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ABSTRACT

When humans observe a physical system, they can easily locate objects, under-
stand their interactions, and anticipate future behavior, even in settings with com-
plicated and previously unseen interactions. For computers, however, learning
such models from videos in an unsupervised fashion is an unsolved research prob-
lem. In this paper, we present STOVE, a novel state-space model for videos, which
explicitly reasons about objects and their positions, velocities, and interactions. It
is constructed by combining an image model and a dynamics model in compo-
sitional manner and improves on previous work by reusing the dynamics model
for inference, accelerating and regularizing training. STOVE predicts videos with
convincing physical behavior over hundreds of timesteps, outperforms previous
unsupervised models, and even approaches the performance of supervised base-
lines. We further demonstrate the strength of our model as a simulator for sample
efficient model-based control, in a task with heavily interacting objects.

1 INTRODUCTION

Obtaining structured knowledge about the world from unstructured, noisy sensory input is a key
challenge in artificial intelligence. Of particular interest is the problem of identifying objects from
visual input and understanding their interactions. One longstanding approach to this is the idea of
vision as inverse graphics (Grenander, 1976), which postulates a data generating graphics process
and phrases vision as posterior inference in the induced distribution. Despite its intuitive appeal,
it has remained largely intractable in practice due to the high-dimensional and multimodal nature
of the inference problem. Recently, however, probabilistic models based on deep neural networks
have made promising advances in this area. By composing conditional distributions parameterized
by neural networks, highly expressive yet structured models have been built. At the same time, ad-
vances in general approximate inference, particularly variational techniques, have put the inference
problem for these models within reach (Zhang et al., 2017).

Moreover, inspired by human vision, understanding images as compositions of objects and back-
ground has recently proven to be a successful prior for building unsupervised models of single
images. The structured nature of approaches such as AIR (Eslami et al., 2016), MONet (Burgess
et al., 2019), and SuPAIR (Stelzner et al., 2019) provides two key advantages over unstructured im-
age models such as variational autoencoders (Kingma & Welling, 2014) or generative adversarial
networks (Goodfellow et al., 2014). First, it allows for the specification of inductive biases, such
as spatial consistency of objects, which constrain the model and act as regularization. Second, it
enables the use of semantically meaningful latent variables, such as object positions, which may be
used for downstream reasoning tasks.

Thus, compositional modeling videos instead of individual images is the natural next challenge. Not
only could such a model be used in more complex domains, such as reinforcement learning, but
the additional redundancy in the data can even simplify and regularize the object detection problem
(Kosiorek et al., 2018). To this end, the notion of temporal consistency may be leveraged as an
additional inductive bias, guiding the model to desirable behavior. In situations where interactions
between objects are prevalent, understanding and explicitly modeling these interactions in an object-
centric state-space is valuable for obtaining good predictive models. Existing works in this area,
such as SQAIR (Kosiorek et al., 2018), DDPAE (Hsieh et al., 2018), R-NEM (Van Steenkiste et al.,
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2018), and COBRA (Watters et al., 2019) have explored these concepts, but have not demonstrated
realistic long term video predictions on par with supervised approaches to modeling physics.

To push the limits of unsupervised learning for physical interactions, we propose STOVE, a struc-
tured object-aware video prediction model. With STOVE, we combine image and physics modeling
into a single state-space model, which explicitly reasons about object positions and velocities. It is
trained end-to-end on pure video data in a self-supervised fashion and learns to detect objects, to
model their interactions, and to predict future states and observations. To facilitate variational infer-
ence in this model, we provide a novel inference architecture, which reuses the learned generative
physics model in the recognition network. As we will demonstrate, our model generates realistic
rollouts over hundreds of time steps, outperforms other video modeling approaches, and in fact ap-
proaches the performance of the supervised baseline which has access to the ground truth object
states.

