Under review as a conference paper at ICLR 2020

NEURAL NETWORK BRANCHING FOR NEURAL
NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal verification of neural networks is essential for their deployment in safety-
critical areas. Many available formal verification methods have been shown to be
instances of a unified Branch and Bound (BaB) formulation. We propose a novel
framework for designing an effective branching strategy for BaB. Specifically, we
learn a graph neural network (GNN) to imitate the strong branching heuristic be-
haviour. Our framework differs from previous methods for learning to branch in
two main aspects. Firstly, our framework directly treats the neural network we
want to verify as a graph input for the GNN. Secondly, we develop an intuitive
forward and backward embedding update schedule. Empirically, our framework
achieves roughly 50% reduction in both the number of branches and the time re-
quired for verification on various convolutional networks when compared to the
best available hand-designed branching strategy. In addition, we show that our
GNN model enjoys both horizontal and vertical transferability. Horizontally, the
model trained on easy properties performs well on properties of increased dif-
ficulty levels. Vertically, the model trained on small neural networks achieves
similar performance on large neural networks.

1 INTRODUCTION

Despite their outstanding performances on various tasks, neural networks are found to be vulner-
able to adversarial examples (Goodfellow et al., 2015} [Szegedy et al.l 2013). The brittleness of
neural networks can have costly consequences in areas such as autonomous driving, finance and
healthcare. When one requires robustness to adversarial examples, traditional model evaluation ap-
proaches, which test the trained model on a hold-out set, do not suffice. Instead, formal verification
of properties such as adversarial robustness becomes necessary. For instance, to ensure self-driving
cars make consistent correct decisions even when the input image is slightly perturbed, the required
property to verify is that the underlying neural network outputs the same correct prediction for all
points within a norm ball whose radius is determined by the maximum perturbation allowed.

Several methods have been proposed for verifying properties on neural networks (NN). Bunel et al.
(2018) showed that many of the available methods can be viewed as instances of a unified Branch
and Bound (BaB) framework. A BaB algorithm consists of two key components: branching strate-
gies and bounding methods. Branching strategies decide how the search space is recursively split
into smaller space. Bounding methods compute bounds of each split space to tighten the bounds
of the final objective function over the whole search space. In this work, we focus on improving
the branching strategies. By directly working with a general framework, our identified algorith-
mic improvements can be combined with any bounding method, leading to potential performance
improvement for BaB based verification algorithms.

Branching strategy has a significant impact on the overall problem-solving process, as it directly
decides the total number of steps, consequently the total time, required to solve the problem at
hand. The quality of a branching strategy is even more important when NN verification problems
are considered, which generally have a very large search space. Each input dimension or each
activation unit can be a potential branching option and neural networks of interest often have high
dimensional input and thousands of hidden activation units. With such a large search space, an
effective branching strategy could mean a large reduction of the total number of branches required,
consequently time required to solve a problem. Developing an effective strategy is thus of significant
importance to the success of BaB based NN verification.

Under review as a conference paper at ICLR 2020

So far, to the best of our knowledge, branching rules adopted by BaB based verification methods
are either random selection (Katz et al.l 2017} |[Ehlers, 2017) or hand-designed heuristics (Wang
et al., | 2018b; Bunel et al., 2018; Royo et al., |2019; Bunel et al., 2019). Random selection is gen-
erally inefficient as the distribution of the best branching decision is rarely uniform. In practice,
this strategy often results in exhaustive search to make a verification decision. On the other hand,
hand designed heuristics often involve a trade-off between effectiveness and computational cost.
For instance, strong branching is generally one of the best performing heuristics for BaB methods
in terms of the number of branches, but it is computationally prohibitive as each branching decision
requires an expensive exhaustive search over all possible options. The heuristics that are currently
used in practice are either inspired by the corresponding dual problem when verification is formu-
lated as an optimization problem (Bunel et al.,2018;|Royo et al., 2019)) or incorporating the gradient
information of the neural network (Wang et al., | 2018b)). These heuristics normally have better com-
putational efficiency. However, given the complex nature of the search space, it is unlikely that
any hand-designed heuristics is able to fully exploit the structure of the problem and the data dis-
tribution encountered in practice. As mentioned earlier, for large size NN verification problems, a
slight reduction of branching quality strategy could lead to exponential increase in the total number
of branches required to solve the problem. A computationally cheap but high quality branching
strategy is thus much needed.

In order to exploit the inherent structure of the problem and the data, we propose a novel machine
learning framework for designing a branching strategy. Our framework is both computational effi-
cient and effective, giving branching decisions that are of a similar quality to that of strong branch-
ing. Specifically, we make following contributions:

e We use a graph neural network (GNN) to exploit the structure of the neural network we want
to verify. The embedding vectors of the GNN are updated by a novel schedule, which is both
computationally cheap and memory efficient. In detail, we mimic the forward and backward
passes of the neural network to update the embedding vectors. In addition, the proposed GNN
allows a customised schedule to update embedding vectors via shared parameters. That means,
once training is done, the trained GNN model is applicable to various verification properties on
different neural network structures.

o We train GNNs via supervised learning. We provide ways to generate training data cheaply but
inclusive enough to represent branching problems at different stages of a BaB process for various
verification properties. With the ability to exploit the neural network structure and a comprehen-
sive training data set, our GNN is easy to train and converges fast.

e Our learned GNN also enjoys transferability both horizontally and vertically. Horizontally, al-
though trained with easy properties, the learned GNN gives similar performance on medium and
difficult level properties. More importantly, vertically, given that all other parts of BaB algorithms
remain the same, the GNN trained on small networks performs well on large networks. Since the
network size determines the total cost for generating training data and is positively correlated with
the difficulty of learning, this vertical transferability allows our framework to be readily applicable
to large scale problems.

e We further enhance our framework via online learning. For a learned branching strategy, it is
expected that the strategy can fail to output satisfactory branching decisions from time to time. To
deal with this issue, we provide an online scheme for fine-tuning the GNN along the BaB process
in order to best accommodate the verification property at hand.

e Finally, we supply a dataset on convolutional NN verification problems, covering problems at
different difficulty levels over neural networks of different sizes. We hope that by providing a
large problem dataset it could allow easy comparisons among existing methods and additionally
encourage the development of better methods.

Since most verification methods available work on ReLU-based deep neural networks, we focus on
neural networks with ReLLU activation units in this paper. However, we point out that our framework
is applicable to any neural network architecture.

2 RELATED WORKS

Learning has already been used in solving combinatorial optimization (Bello et al., [2016} Dai et al.,
2017) and mixed integer linear programs (MILP) (Khalil et al.l 2016} |Alvarez et al.| [2017; [Han-
sknecht et al., [2018; |Gasse et al., [2019). In these areas, instances of the same underlying structure
are solved multiple times with different data value, which opens the door for learning. Among them,

Under review as a conference paper at ICLR 2020

Khalil et al.[(2016), Alvarez et al.|(2017), Hansknecht et al.| (2018)), and|Gasse et al.[(2019) proposed
learned branching strategies for solving mixed integer programs with BaB algorithms. All of these
methods imitate the strong branching strategy. Specifically, [Khalil et al| (2016)) and |Hansknecht
et al.| (2018) learn a ranking function to rank potential branching decisions while |Alvarez et al.
(2017) uses regression to assign a branching score to each potential branching choice. There are two
main issues with these methods. Firstly, they rely heavily on hand-designed features and secondly,
they use generic learning structure which is unable to exploit the neural network architecture.

