs, namely their simplicity,
efficiency both at training and test time, and their improved perplexity scores against strong auto-
regressive language model baselines. In this section, we comment on their limitations to caution the
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Figure 3: Density plot of log-probability scores using the base language model (left) or the joint model (right).
The red curve corresponds to real samples, the black curve to samples from BASE LM and the green curve to
samples from BIT-BASE. The joint model provides a much better fit than the base language model.

reader about when these methods are more likely to succeed and to inform other researchers about
what future avenues of research may naturally derive from this work.

In order to make training efficient and side step costly negative mining using the energy function
itself, the current approach uses negatives generated from a pretrained auto-regressive language
model. Therefore, our model works as long as the base language model from which we draw samples
is strong enough, and as long as the ground truth and other plausible sequences are reachable by the
baseline language model.

If the base language model has poor quality, then generation from our joint model is going to be
poor as well, as the joint model merely resamples generations from the original language model.
Moreover, training is going to be trivial if the base language model is poor, because the residual
energy function merely needs to detect trivial generation artifacts from the base language model. In
fact, observe that the role of positive and negative samples is symmetric in the loss of Eq. 3. This
means that the energy function can choose to minimize the loss by either modeling the true data or
the negative samples; since the latter have much simpler structure, it is going to model the negative
samples. Therefore, importance sampling amounts to mostly down-weighing the worst samples
from the base language model. The consequence of this is that search with a poor base language
model is going to be catastrophically inefficient, as we would need to sample an impractically large
number of negatives in order to find samples that are reasonably close to the true data manifold.

To summarize, this work makes a rather strong implicit assumption on the quality of the base lan-
guage model, and it is expected to work well only when this is rather strong. In our application,
this assumption is met quite well in practice as large auto-regressive language models trained on
large datasets have improved significantly in recent years (Radford et al., 2019). In general however,
residual learning always carries liability to its base model.

6 CONCLUSIONS AND FUTURE WORK

We introduced an EBM trained on the residual of a pretrained autoregressive language model. The
resulting joint model scores sequences holistically, thanks to the energy function. Training is very
efficient and consists of a binary classification task between positives from the training set and
pregenerated negatives from the fixed language model. Generation is also very efficient as it amounts
to resampling from the large set of negatives produced by the base language model. Our estimates
show that the resulting model has lower perplexity than the base language model. Finally, this
approach may be interpreted as a natural way to finetune a large bidirectional transformer like BERT
for text generation applications.

In the future, we plan to investigate other ways to generate negatives that may strike a better trade-
off between the amount of compute each negative requires and their closeness to the joint model
distribution. It would also be interesting to explore other loss functions and the generation of longer
pieces of text by using this model auto-regressively at the chunk level, as opposed to the token level.
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A APPENDIX

A.1 TOP-K AUTO-REGRESSIVE SAMPLING

In this subsection, we factorize the joint model BIT-BASE auto-regressively, and compare its dif-
ferences with BASE LM. Since even estimating the per step probabilities according to Eq. 5 is too
expensive, we further approximate it by only considering the top 128 words predicted by BASE LM,
where we sample 10,000 completions for each of them to estimate P (xt|x<t). Then we take the top
10 entries and re-normalize, and compare it to the top 10 probabilities of BASE LM.

Our initial explorations suggested that the joint model tends to generate fewer repetitions. Therefore
we picked a few LM samples where there are repetitions at xt, and use the same context x<t to
estimate P (xt|x<t) for the joint model. Some examples of P (xt|x<t) of BASE LM and BIT-BASE
are presented in Table 3. Indeed BASE LM usually assigns lower probabilities to repetitions even
though the top k words remain the same, which is not surprising given that the existence of repetition
is a strong indicator of coming from the LM, which would lead to a higher energy value hence lower
joint probability.

Context x<t Model Rank xt P (xt|x<t)

... is aimed at setting common
benchmarks for orderly migration
practices, thereby reducing irregular
flows. The Global Compact contains ten
guiding principles, including that migrants
cannot be settled by countries with better
integration policies and a fair and
sustainable development. ”For the first
time in our history, a legally binding and

BASE LM

0 binding 0.39
1 legally 0.33
2 internationally 0.06
3 comprehensive 0.05
4 transparent 0.04

BIT-BASE

0 binding 0.18
1 legally 0.17
2 internationally 0.12
3 comprehensive 0.09
4 transparent 0.08

... companies that land their first-choice
candidates 90-100% of the time, 24% of
them have ”thoroughly defined” their high
performer attitudes. By contrast, only 1%
of companies that struggle to land their
first-choice candidates ”thoroughly
defined” their high performer attitudes. So
it seems pretty clear that companies that
land their top-choice candidates are not
always as willing and

BASE LM

0 able 0.66
1 willing 0.09
2 eager 0.07
3 ready 0.05
4 well 0.04

BIT-BASE

0 able 0.75
1 willing 0.05
2 eager 0.05
3 ready 0.04
4 well 0.03

... it reveals a key skill needed to lead the
Fed. ”You need to know what you don’t
know. And you need to be willing to listen
when you don’t know something,” said
Karen Dynan, who as an assistant
Treasury Secretary in Barack Obama’s
second administration would regularly
meet Fed governors. ¡EOS¿ New Delhi
Dec 5 The following are mergers under
review by India’s financial services and

BASE LM

0 banking 0.64
1 financial 0.10
2 insurance 0.09
3 technology 0.05
4 IT 0.04

BIT-BASE

0 banking 0.92
1 financial 0.06
2 insurance 0.01
3 technology 0.00
4 IT 0.00

Table 3: Comparison of P (xt|x<t) between BASE LM and BIT-BASE on a few examples. Repetitions are
marked with red. Only the top 5 probabilities are shown.