Moving beyond unsupervised learning, we also demonstrate how STOVE can be employed for
model-based reinforcement learning (RL). Model-based approaches to RL have long been viewed
as a potential remedy to the often prohibitive sample complexity of model-free RL, but obtaining
learned models of sufficient quality has proven difficult in practice (Sutton & Barto, 2011). How-
ever, recent work in the area of model-based RL has shown how powerful video prediction networks
can be employed to improve sample efficiency when learning to play Atari videogames (Oh et al.,
2015; Kaiser et al., 2019). By conditioning state predictions on actions and adding reward pre-
dictions to our dynamics predictor, we extend our model to the RL setting, allowing it to be used
for search or planning. Our empirical evidence shows that an actor based on Monte-Carlo tree
search (MCTS) (Coulom, 2007) on top of our model is competitive to model-free approaches such
as Proximal Policy Optimization (PPO) (Schulman et al., 2017), while only requiring a fraction of
the samples.

We proceed by introducing the two main components of STOVE: a structured image model and a
dynamics model. We show how to perform joint inference and training, as well as how to extend the
model to the RL setting. We then present our experimental evaluation, before touching on further
related work and concluding.

2 STRUCTURED OBJECT-AWARE VIDEO MODELING

We approach the task of modeling a video with frames x1, . . . , xT , from a probabilistic perspective,
assuming a sequence of Markovian latent states z1, . . . , zT , which decompose into the properties of
a fixed number O of objects, i.e. zt = (z1t , . . . , z

O
t ). In the spirit of compositionality, we propose

to specify and train such a model by explicitly combining a dynamics prediction model p(zt+1 | zt)
and a scene model p(xt | zt). This yields a state-space model, which can be trained on pure video
data, using variational inference and an approximate posterior distribution q(z | x). Our model
differs from previous work that also follows this methodology, most notably SQAIR and DDPAE,
in three major ways:

• We propose a more compact architecture for the variational distribution q(z | x), which
reuses the dynamics model p(zt+1 | zt), and avoids the costly double recurrence across
time and objects which was present in previous work.

• We parameterize the dynamics model using a graph neural network, taking advantage of
the decomposed nature of the latent state z.

• Instead of treating each zot as an arbitrary latent code, we explicitly reserve the first six slots
of this vector for the object’s position, size, and velocity, each in x, y direction, and use this
information for the dynamics prediction task. We write zot = (zot,pos, z

o
t,size, z

o
t,velo, z

o
t,latent).

We begin by briefly introducing the individual components before discussing how they are combined
to form our state-space model. An overview of the graphical model is given in Fig. 1.

2.1 OBJECT-BASED MODELING OF IMAGES USING SUM-PRODUCT ATTEND-INFER-REPEAT

A variety of object-centric image models have recently been proposed, many of which are derivatives
of attend-infer-repeat (AIR) (Eslami et al., 2016). AIR postulates that each image consists of a set of
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Figure 1: Depiction of the graphical model of our approach. Black arrows denote the generative
mechanism and red arrows the inference procedure. The variational distribution q(zt | zt−1, xt) is
formed by combining predictions from the dynamics model p(zt | zt−1) and the object detection
network q(zt | xt). For the RL domain, our approach is extended by action conditioning and reward
prediction.

objects, each of which occupies a rectangular region in the image, specified by positional parameters
zowhere = (zopos, z

o
size). The visual content of each object is described by a latent code zowhat. By

decoding zowhat with a neural network and rendering the resulting image patches in the prescribed
location, a generative model p(x | z) is obtained. Inference is accomplished using a recurrent neural
network, which outputs distributions over the latent objects q(zo | x), attending to one object at a
time. AIR is also capable of handling varying numbers of objects, using an additional set of latent
variables.

Sum-Product Attend-Infer-Repeat (SuPAIR) (Stelzner et al., 2019) utilizes sum-product networks
(SPNs) instead of a decoder network to directly model the distribution over object appearances. The
tractable inference capabilities of the SPNs used in SuPAIR allow for the exact and efficient com-
putation of p(x | zwhere), effectively integrating out the appearance parameters zwhat analytically.
This has been shown to drastically accelerate learning, as the reduced inference workload signifi-
cantly lowers the variance of the variational objective. Since the focus of SuPAIR on interpretable
object parameters fits our goal of building a structured video model, we apply it as our image model
p(xt | ztwhere). Similarly, we use an inference network as in SuPAIR to model q(ztwhere | xt). For
details on SuPAIR, we refer to (Stelzner et al., 2019).