The most relevant to ours is the recent concurrent work by (Gasse et al.[(2019)). |Gasse et al.| (2019)
managed to reduce feature reliance by exploiting the bipartite structure of MILP through GNN.
Bipartite graph is capable of capturing the architecture information but is memory-consuming, re-
quiring recording matrices that grow linearly with the total number of nodes of the neural network.
This can be a serious issue for large scale NN verification problems. Our proposed framework is
specifically designed for NN verification problems. By exploiting the neural network structure, and
designing a customized schedule for embedding updates, our framework is able to scale elegantly
both in terms of computation and memory.

3 BACKGROUND

Formal verification of neural networks refers to the problem of proving or disproving a property over
a bounded input domain. Properties are functions of neural network outputs. When a property can be
expressed as a Boolean expression over linear forms, we can modify the neural network in a suitable
way so the property can be simplified to checking the sign of the neural network output (Bunel et al.,
2018)). Note that all the properties studied in previous works satisfy this form, thereby allowing us
to use the aforementioned simplification. Mathematically, given the modified neural network f, a
bounded input domain C, formal verification examines the truthfulness of the following statement:

Vx € C, f(x) >0. (1)
If the above statement is true, the property holds. Otherwise, the property does not hold.

3.1 BRANCH AND BOUND

Verification tasks are often treated as a global optimization problem. We want to find the minimum
of f(x) over C in order to compare with the threshold 0. Specifically, we consider an L layer feed-
forward neural network, f : RIZl — R, with ReLU activation units such that for anyxg € C C Rl=l
f(xo) = &1 € R where

i = Wile; + b1 fori=0,...,L—1, (2a)
x; = max(&;,0), fort=1,...,L—1. (2b)

The terms W* and b’ refer to the weights and biases of the i-th layer of the neural network f.
Domain C can be an £, norm ball with radius €. Finding the minimum of f is a challenging task,
as the optimization problem is generally NP hard (Katz et al) [2017). To deal with the inherent
difficulty of the optimization problem itself, BaB (Bunel et al., 2018) is generally adopted. In
detail, BaB based methods divide C into sub-domains (branching), each of which defines a new sub-
problem. They compute a relaxed lower bound of the minimum (bounding) on each sub-problem.
The minimum of lower bounds of all generated sub-domains constitutes a valid global lower bound
of the global minimum over C. As a recursive process, BaB keeps partitioning the sub-domains to
tighten the global lower bound. The process terminates when the computed global lower bound is
above zero (property is true) or when an input with a negative output is found (property is false). A
detailed description of the BaB is provided in the appendices. In what follows, we provide a brief
description of the two components, bounding methods and branching strategies, that is necessary
for the understanding of our novel learning framework.

3.2 BOUNDING

For NN verification problems, bounding consists of finding upper and lower bounds for the final
output, the minimum of f(x) over C. An effective technique to compute a lower bound is to trans-
form the original optimization problem into a linear program (LP) by introducing convex relaxations
over ReLU activation units. As we can see in Eq. @]) ReLU activation units do not define a convex
feasible set, and hence, relaxations are needed. Denote the j-th element of the vector x; as x;[;).
Possible convex relaxations for a hidden node x;[;) that have been introduced so far are shown in

Under review as a conference paper at ICLR 2020

Figure [T We replace ReLU with the shaded green area. The tighter the convex relaxation intro-
duced, the more computational expensive it is to compute a bound but the tighter the bound is going
to be. From Figure El, we note that in order to introduce a convex relaxation, we need intermediate
bounds I;;;] and u,[;. Thus intermediate bounds are required for building the LP for the final out-
put lower bound. Given their purpose and the large number of intermediate bound computations,
rough estimations are mainly used. On the other hand, the final output lower bound is directly used
in making the pruning decision and hence a tighter lower bound is preferred as it avoids further
unnecessary split on the sub-problem.

L[] Zif5) L[]

*wlij %)

1

|

-
-1
|

|

- o ']
L)' -~ | Uil4] Lifg U5
(a) Naive relaxation (b) Linear bounds relaxation (c) Planet relaxation (Ehlers, [2017)

Figure 1: Different convex relaxations introduced. For each plot, the black line shows the output of a ReLU
activation unit for any input value between I;(; and u,[; and the green shaded area shows the convex relax-
ation introduced. Naive relaxation (a) is the loosest relaxation. Linear bounds relaxation (b) is tighter and is
introduced in Weng et al.| (2018)). Finally, Planet relaxation (c) is the tightest linear relaxation among the three
considered (Ehlers, |2017). Among them, (a) and (b) have closed form solutions which allow fast computations
while (c) requires an iterative procedure to obtain an optimal solution.

3.3 BRANCHING

Branching is of equal importance as bounding in the Branch and Bound framework. Especially for
large scale networks f, each branching step has a large number of putative choices. In these cases,
the effectiveness of a branching strategy directly determines the possibility of verifying properties
over these networks within a given time limit. On neural networks, two types of branching decisions
are used: input domain split and hidden activation unit split.

Assume we want to split a parent domain D. Input domain split selects an input dimension and
then makes a cut on the selected dimension while the rest of the dimensions remaining the same as
the parent for the two sub-domains. The common choice is to cut the selected dimension in half
and the dimension to cut is decided by the branching strategy used. Available input domain split
strategies are |Bunel et al.| (2018)) and Royo et al.| (2019). Royo et al.| (2019) is based on sensitivity
test of the LP on D while Bunel et al.|(2018)) uses the formula provided in|Wong & Kolter|(2018) to
estimate final output bounds for sub-domains after splitting on each input dimension and selects the
dimension that results in the highest output lower bound estimates.

In our setting, we refer to a ReLU activation unit x;;;; = max(Z;[;,0) as ambiguous over D
if the upper bound wu;[;; and the lower bound [;(;; for ;;; have different signs. Activation unit
split chooses among ambiguous activation units and then divides the original problem into cases
of different activation phase of the chosen activation unit. If a branching decision is made on
x;[5], we divide the ambiguous case into two determinable cases: {xim = 0,lij) <) < 0} and
{@ig5) = Zig1, 0 < 215 < uyp1}. After the split, the originally introduced convex relaxation is re-
moved, since the above sets are themselves convex. We expect large improvements on output lower
bounds of the newly generated sub-problems if a good branching decision is made. Apart from
random selection, employed in |[Ehlers|(2017) and |[Katz et al.|(2017), available ReL.U split heuristics
are [Wang et al.| (2018a) and |Bunel et al.| (2019). |Wang et al| (2018a) computes scores based on
gradient information to prioritise ambiguous ReLU nodes. Similarly, Bunel et al.[|(2019) uses scores
to rank ReLU nodes but scores are computed with a formula developed on the estimation equations
in Wong & Kolter| (2018)). We note that for both branching strategies, after the split, intermediate
bounds are updated accordingly on each new sub-problem. For NN verification problems, either
domain split or ReLU split can be used at each branching step. When compared with each other,
ReLU split is normally a more effective choice for large scale networks, as shown in Bunel et al.
(2019).