A.2 PROOF OF THEOREM 2

Theorem 2. Denote Tn as the empirical estimate of logEx∼PLM
exp(−E(x)) with n samples xi ∼

PLM (i = 1, · · · , n), and let Tn = log 1
n

∑n
i=1 exp(−E(xi)), then ∀ε > 0, ∃N > 0 such that
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∀n > N we have

Zθ − ε < E[Tn] < Zθ < E[(2n− 1)Tn − 2(n− 1)Tn−1] < Zθ + ε (7)

Proof. From Nowozin (2018) Eq. 35, we can write E[Tn] as

E[Tn] = Zθ −
µ2

2µ2

1

n
+

1

3µ3

µ3

n2
− 1

4µ4
(
3

n2
µ2
2 +

1

n3
(µ4 − 3µ2

2))

+
1

5µ5
(
10

n3
µ3µ2 +

1

n4
(µ5 − 10µ3µ2)) + o(n−3) (8)

Where µ = E[Tn], µk = E[(Tn − µ)k]. Equivalently,

E[Tn] = Zθ −
µ2

2µ2

1

n
+ o(n−1) (9)

Therefore, limn→∞ E[Tn] = Zθ. So ∀ε > 0, ∃N1 > 0 such that when n > N1, E[Tn] > Zθ−ε. On
the other hand, limn→∞ n(Zθ − E[Tn]) = limn→∞

µ2

2µ2 + o(1) = µ2

2µ2 > 0, so ∃N2 > 0 such that
when n > N2 we have Zθ > E[Tn]. Up to this point, we have proved that Zθ − ε < E[Tn] < Zθ.

For the other half part of the proof, using Eq. 8 we have

E[Tn] = Zθ −
µ2

2µ2

1

n
+

c

n2
+ o(n−2) (10)

where c is a constant. Therefore, E[(2n − 1)Tn − 2(n − 1)Tn−1] = (2n − 1)E[Tn] − 2(n −
1)E[Tn−1] = Zθ +

µ2

2µ2
1
n + o(n−1). Therefore limn→∞ E[(2n − 1)Tn − 2(n − 1)Tn−1] = Zθ,

hence ∀ε > 0, ∃N3 > 0 such that ∀n > N3 E[(2n− 1)Tn− 2(n− 1)Tn−1] < Zθ+ ε. Furthermore,
limn→∞ n(E[(2n − 1)Tn − 2(n − 1)Tn−1] − Zθ) = limn→∞

µ2

2µ2 + o(1) > 0, so ∃N4 > 0 such
that when n > N4 we have E[(2n− 1)Tn − 2(n− 1)Tn−1 > Zθ.

Putting the above together, ∀ε > 0, let N = max{N1, N2, N3, N4}, then ∀n > N ,

Zθ − ε < E[Tn] < Zθ < E[(2n− 1)Tn − 2(n− 1)Tn−1] < Zθ + ε

A.3 OPTIMIZATION SETTINGS

Model fp16 batch size warmup steps max steps max lr max grad norm

BASE LM - 32 2,000 180,000 0.0001 10
RALM - 64 2,000 180,000 0.0001 10
BALM - 32 2,000 180,000 0.0001 10
JOINT UNIT + 64 2,000 180,000 0.0003 10
JOINT BIT-BASE - 60 2,000 90,000 0.00005 0.25
JOINT BIT-BASE* - 60 2,000 90,000 0.00005 0.25
JOINT BIT-LARGE* + 64 2,000 90,000 0.0003 10

Table 4: Optimization settings. We use the same setting for CC-News and Toronto Book Corpus.

The optimization settings are presented in Table 4.

A.4 HUMAN EVALUATION

A screenshot of the human evaluation experiments can be found in Fig 4. Every page asks for 4
comparisons, one of which we know what the ground truth answer is. We subsampled 333 sen-
tences from the test set of CC-News, and asked 3 Amazon Mechanical turkers to vote. We consider
one continuation better if it gets more votes. To check the quality of the received ratings, we per-
formed a qualification task beforehand, where one of the continuations is real text, and we kept the
top half performing turkers for further evaluation (corresponding to higher than 66.67% accuracy
for discriminating real from LM samples – for a total of 26 qualified turkers). Then in the actual
experiment, we use one out of every four comparisons as an attention check and drop responses if
the turker did not pass the check.
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Figure 4: Screenshot of the human evaluation.
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