2.2 MODELING PHYSICAL INTERACTIONS USING GRAPH NETWORKS

In order to successfully capture complex dynamics, the state transition distribution p(zt+1 | zt) =
p(z1t+1, . . . , z

O
t+1 | z1t , . . . , zOt ) needs to be parameterized using a flexible, non-linear estimator. A

critical property that should be maintained in the process is order invariance, i.e., the output should
not depend on the order in which objects appear in the vector zt. This type of function is well
captured by graph neural networks, cf. (Santoro et al., 2017), which posit that the output should
depend on the sum of pairwise interactions between objects. Graph neural networks have been
extensively used for modeling physical processes in supervised scenarios (Battaglia et al., 2018;
2016; Sanchez-Gonzalez et al., 2018; Zhou et al., 2018).

Following this line of work, we build a dynamics model of the basic form

ẑot+1,pos, ẑ
o
t+1,velo, ẑ

o
t+1,latent = f

g(zot ) + ∑
o′ 6=o

α(zot , z
o′

t )h(zot , z
o′

t )

 (1)

where f, g, h, α represent functions parameterized by dense neural networks. α is an attention mech-
anism which allows the network to focus on specific object pairs. Finally, we assume a constant prior
over the object sizes, i. e., ẑot+1,size = zot,size. The full state transition distribution is then given by the
Gaussian p(zot+1 | zot ) = N (ẑot+1, σ), using a fixed σ.
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Figure 2: Visualisation of predicted object positions. Each illustrations shows object positions from
the real environment, predictions made by our model, SQAIR, and the supervised baseline, after
the first 8 frames were given. Our model achieves realistic behaviour, outperforms SQAIR, and
approaches the quality of the supervised baseline, despite being fully unsupervised. The reader is
encouraged to watch the animated version on our anonymized GitHub. (Best viewed in color.)

2.3 JOINT STATE-SPACE MODEL

Next, we assemble a single state-space model from the two separate, compositional models for im-
age modeling and physics prediction. The interface between the two component models are the la-
tent positions and velocities. The scene model infers them from images and the physics model prop-
agates them forward in time. Combining the two yields the state-space model p(x, z) = p(z0)p(x0 |
z0)

∏
t p(zt | zt−1)p(xt | zt), where we model p(z0) as simple uniform distributions for the struc-

tured variables, and Gaussians for the latent codes z0,latent.

Our model is trained on given video sequences x by maximizing the evidence lower bound (ELBO)
Eq(z|x) [log p(x, z)− log q(z | x)]. This requires formulating a variational distribution q(z | x) to
approximate the true posterior p(z | x). A natural approach is to factorize this distribution over
time, i.e. q(z | x) = q(z0 | x0)

∏
t q(zt | zt−1, xt), resembling a Bayesian filter. The distribution

q(z0 | x0) is then readily available using the inference network provided by SuPAIR.

The formulation of q(zt | zt−1, xt), however, is an important design decision. Previous work,
including SQAIR and DDPAE, have chosen to unroll this distribution over objects, introducing a
costly double recurrence over time and objects, requiring T · O sequential recurrence steps in total.
This increases the variance of the gradient estimate, slows down training, and hampers scalability.
Inspired by Becker-Ehmck et al. (2019), we avoid this cost by reusing the dynamics model for the
variational distribution. First, we construct the variational distribution q(zot,pos | zot−1) by slightly ad-
justing the dynamics prediction p(zot,pos | zot−1), using the same mean values but separately predicted
standard deviations. Together with an estimate for the same object by the object detection network
q(zot,(pos,vel) | xt), we construct a joint estimate by multiplying the two Gaussians and renormalizing,
yielding another Gaussian:

q(zot,pos | zt−1, xt) ∝ q(zot,pos | zt−1) · q(zot,pos | xt).