All the aforementioned existing branching strategies use hand-designed heuristics. In contrast, we
propose a new framework for branching strategies by utilizing a GNN to learn to imitate strong
branching heuristics. This allows us to harness both the effectiveness of strong branching strategies
and the efficiency of GPU computing power.

Under review as a conference paper at ICLR 2020

4 GNN FRAMEWORK

Overview We begin with a brief overview of our overall framework, followed by a detailed de-
scription of each of its components. A graph neural network G is represented by two components:
a set of nodes V" and a set of edges E, such that G = (V, E). Each node and each edge has its set of
features. A GNN uses the graph structure and node and edge features to learn a representation vector
(embedding vector) for each node v € V. GNN is a key component of our framework, in which we
treat the neural network f as a graph Gy. A GNN takes G’y as an input and initializes an embedding
vector for each node in V. The GNN updates each node’s embedding vector by aggregating its own
node features and all its neighbour embedding vectors. After several rounds of updates, we obtain a
learned representation (an updated embedding vector) of each node. To make a branching decision,
we treat the updated embedding vectors as inputs to a score function, which assigns a score for each
node that constitutes a potential branching option. A branching decision is made based on the scores
of potential branching decision nodes. Our framework is visualised in Figure 2] We now describe
each component in detail.

Neural Network Graph Neural Network Forward Update

Node Features
[elele)]
Zero Embeddings
©OJ Final
Embeddings nal
o be updated Branching
I Decision
[elele]
Invalid Embeddings

Update Function
. Inputs

Embedding Vectors Backward Update

Figure 2: Tllustration of our proposed GNN framework. An all zeros embedding network mimicking the
neural network is initialised. Embedding vectors are updated via several rounds of forward backward passes
using updating Egs. (3)-(7). We obtain the final branching decision by calling a score function g, over all
embedding vectors of potential branching decision nodes.

Nodes Given a neural network f, V consists of all input nodes VO[5 all hidden activation nodes
v;[; and an output node vr. In our framework, we combine every pre-activation variable and its
associated post-activation variable and treat them as a single node. Pre- and post-activation nodes
together contain the information about the amount of convex relaxation introduced at this particular
activation unit, so dealing with the combined node simplifies the learning process. In terms of the
Eq. , let z;[j] denote the combined node of Z;[;) and x;[;;. The nodes v[;], v;;) and vy, are thus

in one-to-one correspondence with zg;}, :v;.[il and x;. We note that V' is larger than the set of all
potential branching decisions as it includes unambiguous activation nodes and output nodes.

Node features Different types of nodes have different sets of features. In particular, input node
features contain the corresponding domain lower and upper bounds and primal solution. For activa-
tion nodes, the node features consist of associated intermediate lower and upper bounds, layer bias,
primal and dual solutions and new terms computed using previous features. Finally, the output node
has features including the associated output lower and upper bounds, layer bias and primal solution.
Other types of features could be used and some features could be excluded if they are expensive to
compute. We denote input node features as zq[;}, activation node features as z;[; and output node
feature as zy. Our framework uses simple node features and does not rely on extensive feature
engineering. Nonetheless, by relying on the powerful GNN framework, it provides highly accurate
branching decisions.

Edges E consists of all edges connecting nodes in V', which are exactly the connecting edges in
f. Edges are characterized by the weight matrices that define the parameters of the network f such
that for an edge €7, connecting x;[j] and xéH[k], we assign e’y = W,
Embeddings We associate a p-dimensional embedding vector p, for each node v € V. All
embedding vectors are initialised as zero vectors.

Under review as a conference paper at ICLR 2020

Forward and Backward embedding updates In general, a graph neural network learns signals
from a graph by acting as a function of two inputs: a feature matrix X € R!V!*?_ where each row
is the embedding vector ., for a node v € V, and an adjacency matrix .4 representing the graph
structure. Under this formulation, all node embedding vectors are updated at the same time and
there is no particular order between nodes. In this work, instead, we propose an update scheme
where only the nodes corresponding to the same layer of the network f are updated at the same
time, so embedding vector updates are carried out in a layer-by-layer forward-backward way.

We argue that the forward-backward updating scheme is a natural fit for our problem. In more
detail, for a given domain D, each branching decision (an input node or an ambiguous activation
node) will generate two sub-domains s; and sy, with each sub-domain having an output lower
bound 1%, [SLQ equal to or higher than the lower bound 5 that of D. Strong branching heuristic uses

S1°

a predetermined function to measure the combined improvement of [SLl 1 SLZ over [5 and makes the
final branching decision by selecting a node that gives the largest improvement. Thus, to maximise
the performance of a graph neural network, we want a node embedding vector to maximally capture
all information related to computing [SLl , lfz if a split is conducted on the node. For estimating [SLl ,
lfz of splitting on a potential branching decision node v, we note that these values are closely related
to two factors. The first factor is the amount of convex relaxations introduced at a branching decision
node v, if v corresponds to an ambiguous activation node. The second factor considers that if the
node v is split, the impact it will have on the convex relaxations introduced to nodes on layers after
that of v. Recall that, if there are no ambiguous activation nodes, the neural network f is simply a
linear operator, whose minimum value can be easily obtained. When ambiguous activation nodes
are present, the total amount relaxation introduced determines the tightness of the lower bound to
f. We thus treat embedding vectors as a measure of local convex relaxation and its contribution to

other nodes’ convex relaxation.

As shown in Figure , at each ambiguous activation node x;[j], the area of convex relaxation intro-

duced is determined by the lower and upper bounds of the pre-activate node &;[;). Since intermediate
lower and upper bounds of a node ;; are completely decided by the layers prior to it and have to
be computed in a layer-by-layer fashion, we respect this structure and the order of computation by
utilising a forward layer-by-layer update on node embedding vectors, which should allow these em-
bedding vectors to capture the local relaxation information. In terms of the impact of local relaxation
change to that of other nodes, we note that by splitting an ambiguous node into two fixed cases, all
intermediate bounds of nodes on later layers will affected, leading to relaxation changes at those
nodes. We thus employ a backward layer-by-layer update to account for the impact the local change
has over other nodes. Theoretically, by fixing an ambiguous ReLLU node, intermediate bounds of
nodes at previous layers and on the same layer might change as well. For a naturally trained neural
network, these changes for these nodes should be relatively small compared to nodes on the later
layers. To account for these changes, we rely on multiple rounds of forward-and-backward updates.

In summary, during the forward update, for: = 1,..., L — 1, we have, for all possible j,
tops) <— Finp(2o[5);00), if pop;) = 0, €)]
K[<— Fact(zi[j],#i—l,ei;al), 4)
pr — Four(zL, pr—1,€";602) 5)
During backward update, for: = L — 1,...,1, we have
M) <— Bact(zi[j]7Ni+1>€i+1§03)7 (6)
pop) <— Binp(zo(), 1, €' 04). (7

Update functions F" and B take the form of multi-layered fully-connected networks with ReL.U acti-
vation functions or composites of these simple update networks. The terms ; denote the parameters
of the networks. A detailed description of update functions is provided in the appendices.

We point out that our forward-backward update scheme does not depend on the underlying neural
network structure and thus should be generalizable to network architectures that differ from the one
we use for training. However, it does rely on the information used to compute convex relaxation,
so underlying data distribution, features and bounding methods are assumed to be same when the
trained model is applied to different networks. Furthermore, our forward-backward update is mem-
ory efficient, as we are dealing with one layer at a time and only the updated embedding vectors

Under review as a conference paper at ICLR 2020

of the layer are used to update the embedding vectors in the next (forward-pass) and the previous
(backward-pass) layer. This makes it readily applicable to large networks.

Scores At the end of the forward-backward updates, embedding vectors for potential branching
decision nodes (all input nodes and ambiguous activation nodes) are gathered and treated as inputs
for a score function gs(+;05) : RP — R, which takes the form of a fully-connected network with
parameters 5. It assigns a scalar score for each input embedding vector. The final branching
decision is determined by picking the node with the largest score.

5 PARAMETER ESTIMATION

Training We train a GNN via supervised learning. To estimate © := (6, 01,02, 03,604,05), we
propose a new hinge rank loss function that is specifically designed for our framework. Before we
give details of the loss, we introduce a relative improvement measure m first. Given a domain D,
for each branching decision node v, the two generated sub-problems have output lower bounds lsL1

and lfz. We measure the relative improvement of splitting at the node v over the output lower bound
15 as follows
my, = (min(iX, 0) + min(i2,0) —2-15) /(=2 15). (8)

s1° S99
Intuitively, m (0 < m < 1) measures the average relative sub-problem lower bound improvement
to the maximum improvement possible, that is —lé. Any potential branching decision node v can
be compared and ranked via its relative improvement value m,. Since we are only interested in
branching nodes with large improvement measures, ranking loss is a natural choice. Direct pair-
wise rank loss might be difficult to learn for NN verification problems, given the large number of
branching decision nodes on each domain D. In addition, many branching decisions may give sim-
ilar performance, so it is redundant and potentially harmful to the learning process if we learn a
ranking among these similar nodes. To deal with these issues, we develop our loss by first dividing
all potential branching nodes into M classes (M is much smaller than the total number of branching
decision nodes) through the improvement value m,, of a node. We denote the class label as Y,, for
a node v. Labels are assigned in an ascending order such that Y,, >= Y,/ if m, > m, . We then
compute the pairwise hinge-rank loss on these newly assigned labels as

L
lossp(©) = I Z (Z¢(gs(ﬂj; 0) — g5(ki; ©)) - Ly;>v,), ©))
i=1 j=1
where ¢(z) = (1 — z)4 is the hinge function, [V is the total number of branching decision nodes and
K is total number of pairs where Y; > Y; for any branching decision nodes v;, v;. The loss measures
the average hinge loss on score difference (g5 (p;; ©)—gs(pe:; ©)) for all pairs of branching decision
nodes v;,v; such that Y; > Y;. Finally, we evaluate ® by solving the following optimization
problem:

D AR
® =arg min §||®|| + - Z lossp, (©), (10)
where the lossp, is the one introduced in Eq. (9) and n is the number of training samples.

Fail-safe Strategy We introduce a fail-safe strategy employed by our framework to ensure that
consistent high-quality branching decisions are made throughout a BaB process. The proposed
framework uses a GNN to imitate the behavior of the strong branching heuristic. Although com-
putationally cheap, in some cases, the output decision by the learned graph neural network might
be suboptimal. When this happens, it could lead to considerably deteriorated performances for two
reasons. Firstly, we observed that for a given domain, which requires multiple splits to reach a con-
clusion on this domain, if a few low-quality branching decisions are made at the beginning or the
middle stage of the branching process, the total number of splits required might increase substan-
tially. The total BaB path is thus, to some extent, sensitive to the quality of each branching decision
apart from those made near the end of the BaB process. Secondly, once a low-quality decision is
made on a given domain, a decision of similar quality is likely to be made on the two newly gen-
erated sub-domains, leading to exponential decrease in performance. Features for newly generated
sub-domains are normally similar to those of the parent domain, especially in the cases where the
branching decision of the parent domain is made on the later layers and loose intermediate bounds
are used. Thus, it is reasonable to expect the GNN fails again on the sub-domains.

To deal with issue, we keep track of the output lower bound improvement for each branching deci-
sion, as introduced in Eq. (8). We then set a pre-determined threshold parameter. If the improvement

Under review as a conference paper at ICLR 2020

is below the threshold, a computationally cheap heuristic is called to make a branching decision.
Generally, the back-up heuristic is able to give an above-threshold improvement and generate sub-
domains sufficiently different from the parent domain to allow the learned GNN to recover from the
next step onwards.

Online Learning Online learning is a strategy to fine-tune the network for a particular property
after we have learnt ®. It can be seen as an extension of the fail-safe strategy employed. Every time
a heuristic branching decision node vy, is used instead of the node vy, chosen by the GNN, we can
use vy, and vgy,, to update GNN accordingly. Since a correct GNN model should output embedding
vector puy, resulting in a higher score g (e ; ®) for the heuristic decision, a loss can be developed
based on the two scores gs(py; ©) and gs(pgnn; @) to generate optimization signals for correcting
the GNN behaviour. For example, the loss used in our experimental setting is:

lossonline(e) = 0s (ll/gnn; 9) — Js (ll/h; 9) +v- ((mh - mgnn) > t)- (11)
The last term is used to amplify (y > 0) the loss if the relative improvement made by the heuristic
decision is more than ¢ percent higher than that by the GNN. We update ® of GNN by taking one
gradient step with small learning rate of the following minimization problem.

® = arg I%n%”@”z + 108Sonline(©). (12)

Online learning is property specific: it uses the decisions made by heuristics to fine tune the GNN
model so it can best accommodate the property at hand. As will be shown in our experiments, a
small but significant improvement in performance is achieved when online learning is used.

6 EXPERIMENTS

We now validate the effectiveness of our proposed framework through comparative experiments
against other available NN verification methods. A comprehensive study of NN verification methods
has been done in Bunel et al.[(2019)). We thus design our experiments based on the results presented
in|Bunel et al.| (2019).

6.1 SETUP

We are interested in verifying properties on large network architectures with convolutional layers.
In Bunel et al|(2019), existing NN methods are compared on a robustly trained convolutional net-
work on MNIST. We adopt a similar network structure but using a more challenging dataset, namely
CIFAR-10, for an increased difficulty level. We compare against the following two methods: (i)
MIPplanet, a mixed integer solver backed by the commercial solver Gurobi; and (ii) BaBSR, a BaB
based method utilising a ReLU-split heuristic. Our choice is motivated by their superior performance
over other methods for MNIST verification problems in the previous work (Bunel et al.,[2019).