Intuitively, this results in a distribution which reconciles the two proposals. A double recurrence
is avoided since q(zt | xt) does not depend on previous timesteps, and may thus be computed in
parallel for all frames. Similarly, q(zt | zt−1) may be computed in parallel for all objects, leading
to only T + O sequential recurrence steps total. An additional benefit of this approach is that the
information learned by the dynamics network is reused for inference — if q(zt | xt, zt−1) were
just another neural network, it would have to essentially relearn the environment’s dynamics from
scratch, resulting in a waste of parameters and training time. A further consequence is that the
image likelihood p(xt | zt) is backpropagated through the dynamics model, which has been shown
to be beneficial for good performance (Karl et al., 2017; Becker-Ehmck et al., 2019). The same
procedure is applied to reconcile velocity estimates from the two networks, where for the image
model, velocities zot,velo are estimated from position differences between two consecutive timesteps.
The object scales zot,scale are inferred solely from the image model and the latent states zot,latent are
given directly by the dynamics network. This then gives us the inference procedure for the full latent
state zot = (zot,pos, z

o
t,size, z

o
t,velo, z

o
t,latent).

Despite its benefits, this technique has thus far only been used in environments with a single ob-
ject or with known state information. A challenge when applying it in a multi-object setting is to
match up the proposals of the two networks. Since the object detection RNN outputs proposals for
object locations in an indeterminate order, it is not immediately clear how to find the corresponding
proposals from the dynamics network. We have, however, found that a simple matching procedure
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Figure 3: Mean test set performance of our approach, the supervised ablation, and baselines. Our
approach (STOVE) clearly outperforms all baselines and is almost indistinguishable from the super-
vised baseline on the billiards task. (Top) Mean squared errors over all pixels in the video prediction
setting (the lower, the better). (Bottom) Mean Euclidean distances between predicted and true posi-
tions (the lower, the better). All position and pixel values are in [0, 1]. In all experiments, the first
eight frames the given, all remaining frames are then conditionally generated. The shading indicates
the max and min values over ten different training runs with identical hyperparameters. (Best viewed
in color.)

results in good performance. That is, for each zt, we assign the object in the order that results in the
minimal difference of ||zt,(pos, vel) − zt−1,(pos, vel)||, where || · || is the Euclidean norm.

2.4 CONDITIONING ON ACTIONS

In reinforcement learning (RL), an agent interacts with the environment sequentially through actions
at to optimize a cumulative reward r. To extend STOVE to operate in this setting, we make two
changes, yielding a distribution p(zt, rt | zt−1, at−1).
First, we condition the dynamics model on actions on at, enabling a conditional prediction based
on both state and action. To keep the model invariant to the order of the input objects, the action
information is concatenated to each object state zot before they are fed into the dynamics model.
The model has to learn on its own which of the objects in the scene are influenced by the action.
To facilitate this, we have found it helpful to also concatenate appearance information from the
extracted object patches to the object state. While this patch-wise code could, in general, be obtained
using some neural feature extractor, we achieved satisfactory performance by simply using the mean
values per color channel.

The second change to the model is the addition of a reward prediction. In many RL environments,
rewards depend on the interactions between objects. Therefore, the graph neural network for pre-
dicting dynamics, presented in eq. (1), translates well to a reward prediction model. We choose
to share the same encoding of object interactions between reward and dynamics prediction and
simply apply two different output networks (f in eq. (1)) to obtain the dynamics and reward predic-
tions. The total model is again optimized using the ELBO, this time including the reward likelihood
p(rt | xt−1, zt−1).

3 EXPERIMENTAL EVIDENCE

In order to evaluate our model, we compare it to baselines in three different settings: First, pure
video prediction, where the goal is to predict future frames of a video given previous ones. Second,
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Table 1: Predictive performance of our approach, the baselines and ablations. Shown are the mean
Euclidian distances between predicted and true positions (the lower, the better). Best values are
bold. As one can see, our approach outperforms all baselines and is almost indistinguishable from
the supervised baseline on the billiards task. The values are computed by averaging the prediction
errors presented in fig. 3 in the time interval t ∈ [9, 18], i.e., the first ten predicted timesteps. In
brackets, standard deviations across multiple training runs are given.