We provide the detailed experimental setup through four perspectives: bounding method, branching
strategy, network structure, verification properties tested. (Bounding methods) We compute inter-
mediate bounds using linear bounds relaxation (Figure [I{b)). For the output lower bound, we use
Planet relaxation (Figure [I[c)) and solve the corresponding LP with Gurobi. For the output upper
bound, we compute it by directly evaluating the network value at the input provided by the LP so-
lution. (Branching strategy) We focus on ReLU split only in our experiments. As shown in/Bunel
et al.|(2019), domain split only outperforms ReLU split on low input dimensional and small scale
networks. Also, since one of the Baseline method BaBSR employs a ReLU-split heuristic, we con-
sider ReL.U split only for a fair comparison. However, we emphasize that our framework is readily
applicable to work with a combined domain and ReLU split strategy. (Network structures) Three
neural network structures will be studied. The base one is of the similar structure and size to the one
used in |Bunel et al.|(2019). It has two convolutional layers, followed by two fully connected layers
and is trained robustly using the method provided in[Wong & Kolter| (2018)). This particular choice
of network size is made because the time required for solving each LP increases substantially with
the size of the network. To best evaluate the performance of the branching strategy, we have to work
with a medium sized network so that within the given timeout, a sufficient amount of branching de-
cisions can be made to allow effective comparisons. When testing the transferability of framework,
two larger networks will be tested but their sizes are still restricted by the LP bottleneck. Detailed
network architecture is provided in the appendices. (Verification properties) Finally, we consider
the following verification properties. For a image «, that the model correctly predicted the label v,
we randomly choose a label y./ such that for a given €, we want to prove

(e(c) o e(c’))Tf/(m/) >0 V' s.t ||;13 — iU/”oo <e, (13)

Under review as a conference paper at ICLR 2020

where f is the original neural network, e(®) and e(©) are one-hot encoding vectors for labels y. and
Y. We want to verify that for a given ¢, the trained network will not make a mistake by labelling the
image as y.-. Since BaBSR is claimed to be the best performing method on convolutional networks,
we use it to determine the e values, which govern the difficulty level of verification properties. Small
€ values mean that most ReLLU activation units are fixed so their associated verification properties
are easy to prove while large e values could lead to easy detection of counter-examples. The most
challenging e values are those at which a large number of activation units are ambiguous. We use
binary search with BaBSR method to find suitable € values. We only consider e values that result
in true properties and timed out properties. Binary search process is simplified by our choice of
robustly trained models. Since these models are trained to be robust over a ¢ ball, the predetermined
value § can be used as a starting value for binary search.

6.2 TRAINING DATASET

In order to generate training data, we firstly pick 565 random images and for each image, we ran-
domly select an incorrect class. For each property, the € value is determined by running binary
search with BaBSR and 800 seconds timeout, so the final set of properties consists of mainly easily
solvable properties and a limited number of timed out properties.

We collect training data along a BaB process for solving a verification property. At each given
domain, given the large number of potential branching decisions, we perform the strong branching
heuristic on a selected subset of all potential branching decisions. The subset consists of branching
decisions that are estimated to be of high quality by the BaBSR heuristic and randomly selected
ones, which ensure a minimum 5% coverage on each layer.

To construct a training dataset that is representative enough of the whole problem space, we need
to cover a large number of properties. In addition, within a BaB framework, it is important to
include training data at different stages of a BaB process. However, running a complete BaB process
with the strong branching heuristic for hundreds of properties is computationally expensive and
considerably time consuming. We thus propose the following procedure for generating a training
dataset to guarantee a wide coverage both in terms of the verification properties and BaB stages.
For generated verification properties, we randomly select 25% of non-timeout property to conduct
a complete BaB process with the strong branching heuristic. For the rest of the properties, we
try to generate at least B = 20 training data for each verification property. Given the maximum
number of branches ¢ = 10 and an effective and computationally cheap heuristic, we first generate
a random integer k from [0, g]. Then, we run a BaB process with the selected cheap heuristic for &
steps. Finally, we call the strong branching heuristic to generate a training sample. We repeat the
process until B training samples are generated or the BaB process terminated. A detailed algorithm
is provided in the appendices.

6.3 BASE MODEL

We test our learned model on the same model structure but on properties at three different difficulty
levels. Testing verification properties are generated by binary search with BaBSR and 3600s timeout.
We categorise verification properties solved within 800s as easy, which is consistent with training
data generated, between 800s and 2400s as medium and more than 2400s as hard. In total, we
generated 467 easy properties, 773 medium properties and 426 hard properties.

Results are given in the Table[T] Methods are compared in three perspectives: the average time over
all properties, average number of branches required over the properties that are solved by all methods
(we exclude timed out properties) and also the ratio of timed out properties. Since the properties
are generated based on BaBSR, the timed out ratios of BaBSR on easy and medium properties are
not comparable with that of other methods. All other numbers should give a fair evaluation of the
effectiveness of our branching strategy. BaBSR, GNN and GNN-online only differ in the branching
strategy used.

On all three sets of properties, we see that our learned branching strategy has led to a more than
50% reduction in the total average number of branches required for a property. As a direct re-
sult, the average time required achieves at least a 50% reduction as well. Our framework is thus
an effective scheme and enjoys horizontal transferability. A further performance improvement is
obtained through instance-specific online learning. Among all 1666 tested verification properties,
GNN with online-learning solves 61.52% of properties with fewer number of branches and 60.20%
of properties in less time when compared to standard GNN.

Under review as a conference paper at ICLR 2020

Table 1: Methods’ Performance on the Base model. For easy, medium and difficult level verification properties,
we compare methods’ average solving time, average number of branches required and the percentage of timed
out properties. GNN-Online outperforms other methods in all aspects.

Easy Medium Hard
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches % Timeout
BABSR 545.721 578.828 0.0 1370.395 1405.301 0.0 3128.00 2493.87 0.4131
MIPPLANET 1499.375 0.165 2240.980 0.430 2250.624 0.462
GNN 272.695 285.682 0.002 592.118 583.210 0.004 1577.156 995.437 0.216
GNN-ONLINE 208.822 252.807 0.002 556.163 501.595 0.001 1369.326 813.502 0.183

Table 2: Methods’ Performance on Large Models. For verification properties on Wide large model and Deep
large model, we compare methods’ average solving time, average number of branches required and the per-
centage of timed out properties. GNN-Online outperforms other methods in all aspects.

Wide Deep
Method time branches %Timeout time branches %Timeout
BABSR 4137.467 843.476 0.0 4016.336 416.824 0.0
MIPPLANET 5855.059 0.743 5426.160 0.608
GNN 2367.693 418.684 0.127 2308.612 202.731 0.048
GNN-ONLINE 2179.306 374.945 0.095 2220.351 193.697 0.040

We also provide a time cactus plot (Figure [3a) for all properties on the Base model. Time cactus
plots for each category of properties can be found in the appendices. All these time cactus plots look
similar. Although BaBSR performs better than the commercial solver encoded method MIPplanet
overall, MIPplanet wins on a subset of properties. The learned model GNN, however, is capable of
giving consistent high quality performance over all properties tested.

6.4 TRANSFERABILITY: LARGER MODELS

We also robustly trained two larger networks. One has the same layer structure as the Base model but
more hidden units on each layer, which we refer to as Wide model. The other has a similar number of
hidden units on each layer but more layers, which we refer to as Deep model. The detailed network
architecture is provided in the appendices. Apart from the network structure, everything else is kept
the same as for the Base model experiments. We use BaBSR and timeout of 7200s to generate 300
properties for the Wide model and 250 properties for the Deep model. For these two models, each
LP called for solving a sub-problem output lower bound is much more time consuming, especially
for the Deep model. This is reason that the average number of branches considered is much fewer
that those of the Base model within the given time limit.

The model learned on the Base network is tested on verification properties of large networks. Exper-
imental results are given in the Table[2]and time cactus plots (Figures [3b] are also provided. All
results are similar to what we observed on the Base model, which show that our framework enjoys
vertical transferability.

100H—— GNN f=====mmmmmmmmmmmmee 100F —— GNN fmmmmmeeeeemmmmmmmee 100f —— GNN (mmmmmeeeeemmmmmmeee
—— MIPplanet /-’—'_—_ —— MiPplanet —— MiPplanet

— BaBSR —— BaBSR //-""— — BaBSR
Gnn_Online Gnn_Online 80 Gnn_Online
Y,

% of properties verified
% of properties verified
% of properties verified

0 560 1000 1500 2000 2500 3000 3500 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Computation time (in s) Computation time (in s) Computation time (in s)

(a) Base model (b) Wide large model (c) Deep large model
Figure 3: Cactus plots for the Base model (left), Wide large model (middle) and Deep large model (right).
For each model, we plot the percentage of properties solved in terms of time for each method. Consistent
performances are observed on all three models. BaBSR beats MIPplanet on the majority of properties. GNN
consistently outperforms BaBSR and MIPplanet. Further small improvements can be achieved through online-
learning.

7 DISCUSSION

The key observation of our work is that the neural network we wish to verify can be used to design a
GNN to improve branching strategies. This observation can be used in enhancing the performances
of other aspects of BaB. Possible future works include employing GNN to find fast-converging
starting values for solving LPs on a neural network and utilising GNN to develop a lazy verifier, that
only solves the corresponding LP on a domain when it could lead to pruning.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185-195, 2017.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Rudy Bunel, Ilker Turkaslan, Philip H.S Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified
view of piecewise linear neural network verification. Advances in Neural Information Processing
Systems, pp. 4790-4799, 2018.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H.S Torr, Pushmeet Kohli, and M. Pawan Ku-
mar. Branch and bound for piecewise linear neural network verification. arXiv preprint
arXiv:1909.06588, 2019.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Conference on Neural Information Processing Systems,
2017.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. Automated
Technology for Verification and Analysis, 2017.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629,
2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. The International Conference on Learning Representations, 2015.

Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Cuts, primal heuristics, and learning
to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415,
2018.

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. International Conference on Computer Aided
Verification, 2017.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Vicenc Rubies Royo, Roberto Calandra, Dusan M Stipanovic, and Claire Tomlin. Fast neural net-
work verification via shadow prices. arXiv preprint arXiv:1902.07247, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. Conference on Neural Information Processing Systems, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. 27th {USENIX} Security Symposium ({USENIX}
Security 18), pp. 1599-1614, 2018b.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
International Conference on Machine Learning, 2018.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer

adversarial polytope. International Conference on Machine Learning, 2018.

11

Under review as a conference paper at ICLR 2020

APPENDIX A. BRANCH AND BOUND ALGORITHM

The following generic Branch and Bound Algorithm is provided in Bunel et al.| (2019). Given
a neural network ner and a verification property problem we wish to verify, the BaB procedure
examines the truthfulness of the property through an iterative procedure. During each step of BaB,
we first use the pick_out function (line 6) to choose a problem prob to branch on. The split function
(line 7) determines the branching strategy and splits the chosen problem prob into sub-problems.
We compute output upper and lower bounds on each sub-problem with functions compute_UB and
compute_LB respectively. Newly computed output upper bounds are used to tighten the global upper
bound, which allows more sub-problems to be pruned. We prune a sub-problem if its output lower
bound is greater than or equal to the global upper bound, so the smaller the global upper bound the
better it is. Newly calculated output lower bounds are used to tighten the global lower bound, which
is defined as the minimum of the output lower bounds of all remained sub-problems after pruning.
We consider the BaB procedure converges when the difference between the global upper bound and
the global lower bound is smaller than e.

In our case, our interested verification problem Eq. (I) is a satisfiability problem. We thus can
simplify the BaB procedure by initialising the global upper bound global_ub as 0. As a result, we
prune all sub-problems whose output lower bounds are above 0. In addition, the BaB procedure is
terminated early when a below 0 output upper bound of a sub-problem is obtained, which means a
counterexample exits.

Algorithm 1 Branch and Bound

1: function BAB(net, problem,)

2: global_ub < inf

3: global lb +— —inf

4: probs < [(global_1b,prob)]

5: while global_ub — global_1b > e do

6: (- ,prob) + pick_out(probs)

7 [subprob_1, ..., subprob_s| + split(prob)
8 fori=1...sdo

9: sub_ub <+ compute_UB(net, subprob_i)
10: sub_lb < compute_LB(net, subprob_i)
11: if sub_ub < global_ub then
12: global_ub < sub_ub
13: prune_probs(probs, global_ub)

14: end if

15: if sub_1b < global_ub then

16: probs.append((sub_lb, subprob_i))
17: end if

18: end for

19: global_1b < min{1lb | (1b, prob) € probs}

20: end while
21: return global_ub
22: end function

APPENDIX B. IMPLEMENTATION OF FORWARD AND BACKWARD PASSES

We give implementation details of forward and backward updates for embedding vectors for the
model used in the experiments section. Choices of forward and backward update functions are
based on the bounding methods used. In our experiments, we used linear bound relaxations for
computing intermediate bounds and Planet relaxation for computing the final output lower bound.
We start with a graph neural network mimicking the structure of the network we want to verify.
We denote domain lower and upper bounds as [y and wg respectively. Similarly, we denote the
intermediate bounds (pre-activation) for layers ¢ = 1,...,L — 1 as [; and u;. Since an LP solver
is called for the final output lower bound, we have primal values for all nodes of V' and dual values
for all ambiguous nodes of V. Finally, let W, ... W7 be the layer weights and b', ..., b” be the
layer biases of the network f, which we wish to verify.

12

Under review as a conference paper at ICLR 2020

B.1 FORWARD PASS

Unless otherwise stated, all functions F), are 2-layer fully connected network with ReLU activation
units.

B.1.1 INPUT NODES

We update the embedding vectors of input nodes only during the first round of forward pass. That is
we update g5 when it is zero for all j. After that, input nodes embedding vectors are updated only
in backward pass. For each input node, we form the feature vector zg[;] as a vector of ly[;, ug[;) and
its associated primal solution. The input node embedding vectors are computed as

Koj) = Finp(2op5; 60)- (14)
B.1.2 ACTIVATION NODES

The update function F.; can be broken down into three parts: 1) compute information from local
features 2) compute information from neighbour embedding vectors and 3) combine information
from 1) and 2) to update current layer’s embedding vectors.

Information from local features Since we compute the final lower bound with the Planet re-
laxation (Figure [I[c)), we introduce a new feature related to the relaxation: the intercept of the
relaxation triangle, shown in Figure [We denote an intercept as 3 and compute it as
—lify) i

Uifj) — gy

The intercept of a relaxation triangle can be used as a measure of the amount of relaxation introduced
at the current ambiguous node.

Bilj) = (15)

Therefore, the local feature vector z;[; of an ambiguous node 1;[i consists of I;;), w;fj), Bifs)» its

associated layer bias value, primal values (one for pre-activation variable and one for post-activation
variable) and dual values. We obtain information from local features via

(16)

Rugy = Fact,lf(zi[j];B'f) if x;m .is ambiguous,
0 otherwise.

where le € RP,

ilg]| 1Uilj) !