Ours VRNN SQAIR Linear Supervised
Billiards (pixels) 0.0240(14) 0.0526(14) 0.0591 0.084 42(28) –
Billiards (states) 0.0418(20) – 0.0804 0.1348(14) 0.0232(37)
Gravity (pixels) 0.004 01(29) 0.0055(12) 0.0070 0.019 56(23) –
Gravity (states) 0.014 23(72) – 0.0194 0.049 32(42) 0.001 42(25)

the prediction of future object positions, which may be relevant for downstream tasks. Third, we
extend one of the video datasets to a reinforcement learning task and investigate how our physics
model may be used for sample-efficient, model-based reinforcement learning. With this paper, we
also release a PyTorch implementation of STOVE. 1

3.1 VIDEO AND STATE MODELING

Inspired by (Watters et al., 2017), we considered grayscale videos of objects moving according to
physical laws. In particular, we opted for the commonly used bouncing billiards balls dataset, as well
as a dataset of gravitationally interacting balls. For further details on the datasets, see appendix A.4.
As baselines, we compared to VRNNs (Chung et al., 2015) and SQAIR (Kosiorek et al., 2018).
To allow for a fair comparison, we fixed the number of objects predicted by SQAIR to the correct
amount. Furthermore, we compared to a supervised baseline: Here, we considered the ground truth
positions and velocities to be fully observed, and trained our dynamics model on them, resembling
the setting of Battaglia et al. (2016). Since our model needs to infer object states from pixels, this
baseline provides an upper bound on the predictive performance we can achieve with our model. In
turn, the size of the performance gap between the two is a good indicator of the quality of our state-
space model. As an ablation, we also report the results obtained by combining our image model with
a simple linear physics model, which linearly extrapolates the objects’ trajectories. Since VRNN
does not reason about object positions, we only evaluated it on the frame prediction task. Similarly,
the supervised baseline does not reason about images and was only considered for the position
prediction task. For more information on the baselines, see appendix A.5.

Fig. 2 illustrates predictions on future object positions made by the models, after each of them was
given eight consecutive frames from the datasets. Visually, the predictions produced by STOVE are
on par with the supervised baseline, as well as with other supervised approaches from the literature
such as Watters et al. (2017), which assume access to precise ground truth states at training time.
Despite the fact that our dynamics model is only conditioned on the previous timestep, our model is
able to generate realistic looking rollouts over hundreds of timesteps. This is in contrast to previous
work such as Watters et al. (2017), who explicitly condition on multiple previous timesteps and
include auxiliary loss terms as opposed to simply maximizing the ELBO.

Fig. 3 depicts the reconstruction and prediction errors of the various models: Each model is given
eight frames of video from the test set as input, which it then reconstructs. Conditioned on this in-
put, the models predict the object positions or resulting video frames for the following 72 timesteps.
The predictions are evaluated by computing the mean squared pixel and mean position errors with
respect to the ground truth data. We outperform all baselines on both the state and the image pre-
diction task by a large margin. Additionally, we perform strikingly close to the supervised model.
Table 1 underlines these results with concrete numbers. For the gravitational data, the prediction
task appears easier, as both our model as well as the gravitational baseline perform better than in the
billiards task. However, in this regime of easy prediction, precise access to the object states becomes
more important, which is why the gap between our approach and the supervised baseline is slightly

1The code can be found at an anonymized GitHub repository at https://github.com/ICLR20/
STOVE. This is also where animated versions of the plots and our model and baselines can be found.
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Figure 4: Comparison of all models on sample efficiency and final performance. (Left) The curves
represent the mean cumulative reward over 100 steps on the environment, executed over 100 en-
vironments, using the specified policy. The shaded regions correspond to one-tenth of a standard
deviation. In addition to the training curves, two constant baselines are shown, one representing a
random policy and one corresponding to the MCTS based policy when using the real environment as
a simulator. (Right) Final performance of all approaches, after training each model to convergence.
The shaded region corresponds to one standard deviation. (Best viewed in color)

more pronounced. Nevertheless, STOVE produces high-quality rollouts and still outperforms the
unsupervised baselines.