Figure 4: Red line represents the intercept of the convex relaxation. It is treated as a measure of the shaded
green area.

Information from neighbour embedding vectors During the forward pass, we focus on embed-
ding vectors of the previous layer only. To update an embedding vector on layer ¢, we first combine
embedding vectors of the previous layer with edge weights via

Ei; = Z Wzij G 1[k]- (17
%

To compute the information from neighbour embedding vectors to an arbitrary activation node x’, o

we consider each activation unit as a gate. We observe that the amount of the information from
neighbour embedding vectors that remains after passing through a gate is dependent on the its lower
bound /;[;; and upper bound w;[;). When [;};) and wu;[;) are of different signs, z;] is an ambiguous

13

Under review as a conference paper at ICLR 2020

i[7]
[: '}\’UJ ‘ji[]) l
i[5, ‘ il il4],
(a) Ambiguous Node (b) Complete Blocking (c) Complete Passing

Figure 5: Depending on the value of li(;) and w4, relaxed activation function can take three forms. The left
figure shows the case where [;[;) and w;[;) are of different signs. In this case, for any input value between I;|;
and u,[;), the maximum output achievable is indicated by the red line. The middle figure shows the case where
both ;;; and wu;[;) are no greater than zero. In this case, the activation function completely blocks all input
information by outputting zero for any input value. The right figure shows the case where [;(;] and wu;[;) are
greater or equal to zero. In this case, the activation function allows complete information passing by outputting
a value equal to the input value.

node. With relaxation, for any input value between /;;; and w;[;], the maximum output achievable
after passing an activation unit is shown by the red slope in Figure Eka). The red slope s;;) is
computed as

sifg) (Zapg)) = — “Zigg) + Bigg)- (18)

T gy =gy Y
Thus, the amount of information from neighbour embedding vectors that remains after passing
through an ambiguous gate is related to the ratio o == ——l— When u;[;) 18 no greater than

wiri—lif4
zero, the activation node x;[il completely blocks all inform[]aitior[l].] For any input value, the output
value is zero after passing the activation unit, as shown by the red line in Figure [5[b). We have
a = 0 in this case. Finally, when li[j] is no less than 0, the activation node m;] allows a complete
passing of information and o = 1. It is shown by the red line in Figure [5[c). We incorporate these
observations into our evaluations and compute the information from neighbour embedding vectors
as

Ni[j] = fact—nb([a : Ei[j]>0/ : Ei[j]]; 9%)7 (19)
where o/ =1 — awhen 0 < o < 1 and &' = « otherwise. Here, we use [a, b] to denote the con-
catenation of two vectors a, b € RP into a vector R??. We introduce o to be more informative. We
do not consider the information that relate to the intercept 3;[;) in the ambiguous case for the sake of

simplicity. Improved performance could be expected if the 3;(;) related information is incorporated
as well.

Combine previous information Finally, we combine the information from local features and the
information from neighbour embedding vectors to update the embedding vectors of activation nodes.
Specifically,

pij) = Fact—com ([Rifz, Nigj)); 07)- (20)
B.1.3 OUTPUT NODE

Embedding vectors of output nodes are updated in a similar fashion to that of activation nodes. We
first compute information from local features.

Rp; = Fout—17(21;;09) 2D
For output nodes, the vector of local features zy consists of output lower bound, output upper
bound, primal solution and layer bias. F,,;_;f is a one-layer fully-connected network with ReLU
activation units. We then compute information from neighbour embedding vectors. Since the output
node does not have an activation unit associated with it, we directly compute the information of
neighbour embedding vectors as

Epy = Z Wij “HL—1[k]- (22)
k

Finally, we update the embedding vector of the output node as
KL = Fout—com([RL[j]) EL[j]]; 0%) (23)

14

Under review as a conference paper at ICLR 2020

B.2 BACKWARD PASS

During backward message passing, for: = L—1,.. ., 1, we update embedding vectors for activation
nodes and input node. Again, all functions B, are 2-layer fully-connected networks unless specified
otherwise.

B.2.1 ACTIVATION NODES

Similar to updates of embedding vectors carried out for activation nodes in a forward pass, we
update embedding vectors of activation nodes using the same three steps in the backward pass, but
with minor modifications.

Information from local features We use the same feature z;[;] as the one used in the forward pass
and compute the information from local features as

R {Bact 1 (Zigg) :09) if a:;[j] is ambiguous, (24)

W o otherwise.
We recall that a dual value indicates how the final objective function is affected if its associated

constraint is relaxed by a unit. To better measure the importance of each relaxation to the final
objective function, we further update the information from local features by

RV _ Bact—is,([difj) © Rl[j]a Rl[j]] 3) if R?[j] #0 25)
W= o otherwise.
Here, d;;) is the vector of dual values corresponding to the activation node x;[E We use © to mean

that we multiply Rb by each element value of d;[;) and concatenate them as a singe vector.

Information from neighbour embedding vectors During the backward pass, we focus on em-
bedding vectors of the next layer only. In order to update an embedding vector on layer i, we
compute the neighbourhood embedding vectors as

z[_]] ZW;k ik (26)

We point out that there might be an issue w1th computing F;[; if the layer 7 + 1 is a convolutional
layer in the backward pass. For a convolutional layer, depending on the padding number, stride
number and dilation number, each node x;[;) May connect to a different number of nodes on the layer

i + 1. Thus, to obtain a consistent measure of E;j;), we divide E,m by the number of connecting
node on the layer ¢ + 1, denoted as EY i) and use the averaged E? i) instead. Let

b Ef.’[,j] if layer i+1 convolutional, 27
il = Ezl')[j] otherwise. 7
The following steps are the same as the forward pass. We first evaluate
Nib[j] = Bactfnb([Ez[]]7 Oé Eb*] 03) (28)
and the update embedding vectors as
Hi[j] = B(lCt—Com([R'L[j] []] 93) (29)

B.2.2 INPUT NODES

Finally, we update the input nodes. We use the feature vector z§, which consists of domain upper
bound and domain lower bound. Information from local features is evaluated as
Roj = Binp-15(2(;;; 09)- (30)

We compute the information from neighbour embedding vectors in the same manner as we do for
activation nodes in the backward pass, shown in Eq l) Denote the computed information as ng‘j].

The embedding vectors of input nodes are updated by

;U/O[j] = Binp—com([Rg/[j] 5 Egi]L Oi) (31)

15

Under review as a conference paper at ICLR 2020

APPENDIX C. ALGORITHM FOR GENERATING TRAINING DATASET

Algorithm [2| outlines the procedure for generating the training dataset. The algorithm ensures the
generated training date have a wide coverage both in terms of the verification properties and BaB
stages while at the same time is computationally efficient. Specifically, we randomly pick 25% of
all properties that do not time out and run a complete BaB procedure on each of them with the
strong branching heuristic to generate training samples (line 3-5). For the remaining properties, we
attempt to generate B training samples for each of them. To cover different stages of a BaB process
of a property, we use a computationally cheap heuristic together with the strong branching heuristic.
Given a property, we first use the cheap heuristic for k steps (line 10-15) to reach a new stage of the
BaB procedure and then call the strong branching heuristic to generate a training sample (line 16).
We repeat the process until B training samples are generated or the BaB processs terminates.