3.2 MODEL-BASED CONTROL

To explore the usefulness of STOVE for reinforcement learning, we extend the billiards dataset
into a reinforcement learning task. Now, the agent controls one of the balls using nine actions
corresponding to moving in one of the eight cardinal directions and staying at rest. The goal is to
avoid collisions with the other balls, which elastically bounce off of each other, the walls, and the
controlled ball. A negative reward of −1 is given whenever the controlled ball collides with one of
the others. Starting with a random policy, we iteratively gather observations from the environment,
i. e. sequences of images, actions, and rewards. Using these, we train our model as described in
section 2.4. To obtain a policy based on our world model, we use Monte-Carlo tree search (MCTS),
leveraging our model as a simulator for planning. Using this policy, we gather more observations,
and use them to refine the world model. As an upper bound on the performance achievable in this
manner, we report the results obtained by MCTS when the real environment is used for planning.
As a model-free baseline, we consider PPO (Schulman et al., 2017), which is a state-of-the-art
algorithm on comparable domains such as Atari games. To explore the effect of the availability of
state information, we also run PPO on a version of the environment in which, instead of images, the
ground-truth object positions and velocities are observed directly.

Learning curves for each of the agents are given in Fig. 4 (Left), reported at intervals of 10 000
samples taken from the environment, up to a total of 130 000. For our model, we collect the first
50 000 samples using a random policy, to provide an initial training set. After that, the described
training loop is used, iterating between collecting 10 000 observations using an MCTS-based policy
and refining the model using examples sampled from the pool of previously seen observations. After
130 000 samples, PPO has not yet seen enough samples to converge, whereas our model quickly
learns to meaningfully model the environment and thus produces a better policy. Even when PPO
is trained on ground truth states, MCTS on our model remains comparable, indicating that our
dynamics model is the main cause of sample efficiency.

After training each model to convergence, the final performance of all approaches is reported in
Fig. 4 (Right). In this case, PPO achieves slightly better results, however it only converges after
training for approximately 5 000 000 steps, while our approach only uses 130 000 samples. After
around 3 000 000 steps, PPO does eventually surpass the performance of STOVE-based MCTS.
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Additionally, one can see that MCTS on STOVE yields almost the same performance as on the real
environment, indicating that it can be used to anticipate and avoid collisions accurately.

4 RELATED WORK

Multiple lines of work with the goal of video modeling or prediction have emerged recently. Promi-
nently, the supervised modeling of physical interactions from videos has been investigated by
Fragkiadaki et al. (2015), who train a model to play billiards with a single ball, or Watters et al.
(2017); Sanchez-Gonzalez et al. (2018), who use graph neural networks to learn the dynamics of
objects from images. Janner et al. (2019) show successful planning based on learned interactions,
but assume access to image segmentations. Unsupervised approaches such as Jaques et al. (2019);
Wu et al. (2016; 2015) address the problem by fitting the parameters of a physics engine to the ob-
served data. For this, it is necessary to specify in advance which physical laws govern the observed
interactions. In the fully unsupervised setting, mainly unstructured variational approaches have been
explored (Babaeizadeh et al., 2017; Chung et al., 2015; Krishnan et al., 2015). However, without the
explicit notion of objects, their performance in scenarios with interacting objects remains limited.

Only a small number of works address this by incorporating objects into unsupervised video models.
Notable exceptions are SQAIR (Kosiorek et al., 2018), R-NEM (Van Steenkiste et al., 2018), and
DDPAE (Hsieh et al., 2018). R-NEM learns a mixture model via expectation-maximization unrolled
through time, and handles interactions between objects in a factorized fashion. However, it lacks
an explicitly structured latent space, requires noise in the input data to avoid local minima, and
struggles with the constancy of object appearances (“wobbling”), albeit less pronounced than with
VRNNs. Both DDPAE and SQAIR extend the AIR approach to work on videos using standard
recurrent architectures. As discussed, this introduces a double recurrence over objects and time,
which is detrimental for performance. However, SQAIR is capable of handling a varying number of
objects, which is not something we considered in this paper.

5 CONCLUSION

We introduced STOVE: a structured, object-aware model for unsupervised video modeling and
model-based planning. Our model combines recent advances in unsupervised image modeling and
physics prediction into a single compositional state-space model. The resulting joint model explic-
itly reasons about object positions and velocities and is capable of generating highly accurate video
predictions in domains featuring complicated non-linear interactions between objects. As our ex-
perimental evaluation shows, it outperforms previous unsupervised approaches and even approaches
the performance and visual quality of a supervised model.