Algorithm 2 Generating Training Dataset

1: Provided: total P properties; minimum B training data for each property; a maximum ¢
branches between strong branching decisions

2: forp=1,...,Pdo:
3 o <— random number from [0, 1]
4 if p is not a timed out property and o < 0.25 then
5: Running a complete BaB process with the Strong Branching Heuristic
6 else
7 b=0
8 while b < B do
9: k <— random integer from[0, ¢]
10: while £ > 0 do
11: Call a computationally cheap heuristic
12: if BaB process terminates then return
13: end if
14: k=k-1
15: end while
16: Call the strong branching heuristic and generate a training sample
17: if BaB process terminates then return
18: end if
19: b=b+1
20: end while
21: end if
22: end for

APPENDIX D. EXPERIMENTS DETAILS

All the hyper-parameters used in the experiments are determined by testing a small set of numbers
over the validation set. Due to the limited number of tests, we believe better sets of hyper-parameters
could be found.

D.1 TRAINING DETAILS

Training dataset Recall that to generate a training dataset, 565 random images are selected. Bi-
nary serach with BaBSR and 800 seconds timeout are used to determine e. Among 565 verification
properties determined, we use 430 properties to generate 17958 training samples and the rest of
properties to generate 5923 validation samples. Training samples and validation samples are gener-
ated using Algorithm 2]with B = 20 and ¢ = 10.

Training We initialise a GNN by assigning each node a 32-dimensional zero embedding vector.
GNN updates embedding vectors through two rounds of forward and backward updates. To train
the GNN, we use hinge rank loss (Eq (9)) with M = 10. Parameters ® are computed and updated
through Adam optimizer with weight decay rate A = 1le~* and learning rate 1e~*. If the validation

16

Under review as a conference paper at ICLR 2020

loss does not decrease for 10 consecutive epoches, we decrease the learning rate by a factor of
5. If the validation loss does not decrease for 20 consecutive epoches, we terminate the learning
procedure. The batch size is set to 2.

D.2 EXPERIMENTAL DETAILS

We ran all experiments in parallel on 16 CPU cores, with one property being verified on one CPU
core. We observed that although we specifically set the thread number to be one for MIPplanet
(backed by the commercial solver Gurobi), the time required for solving a property depends on the
total number of CPUs used. For a machine with 20 cpu cores, MIPplanet requires much less time on
average for proving the same set of properties on fewer (say 4) CPU cores in parallel than on many
(say 16) CPU cores in parallel (the rest of CPU cores remain idle). Since BaBSR, GNN and GNN-
online all use Gurobi for the bounding problems, similar time variation, depending on the number of
CPU cores used, are observed. We ran each method in the same setting and on 16 CPUs in parallel,
so our reported results and time are comparable. However, we remind readers to take time variation
into consideration when replicating our experiments or using our results for comparison.

Fail-safe strategy Since, to the best of our knowledge, the branching heurisitc of BaBSR is the
best performing one on convolutional neural networks so far, we choose it for our fail-safe strategy.
The threshold is set to be 0.2. Every time when the relative improvement 1,4y, of a GNN branching
decision vy, is less than 0.2, we call the heuristic to make a new branching decision vj,. We solve
the corresponding LPs for the new branching decision and compute its relative improvement my, .
The node with higher relative improvement is chosen to be the final branching decision.

Online learning We take a conservative approach in terms of online learning. We refer to a GNN
decision as a failed decision if the relative improvement offered by heuristic branching is better than
the one offered by the GNN. We record all GNN failed decisions and only update the GNN model
online when the same failed decision is made at least twice. To update the GNN model, we use
Adam optimizer with weight decay rate A = le~* and learning rate 1e~*. The GNN model is
updated with one gradient step only with respect to the optimization problem Eq. (T2)), where v = 1
and ¢t = 0.1 in the loss function 0SS ,nine, defined in Eq. .

Methods 1In Bunel et al.[(2019), methods including MIPplanet, BaBSR, planet (Ehlers, |2017),
reluBaB and reluplex (Katz et al., 2017)) are compared on a small convolutional MNIST network.
Among them, BaBSR and MIPplanet significantly outperform other methods. We thus evaluate our
methods against these two methods only in the experiments section. We mention that |Bunel et al.
(2019) excludes the method Neurify (Wang et al.,|2018a)), because, during their personal correspon-
dence with the authors of Neurify, the authors of Neurify mentioned the version available online is
not theoretically correct and the correct version does not perform well on convolutional networks.
Details can be found inBunel et al.|(2019). We do not compare against Neurify for the same reason.

D.3 MODEL ARCHITECTURE

We provide the architecture detail of the neural networks verified in the experiments in the following
table.

17

Under review as a conference paper at ICLR 2020

Network Name | No. of Properties Network Architecture
Conv2d(3,8.,4, stride=2, padding=1)
Base Easy: 467 Conv2d(8,16,4, stride=2, padding=1)
Medium: 773 linear layer of 100 hidden units
Model . . .
Hard: 426 linear layer of 10 hidden units

(Total ReLU activation units: 3172)

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)
WIDE 300 linear layer of 100 hidden units
linear layer of 10 hidden units
(Total ReLLU activation units: 6244)

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
DEEP 250 Conv2d(8,8,4, stride=2, padding=1)
linear layer of 100 hidden units
linear layer of 10 hidden units
(Total ReLU activation units: 6756)

Table 3: For each experiment, the network architecture used and the number of verification proper-
ties tested.

APPENDIX E. ADDITIONAL PLOTS

Finally, we provide cactus plots for the Base model on easy, medium and hard difficulty level prop-
erties respectively.

1001 — GNN [ommmmmmmmemmmmoooof 1001 —— GNN mmmmmm——mooooooooag 100F 0 GNN [mmmmmmmmmmmmmmmeeee
—— MiPplanet / —— MIPplanet
—— BaBSR

—— BaBSR
Gnn_Online Gnn_Online

— MiPplanet
— BaBSR
Gnn_Online

% of properties verified
% of properties verified
% of properties verified

Y

J

100 200 300 400 500 600 700 800 500 1000 1500 2000 500 1000 1500 2000 2500 3000 3500
Computation time (in s) Computation time (in s) Computation time (in s)

(a) Easy properties (b) Medium properties (c) Hard properties

Figure 6: Cactus plots for easy properties (left), medium properties (middle) and hard properties (right) on
the Base model. For each model, we plot the percentage of properties solved in terms of time for each method.
BaBSR beats MIPplanet on easy and medium properties overall. On hard properties, although BaBSR manages
to solve more properties, its average performance is worse than MIPplanet in terms of time. GNN consistently
outperforms BaBSR and MIPplanet on all three levels of properties, demonstrating the horizontal transferrabil-
ity of our framework. Again, further small improvements can be achieved through online-learning.

18

	Introduction
	Related Works
	Background
	Branch and Bound
	Bounding
	Branching

	GNN Framework
	Parameter Estimation
	Experiments
	Setup
	Training Dataset
	Base model
	Transferability: larger models

	Discussion