Additionally, we showed an extension of the video learning framework to the RL setting. The
results demonstrate that our model of the environment may be utilized for sample-efficient model-
based control in a visual domain, making headway towards a long standing goal of the model-
based RL community. In particular, STOVE yields good performance with more than one order of
magnitude fewer samples compared to the model-free baseline, even when paired with a relatively
simple planning algorithm like MCTS.

At the same time, our model also makes several assumptions for the sake of simplicity. Relaxing
them provides interesting avenues for future research. First, we assume a fixed number of objects,
which may be avoided by performing dynamic object propagation and discovery like in SQAIR.
Second, we have inherited the assumption of rectangular object masks from AIR. Applying a more
flexible model such as MONet (Burgess et al., 2019) or GENESIS (Engelcke et al., 2019) may
alleviate this, but also poses additional challenges, especially regarding the explicit modeling of
movement. Additionally, we do not currently use object appearances for tracking, which may be
crucial in more complex environments such as Atari games. Finally, the availability of high-quality
learned video models opens the door to the use of more sophisticated model-based RL algorithms
on visual domains. In particular, by combining MCTS with a policy network, a system similar to
AlphaGo (Silver et al., 2016) may be constructed, except on a learned world model instead of a
known environment.
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A APPENDIX

A.1 RECONSTRUCTIONS: SPRITES DATA

SuPAIR does not need a latent description of the objects’ appearances. Object reconstructions can
be obtained by using linear-time, approximate MPE (most probable explanation) in the sum-product
networks as described in Vergari et al. (2018). We follow the AIR approach and reconstruct each
object separately and paste it to the canvas using spatial transformers. Unlike AIR, SuPAIR explicitly
models the background using a separate background SPN. A reconstruction of the background is also
obtained using MPE.

To demonstrate the capabilities of our SuPAIR image model, we also trained our model on a variant
of the gravity data in which the round balls were replaced by a random selection of four different
sprites of the same size. Fig. 5 shows the reconstructions obtained from SuPAIR when trained on
more complex object shapes.

A.2 MODEL DETAILS

Our model was trained using the Adam optimizer Kingma & Ba (2015), with learning rate of
2× 10−3 exp(−40× 10−3 · step) for a total of 83 000 steps and and batch size of 256.

In the recognition network, the inferred distributions from the image model q(zt | zt−1) and physics
prediction q(zt | zt−1) are multiplied to yield a single latent state distributions. Since both q-
distributions are Gaussian, the product is again Gaussian, where mean and standard deviation are
given by

zt ∼ q(zt | zt−1) · q(zt | xt)
q(zt | xt, zt−1) ∝ N (· | µt,p; σt,p) · N (· | µt,d; σt,d)

= N (· | µt; σt)

µt =
σ2
t,d µt,p + σ2

t,p µt,d

σ2
t,d + σ2

t,p

1

σ2
t

=
1

σ2
t,d

+
1

σ2
t,p

.

A.3 DETAILS ON REWARD PREDICTION AND ACTION CONDITIONING

To predict the influence of an action and the resulting reward, the action was added as an input. The
reward is predicted by a small MLP, which is added after obtaining a high-dimensional encoding
of the interactions, and optimized via MSE. During training, a random and a MCTS based policy
where used to obtain samples for the model. Since the task does not contain any unseen information
and the interactions of the objects are invariant to their position and other details, no specific policies
for a full state exploration where needed.

A.4 DATA DETAILS

For the billiards and gravitational data, 1000 sequences of length 100 were generated for training.
From these, subsequences of lengths 8 were sampled and used to optimize the ELBO. A test dataset
of 300 sequences of length 100 was also generated and used for all evaluations. The pixel resolution
of the dataset was 32x32 for the billiards data and 50x50 for the gravity data. All models for video
prediction were learned on grayscale data. The balls were initialised with random positions and
velocities, and rendered using anti-aliasing. The billiards data models the balls as circular objects,
which perform elastic collision with each other or the walls of the environment. For the gravity
data the balls are modelled as point masses, where, following Watters et al. (2017), we clip the
gravitational force to avoid slingshot effects. Also, we add an additional basin of attraction towards
the center of the canvas and model the balls in their center off mass system to avoid a drift. Velocities
here are initialised orthogonal to the center of the canvas for a stabilising effect. For full details we
refer to the file envs. py in the provided code.
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Figure 5: Reconstructions obtained from our image model when using more complex shapes.

A.5 BASELINES FOR THE PHYSICS MODEL

Following Kosiorek et al. (2018), we looked at different hyperparameter configurations for VRNNs.
We investigated the test set performance of VRNN with varying size of the hidden and la-
tent states [h, z]. We tried out [h, z] values of [256, 16], [512, 32], [1024, 64], and [2048, 32].
For us, increases in model capacity beyond [512, 32] did not yield large increases in model
performance, which is why we chose [512, 32] as our VRNN standard configurations. Our
VRNN implementation is written in PyTorch and based on https://github.com/emited/
VariationalRecurrentNeuralNetwork.

SQAIR can handle a variable number of objects in each sequence. However, to allow for a fairer
comparison, we fixed the numer of objects for SQAIR. Our implementation is based on the original
implementation provided by the authors at https://github.com/akosiorek/sqair.

The linear baseline was obtained as follows: For the first 8 frames, we obtain reconstructions of
the full model state from our model. We then take the last inferred positions and velocities of each
object and predict future positions by assuming constant, uniform motions for each object. We do
not allow objects to leave the frame, i. e. when objects reach the canvas boundary after some frames,
they stick to it.

Since our core takes as input only object positions and velocities, and not some abstract, unstructured
latent state, it is trivial to construct a supervised baseline for our physics prediction by replacing the
SuPAIR-inferred states with real, ground-truth states. On these, the model can then be trained in
supervised fashion.

A.6 BASELINES FOR THE REINFORCEMENT LEARNING MODEL

The MCTS implementation is a simple approach using the basic UCT formulation for explo-
ration/exploitation. The c parameter is set to 1. in all our experiments. Since the model does not
provide a natural endpoint, we cut off all searches at a depth of 20 timesteps, which means no model
can predict a situation further in the future. We found this to be a good trade-off between runtime
and accuracy.

When evaluating the model with MCTS, we expand each node by predicting all actions simultane-
ously and compute a rollout for each resulting position. This enables a better utilization of the model,
since it reduces the amount of CPU-GPU data transfers. To estimate the node value function, the
average of all rollouts is propagated back to the root, and each node’s visitation counter is increased
by 1. Furthermore, we discount the reward predicted by the model with a exponential factor of 0.95
to account for the higher uncertainty of longer rollouts. This is not done in the baseline running on
the real environment, since the task contains no stochastic elements and therefore the whole rollout
is deterministic and certain.

For PPO, we employ a simple convolutional neural network as an actor-critic for the evaluation on
images and a MLP for the evaluation on states. The image network consists of two convolutional
layers each having 32 output filters with a kernel size of 4 and 3 respectively and a stride of 2. The
MLP consists of two fully conected layers with 128 and 64 hidden units. In both cases, an additional
fully connected layer links the outputs of the respective base to an actor-and a critic head. For the
convolutional base, the linking layer employs 512 and for the MLP 64 hidden units. All previously
mentioned layers use rectified linear activations. The actor head then predicts a probability distri-
bution over next actions using a softmax activation function while the critic head outputs a value
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estimation for the current state using a linear prediction. We tested several hyperparameter configu-
rations but found the following to be the most efficient one. To update the actor-critic architecture,
we sample 32 trajectories of length 16 from different environments in every batch. The training
uses an Adam optimizer with a learning rate of 2× 10−4 and and ε value of 1× 10−5. The clip-
ping parameter of PPO is set to 1× 10−1. We update the network for 4 epochs in each batch using
32 mini-batches of the sampled data. The used value loss weight corresponds to 5× 10−1 and the
entropy coefficient is set to 1× 10−2.
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